請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/792
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賴向華 | |
dc.contributor.author | Chien-Yu Chou | en |
dc.contributor.author | 周千瑜 | zh_TW |
dc.date.accessioned | 2021-05-11T05:04:35Z | - |
dc.date.available | 2019-08-26 | |
dc.date.available | 2021-05-11T05:04:35Z | - |
dc.date.copyright | 2019-08-26 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-06-21 | |
dc.identifier.citation | Reference
1. Sundqvist G. Associations between microbial species in dental root canal infections. Oral Microbiol Immunol 1992;7:257-262. 2. Yamasaki M, Nakane A, Kumazawa M, Hashioka K, Horiba N, Nakamura H. Endotoxin and gram-negative bacteria in the rat periapical lesions. J Endod 1992;18:501-504. 3. Mattison GD, Haddix JE, Kehoe JC, Progulske-Fox A. The effect of Eikenella corrodens endotoxin on periapical bone. J Endod 1987;13:559-565. 4. Lappin DF, Kjeldsen M, Sander L, Kinane DF. Inducible nitric oxide synthase expression in periodontitis. J Periodontal Res 2000;35:369-373. 5. Chartrain NA, Geller DA, Koty PP, Sitrin NF, Nussler AK, Hoffman EP et al. Molecular cloning, structure, and chromosomal localization of the human inducible nitric oxide synthase gene. J Biol Chem 1994;269:6765-6772. 6. Xie QW, Cho HJ, Calaycay J, Mumford RA, Swiderek KM, Lee TD et al. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 1992;256:225-228. 7. Takeichi O, Saito I, Okamoto Y, Tsurumachi T, Saito T. Cytokine regulation on the synthesis of nitric oxide in vivo by chronically infected human polymorphonuclear leucocytes. Immunology 1998;93:275-280. 8. Hama S, Takeichi O, Saito I, Ito K. Involvement of inducible nitric oxide synthase and receptor for advanced glycation end products in periapical granulomas. J Endod 2007;33:137-141. 9. Lin SK, Kok SH, Kuo MY, Lee MS, Wang CC, Lan WH et al. Nitric oxide promotes infectious bone resorption by enhancing cytokine-stimulated interstitial collagenase synthesis in osteoblasts. J Bone Miner Res 2003;18:39-46. 10. Lin SK, Kok SH, Lin LD, Wang CC, Kuo MY, Lin CT et al. Nitric oxide promotes the progression of periapical lesion via inducing macrophage and osteoblast apoptosis. Oral Microbiol Immunol 2007;22:24-29. 11. Chen RM, Chen TL, Chiu WT, Chang CC. Molecular mechanism of nitric oxide-induced osteoblast apoptosis. J Orthop Res 2005;23:462-468. 12. van't Hof RJ, Ralston SH. Nitric oxide and bone. Immunology 2001;103:255-261. 13. Takeichi O, Saito I, Hayashi M, Tsurumachi T, Saito T. Production of human-inducible nitric oxide synthase in radicular cysts. J Endod 1998;24:157-160. 14. Takeichi O, Hayashi M, Tsurumachi T, Tomita T, Ogihara H, Ogiso B et al. Inducible nitric oxide synthase activity by interferon-gamma-producing cells in human radicular cysts. Int Endod J 1999;32:124-130. 15. Gravallese EM, Harada Y, Wang JT, Gorn AH, Thornhill TS, Goldring SR. Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis. Am J Pathol 1998;152:943-951. 16. Volejnikova S, Laskari M, Marks SC, Jr., Graves DT. Monocyte recruitment and expression of monocyte chemoattractant protein-1 are developmentally regulated in remodeling bone in the mouse. Am J Pathol 1997;150:1711-1721. 17. Li X, Qin L, Bergenstock M, Bevelock LM, Novack DV, Partridge NC. Parathyroid hormone stimulates osteoblastic expression of MCP-1 to recruit and increase the fusion of pre/osteoclasts. J Biol Chem 2007;282:33098-33106. 