Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79296
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭萬興(Wan-Hsing Cheng)
dc.contributor.authorWei-Chih Linen
dc.contributor.author林威至zh_TW
dc.date.accessioned2022-11-23T08:57:37Z-
dc.date.available2022-01-17
dc.date.available2022-11-23T08:57:37Z-
dc.date.copyright2022-01-17
dc.date.issued2021
dc.date.submitted2021-11-22
dc.identifier.citationAlonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K., Zimmerman, J., Barajas, P. and Cheuk, R, et al. (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653-657. Andersson, G., Karlberg, O., Canbäck, B. and Kurland, C.G. (2003) On the origin of mitochondria: a genomics perspective. Philos. Trans. R. Soc. Lond., B., Biol. Sci. 358: 165-179. Andrés, C., Lurin, C. and Small, I.D. (2007) The multifarious roles of PPR proteins in plant mitochondrial gene expression. Physiol. Plant. 129: 14-22. Asakura, Y. and Barkan, A. (2006) Arabidopsis orthologs of maize chloroplast splicing factors promote splicing of orthologous and species-specific group II introns. Plant Physiol. 142: 1656-1663. Asakura, Y. and Barkan, A. (2007) A CRM domain protein functions dually in group I and group II intron splicing in land plant chloroplasts. Plant Cell 19: 3864-3875. Asakura, Y., Bayraktar, O.A. and Barkan, A. (2008) Two CRM protein subfamilies cooperate in the splicing of group IIB introns in chloroplasts. RNA 14: 2319-2332. Barkan, A., Klipcan, L., Ostersetzer, O., Kawamura, T., Asakura, Y. and Watkins, K.P. (2007) The CRM domain: an RNA binding module derived from an ancient ribosome-associated protein. RNA 13: 55-64. Barkan, A. and Small, I. (2014) Pentatricopeptide repeat proteins in plants. Annu. Rev. Plant Biol. 65: 415-442. Bentolila, S., Gipson, A., Kehl, A., Hamm, L., Hayes, M., Mulligan, R. and Hanson, M. (2021) A RanBP2-type zinc finger protein functions in intron splicing in Arabidopsis mitochondria and is involved in the biogenesis of respiratory complex I. Nucleic Acids Res. 49: 3490-3506. Bergman, P., Edqvist, J., Farbos, I. and Glimelius, K. (2000) Male-sterile tobacco displays abnormal mitochondrial atp1 transcript accumulation and reduced floral ATP/ADP ratio. Plant Mol. Biol. 42: 531-544. Bernardi, P. (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol. Rev. 79: 1127-1155. Best, C., Mizrahi, R. and Ostersetzer-Biran, O. (2020) Why so complex? The intricacy of genome structure and gene expression, associated with angiosperm mitochondria, may relate to the regulation of embryo quiescence or dormancy—intrinsic blocks to early plant life. Plants 9: 1-19. Bohra, A., Jha, U.C., Adhimoolam, P., Bisht, D. and Singh, N.P. (2016) Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. Plant Cell Rep. 35: 967-993. Bonen, L. (2008) Cis- and trans-splicing of group II introns in plant mitochondria. Mitochondrion 8: 26-34. Brandt, U. (2006) Energy converting NADH:quinone oxidoreductase (complex I). Annu. Rev. Biochem. 75: 69-92. Brangeon, J., Sabar, M., Gutierres, S., Combettes, B., Bove, J., Gendy, C., Chétrit, P., Des Francs‐Small, C.C., Pla, M. and Vedel, F. (2000) Defective splicing of the first nad4 intron is associated with lack of several complex I subunits in the Nicotiana sylvestris NMS1 nuclear mutant. Plant J. 21: 269-280. Burger, G., Gray, M.W. and Lang, B.F. (2003) Mitochondrial genomes: anything goes. Trends Genet. 