18. Rahimi P, Wang CY, Stashenko P, Lee SK, Lorenzo JA, Graves DT. Monocyte chemoattractant protein-1 expression and monocyte recruitment in osseous inflammation in the mouse. Endocrinology 1995;136:2752-2759. 19. Williams SR, Jiang Y, Cochran D, Dorsam G, Graves DT. Regulated expression of monocyte chemoattractant protein-1 in normal human osteoblastic cells. Am J Physiol 1992;263:C194-199. 20. Kakehashi S, Stanley HR, Fitzgerald RJ. The Effects of Surgical Exposures of Dental Pulps in Germ-Free and Conventional Laboratory Rats. Oral Surg Oral Med Oral Pathol 1965;20:340-349. 21. Balto K, Muller R, Carrington DC, Dobeck J, Stashenko P. Quantification of periapical bone destruction in mice by micro-computed tomography. J Dent Res 2000;79:35-40. 22. Friedman S, Mor C. The success of endodontic therapy--healing and functionality. J Calif Dent Assoc 2004;32:493-503. 23. Scheen AJ. Clinical pharmacokinetics of metformin. Clin Pharmacokinet 1996;30:359-371. 24. Lei Y, Yi Y, Liu Y, Liu X, Keller ET, Qian CN et al. Metformin targets multiple signaling pathways in cancer. Chin J Cancer 2017;36:17. 25. Kelly B, Tannahill GM, Murphy MP, O'Neill LA. Metformin Inhibits the Production of Reactive Oxygen Species from NADH:Ubiquinone Oxidoreductase to Limit Induction of Interleukin-1beta (IL-1beta) and Boosts Interleukin-10 (IL-10) in Lipopolysaccharide (LPS)-activated Macrophages. J Biol Chem 2015;290:20348-20359. 26. Liu L, Zhang C, Hu Y, Peng B. Protective effect of metformin on periapical lesions in rats by decreasing the ratio of receptor activator of nuclear factor kappa B ligand/osteoprotegerin. J Endod 2012;38:943-947. 27. Isoda K, Young JL, Zirlik A, MacFarlane LA, Tsuboi N, Gerdes N et al. Metformin inhibits proinflammatory responses and nuclear factor-kappaB in human vascular wall cells. Arterioscler Thromb Vasc Biol 2006;26:611-617. 28. Caballero AE, Delgado A, Aguilar-Salinas CA, Herrera AN, Castillo JL, Cabrera T et al. The differential effects of metformin on markers of endothelial activation and inflammation in subjects with impaired glucose tolerance: a placebo-controlled, randomized clinical trial. J Clin Endocrinol Metab 2004;89:3943-3948. 29. Morin-Papunen L, Rautio K, Ruokonen A, Hedberg P, Puukka M, Tapanainen JS. Metformin reduces serum C-reactive protein levels in women with polycystic ovary syndrome. J Clin Endocrinol Metab 2003;88:4649-4654. 30. Zhang X, Shang F, Hui L, Zang K, Sun G. The alleviative effects of metformin for lipopolysaccharide-induced acute lung injury rat model and its underlying mechanism. Saudi Pharm J 2017;25:666-670. 31. Rao NS, Pradeep AR, Kumari M, Naik SB. Locally delivered 1% metformin gel in the treatment of smokers with chronic periodontitis: a randomized controlled clinical trial. J Periodontol 2013;84:1165-1171. 32. Pradeep AR, Nagpal K, Karvekar S, Patnaik K, Naik SB, Guruprasad CN. Platelet-rich fibrin with 1% metformin for the treatment of intrabony defects in chronic periodontitis: a randomized controlled clinical trial. J Periodontol 2015;86:729-737. 33. Kuo CL, Ho FM, Chang MY, Prakash E, Lin WW. Inhibition of lipopolysaccharide-induced inducible nitric oxide synthase and cyclooxygenase-2 gene expression by 5-aminoimidazole-4-carboxamide riboside is independent of AMP-activated protein kinase. J Cell Biochem 2008;103:931-940. 34. Kato Y, Koide N, Komatsu T, Tumurkhuu G, Dagvadorj J, Kato K et al. Metformin attenuates production of nitric oxide in response to lipopolysaccharide by inhibiting MyD88-independent pathway. Horm Metab Res 2010;42:632-636. 35. Silva MJ, Sousa LM, Lara VP, Cardoso FP, Junior GM, Totola AH et al. The role of iNOS and PHOX in periapical bone resorption. J Dent Res 2011;90:495-500. 36. Pilon G, Dallaire P, Marette A. Inhibition of inducible nitric-oxide synthase by activators of AMP-activated protein kinase: a new mechanism of action of insulin-sensitizing drugs. J Biol Chem 2004;279:20767-20774. 37. Kok SH, Hou KL, Hong CY, Wang JS, Liang PC, Chang CC et al. Simvastatin inhibits cytokine-stimulated Cyr61 expression in osteoblastic cells: a therapeutic benefit for arthritis. Arthritis Rheum 2011;63:1010-1020. 38. Lin SK, Kok SH, Lee YL, Hou KL, Lin YT, Chen MH et al. Simvastatin as a novel strategy to alleviate periapical lesions. J Endod 2009;35:657-662. 39. Wu PH, Lin SK, Lee BS, Kok SH, Wang JH, Hou KL et al. Epigallocatechin-3-gallate diminishes cytokine-stimulated Cyr61 expression in human osteoblastic cells: a therapeutic potential for arthritis. Rheumatology (Oxford) 2012;51:1953-1965. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/handle/123456789/792 | - |
dc.description.abstract | 根尖病變(periapical lesion)是當牙髓腔暴露、細菌入侵,導致牙髓感染發炎、壞死,而後蔓延至根尖部位的齒槽骨,造成骨頭破壞形成的骨吸收性病灶。在病灶區域內,細菌釋放內毒素(Lipopolysaccharide, LPS)引發一連串的發炎反應,除了引發成骨細胞凋亡,也吸引免疫細胞聚集、巨噬細胞活化與蝕骨細胞分化,造成骨吸收情形更加嚴重。Metformin是臨床上廣為被使用作為降血糖的藥物,但也具備抗發炎以及影響骨代謝的功能。先前的研究已經證明,發炎反應時產生的一氧化氮(Nitric oxide, NO)會誘發成骨細胞凋亡、刺激成骨細胞分泌膠原酶,加速根尖病變的進展;在動物實驗模型上也觀察到抑制一氧化氮的合成,可以減緩骨性吸收、縮小病灶範圍。另外,受到發炎因子刺激的成骨細胞也會分泌細胞趨化激素(C-C motif ligand 2,CCL2),吸引巨噬細胞聚集浸潤,使骨吸收加劇。然而,對於發炎環境下,巨噬細胞產生一氧化氮後對於成骨細胞的刺激、以及Metformin在此機轉中扮演的抑制效果尚待闡明。
在本次研究中,利用人類類單核球細胞(MonoMac-6, MMC-6)在細菌內毒素刺激(LPS)後一氧化氮合成酶的活化以及一氧化氮的生成,透過西方點墨法與格里斯試劑(Greiss reagent)檢測一氧化氮合成酶的表現量與Nitrite濃度,並觀察Metformin在此路徑上是否具有抑制效果。另一方面,收集受到細菌內毒素刺激的MMC-6的conditioning medium後,觀察釋放至細胞培養液中的產物,是否會影響成骨細胞分泌CCL2的表現。最後,設計誘導根尖病變的大鼠模型,在經過標準的根管清創後給予Metformin治療,利用影像學分析以及組織免疫染色去探討對於根尖病灶的癒合狀況。 研究結果發現,在LPS刺激下,MMC-6的一氧化氮合成酶會被活化,並產生高濃度的Nitrite,而Metformin可以抑制一氧化氮合成酶的活性、和降低Nitrite的累積濃度。而受到LPS刺激後的MMC-6之conditioning medium會誘發成骨細胞生成CCL2,並且Metformin同樣可以對此有抑制效果。動物實驗方面,從組織切片染色的結果,我們觀察到在根尖發炎病變的區域中,有明顯的一氧化氮合成酶訊號和巨噬細胞浸潤。而影像學分析的結果顯示,Metformin以根管局部的投藥方式可以減緩巨噬細胞浸潤、降低一氧化氮合成酶的活化程度,有效減小根尖病變的範圍。總結以上所述,在in vitro的研究中我們驗證”因細菌感染所誘發的iNOS上升使巨噬細胞產生大量NO”可被Metformin抑制; 而在in vivo的研究中,我們也發現局部投予Metformin能減緩大鼠根尖病變的發炎性骨吸收。透過本次實驗,我們發現Metformin可以抑制巨噬細胞iNOS的表現量、抑制成骨細胞分泌CCL2、降低根尖病變區域巨噬細胞的浸潤,達到減緩根尖病變進展的效果。 | zh_TW |
dc.description.abstract | Periapical lesion is an osteolytic lesion which is developed while the dental pulp is exposed to the oral environment, invaded by bacteria and lead to a non-reversible inflammation and destruction of periapical bone. Bacteria in the periapical lesion will cause a series of reaction including immune cell recruitment and infiltration, macrophage activation and osteoblast apoptosis. Previous studies show that nitric oxide (NO) produced by immune cells while inflammation progressed will cause the apoptosis of osteoblast and accelerate the progression of periapical lesion; it was also shown that inhibition of nitric oxide will attenuate periapical lesion progression. Furthermore, osteoblasts will produce C-C motif ligand 2 (CCL2) by the stimulation of lipopolysaccharide (LPS), lead to macrophage recruitment and exaggerated bone destruction. Metformin, a well-used anti-diabetic medication, has been shown to its anti-inflammatory effect and its ability to regulate bone metabolism. However, the effect of NO produced by macrophage on the osteoblast and the mechanism of Metformin attenuate the periapical lesion remain unclear.