19: 709-716. Carlsson, J., Leino, M., Sohlberg, J., Sundstrom, J.F. and Glimelius, K. (2008) Mitochondrial regulation of flower development. Mitochondrion 8: 74-86. Chase, C.D. (2007) Cytoplasmic male sterility: a window to the world of plant mitochondrial-nuclear interactions. Trends Genet. 23: 81-90. Chen, L. and Liu, Y.G. (2014) Male sterility and fertility restoration in crops. Annu. Rev. Plant Biol. 65: 579-606. Chen, Y.H., Shen, H.L., Hsu, P.J., Hwang, S.G. and Cheng, W.H. (2014) N-acetylglucosamine-1-P uridylyltransferase 1 and 2 are required for gametogenesis and embryo development in Arabidopsis thaliana. Plant Cell Physiol. 55: 1977-1993. Clifton, S.W., Minx, P., Fauron, C.M.-R., Gibson, M., Allen, J.O., Sun, H., Thompson, M., Barbazuk, W.B., Kanuganti, S. and Tayloe, C. (2004) Sequence and comparative analysis of the maize NB mitochondrial genome. Plant Physiol. 136: 3486-3503. Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735-743. Cohen, S., Zmudjak, M., des Francs-Small, C.C., Malik, S., Shaya, F., Keren, I., Belausov, E., Many, Y., Brown, G.G., Small, I. and Ostersetzer-Biran, O. (2014) nMAT4, a maturase factor required for nad1 pre-mRNA processing and maturation, is essential for holocomplexI biogenesis in Arabidopsis mitochondria. Plant J. 78: 253-268. Colas des Francs-Small, C., Falcon de Longevialle, A., Li, Y., Lowe, E., Tanz, S.K., Smith, C., Bevan, M.W. and Small, I. (2014) The pentatricopeptide repeat proteins TANG2 and ORGANELLE TRANSCRIPT PROCESSING439 are involved in the splicing of the multipartite nad5 transcript encoding a subunit of mitochondrial complex I. Plant Physiol. 165: 1409-1416. Cordoba, J.P., Marchetti, F., Soto, D., Martin, M.V., Pagnussat, G.C. and Zabaleta, E. (2016) The CA domain of the respiratory complex I is required for normal embryogenesis in Arabidopsis thaliana. J. Exp. Bot. 67: 1589-1603. Dahan, J. and Mireau, H. (2013) The Rf and Rf-like PPR in higher plants, a fast-evolving subclass of PPR genes. RNA Biol. 10: 1469-1476. de Longevialle, A.F., Meyer, E.H., Andres, C., Taylor, N.L., Lurin, C., Millar, A.H. and Small, I.D. (2007) The pentatricopeptide repeat gene OTP43 is required for trans-splicing of the mitochondrial nad1 Intron 1 in Arabidopsis thaliana. Plant Cell 19: 3256-3265. Fica, S.M., Mefford, M.A., Piccirilli, J.A. and Staley, J.P. (2014) Evidence for a group II intron-like catalytic triplex in the spliceosome. Nat. Struct. Mol. Biol. 21: 464-471. Focks, N. and Benning, C. (1998) wrinkled1: A novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol. 118: 91-101. Francs-Small, C.C., Kroeger, T., Zmudjak, M., Ostersetzer-Biran, O., Rahimi, N., Small, I. and Barkan, A. (2012) A PORR domain protein required for rpl2 and ccmF(C) intron splicing and for the biogenesis of c-type cytochromes in Arabidopsis mitochondria. Plant J. 69: 996-1005. Fuchs, P., Rugen, N., Carrie, C., Elsässer, M., Finkemeier, I., Giese, J., Hildebrandt, T.M., Kühn, K., Maurino, V.G. and Ruberti, C. (2020) Single organelle function and