In our study, we use human monocytic cell and osteoblastic cell to investigate the activation of inducible nitric oxide synthase (iNOS) and the production of NO by macrophage and the synthesis of CCL2 by osteoblast respectively. The rat model with induced apical lesion were also designed by exposing the pulp chamber to oral cavity, and Metformin treatment was performed after standard root canal debridement, the healing of the apical lesion was investigated by imaging analysis and tissue immunostaining. We found NO production and iNOS expression was increased in LPS-treated macrophage, the activated macrophage stimulate the secretion of CCL2 in osteoblast. Metformin inhibited NO and iNOS expression in macrophage and reduced CCL2 in osteoblast by conditioning medium from LPS-treated macrophage. In the in vivo part of our study, bone destruction was significantly less in the Metformin- treated group. The infiltration of macrophage around the lesion was inhibited and the expression of iNOS was also reduced in the Metformin-treated group. Our study suggest that LPS-induced iNOS expression and NO production were inhibited by Metformin both in vitro and in vivo. Metformin inhibited the cell-cell communication between macrophage and osteoblast in periapical lesion. Therefore, Metformin may be promising for clinical application in patients with periapical lesion. | en |
dc.description.provenance | Made available in DSpace on 2021-05-11T05:04:35Z (GMT). No. of bitstreams: 1 ntu-108-R05422010-1.pdf: 3449270 bytes, checksum: 6882c578ecad29caf28345c6f747d57f (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 誌謝 I
中文摘要 II ABSTRACT IV 第一章 導論 1 1.1 根尖發炎反應與根尖周圍病變(PERIAPICAL LESION) 1 1.1.1 根尖病變發展過程 1 1.1.2 根尖周圍病變與細菌內毒素(Lipopolysaccharide, LPS) 1 1.1.3 一氧化氮(NO)與iNOS 2 1.1.4 NO、細胞凋亡與根尖周圍病變 3 1.1.5 趨化因子CCL2與monocyte的浸潤 3 1.1.6 根尖病變的治療與根尖組織的修復 4 1.2 METFORMIN與根尖病變治療 5 1.2.1 Metformin概論 5 1.2.2 Metformin與抑制發炎效果 7 1.2.3 Metformin在牙科的應用 7 第二章 實驗目的 9 第三章 材料與方法 10 3.1 細胞培養 10 3.2 動物飼養 10 3.3 LPS誘發細胞INOS表現、NITRITE生成和CCL2合成與METFORMIN對此路徑的影響 11 3.3.1 以西方點墨法測試巨噬細胞之細胞質iNOS蛋白表現量 11 3.3.2 Greiss Reagent測試巨噬細胞之Nitrite生成量 13 3.3.3 Human MCP-1 ELISA kit測試成骨細胞之CCL2蛋白質生成量 14 3.4 誘導根尖病變動物模型(ANIMAL MODELS OF PERIAPICAL LESIONS) 15 3.5免疫組織染色 17 3.6 統計分析 17 第四章 實驗結果 18 4.1 LPS刺激巨噬細胞表現INOS與NO的生成 18 4.2 METFORMIN調節LPS刺激之巨噬細胞INOS表現量與NO的生成 18 4.3 成骨細胞之CCL2基因表現量與METFORMIN調節其表現量之效果 19 4.4局部投予METFORMIN於根尖病變大鼠模型之療效 19 4.4.1於2D以及3D影像分析之結果 19 4.4.2 組織染色之結果 20 第五章 討論 21 5.1 LPS刺激巨噬細胞之INOS表現量與METFORMIN對其表現量之抑制效果 21 5.1.1 LPS刺激巨噬細胞之iNOS表現量與Nitrite生成 21 5.1.2 Metformin抑制LPS刺激之巨噬細胞iNOS表現量與Nitrite生成 23 5.2 METFORMIN抑制巨噬細胞與成骨細胞之交互作用並影響成骨細胞之CCL2基因表現量 24 5.3局部投予METFORMIN於根尖病變大鼠模型之療效 25 5.3.1 Metformin具有減緩根尖病灶進展之效果 25 5.3.2 Metformin可以降低根尖病灶處細胞iNOS表現量與巨噬細胞浸潤現象 27 第六章 結論 29 第七章 未來展望 30 附圖 31 | |
dc.language.iso | zh-TW | |
dc.title | 藉由Metformin調節誘發性一氧化氮合成酶與一氧化氮合成減緩根尖病變進展 | zh_TW |
dc.title | Metformin Attenuate Periapical Lesion Progression via Abolishing Inducible Nitric Oxide Synthase/ Nitric Oxide Synthesis | en |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林思洸,洪志遠 | |
dc.subject.keyword | Metformin,iNOS,CCL2,根尖病變,成骨細胞,巨噬細胞, | zh_TW |
dc.subject.keyword | Periapical lesion,Metformin,macrophage,osteoblast,iNOS,CCL2, | en |
dc.relation.page | 46 | |
dc.identifier.doi | 10.6342/NTU201900963 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2019-06-21 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
顯示於系所單位: | 臨床牙醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf | 3.37 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。