organization as estimated from Arabidopsis mitochondrial proteomics. Plant J. 101: 420-441. Gagarinova, A., Stewart, G., Samanfar, B., Phanse, S., White, C.A., Aoki, H., Deineko, V., Beloglazova, N., Yakunin, A.F., Golshani, A., Brown, E.D., Babu, M. and Emili, A. (2016) Systematic genetic screens reveal the dynamic global functional organization of the bacterial translation machinery. Cell Rep. 17: 904-916. Ghifari, A.S., Gill-Hille, M. and Murcha, M.W. (2018) Plant mitochondrial protein import: the ins and outs. Biochem. J. 475: 2191-2208. Gietz, D., St Jean, A., Woods, R.A. and Schiestl, R.H. (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20: 1425. Gualberto, J.M., Le Ret, M., Beator, B. and Kuhn, K. (2015) The RAD52-like protein ODB1 is required for the efficient excision of two mitochondrial introns spliced via first-step hydrolysis. Nucleic Acids Res. 43: 6500-6510. Gunter, T.E. and Pfeiffer, D.R. (1990) Mechanisms by which mitochondria transport calcium. Am. J. Physiol. 258: C755-786. Gutierres, S., Combettes, B., De Paepe, R., Mirande, M., Lelandais, C., Vedel, F. and Chétrit, P. (1999) In the N. sylvestris CMSII mutant, a recombination‐mediated change 5' to the first exon of the mitochondrial nad1 gene is associated with lack of the NADH: ubiquinone oxidoreductase (complex I) NAD1 subunit. Eur. J. Biochem. 261: 361-370. Gutierres, S., Sabar, M., Lelandais, C., Chetrit, P., Diolez, P., Degand, H., Boutry, M., Vedel, F., de Kouchkovsky, Y. and De Paepe, R. (1997) Lack of mitochondrial and nuclear-encoded subunits of complex I and alteration of the respiratory chain in Nicotiana sylvestris mitochondrial deletion mutants. Proc. Natl. Acad. Sci. USA 94: 3436-3441. Haili, N., Planchard, N., Arnal, N., Quadrado, M., Vrielynck, N., Dahan, J., des Francs-Small, C.C. and Mireau, H. (2016) The MTL1 pentatricopeptide repeat protein is required for both translation and splicing of the mitochondrial NADH DEHYDROGENASE SUBUNIT7 mRNA in Arabidopsis. Plant Physiol. 170: 354-366. Hammani, K. and Giege, P. (2014) RNA metabolism in plant mitochondria. Trends Plant Sci. 19: 380-389. He, J.N., Duan, Y., Hua, D.P., Fan, G.J., Wang, L., Liu, Y., Chen, Z.Z., Han, L.H., Qu, L.J. and Gong, Z.Z. (2012) DEXH box RNA helicase-mediated mitochondrial reactive oxygen species production in Arabidopsis mediates crosstalk between abscisic acid and auxin signaling. Plant Cell 24: 1815-1833. Hess, W.R. and Borner, T. (1999) Organellar RNA polymerases of higher plants. Int. Rev. Cytol. 190: 1-59. Hooper, C.M., Tanz, S.K., Castleden, I.R., Vacher, M.A., Small, I.D. and Millar, A.H. (2014) SUBAcon: a consensus algorithm for unifying the subcellular localization data of the Arabidopsis proteome. Bioinformatics 30: 3356-3364. Hsieh, W.Y., Liao, J.C., Chang, C.Y., Harrison, T., Boucher, C. and Hsieh, M.H. (2015) The SLOW GROWTH3 pentatricopeptide repeat protein is required for the splicing of mitochondrial NADH Dehydrogenase Subunit7 Intron 2 in Arabidopsis. Plant Physiol. 168: 490-501. Hsu, P.J., Tan, M.C., Shen, H.L., Chen, Y.H., Wang, Y.Y., Hwang, S.G., Chiang, M.H., Le, Q.V., Kuo, W.S., Chou, Y.C., Lin, S.Y., Jauh, G.Y. and Cheng, W.H. (2021) The nucleolar protein SAHY1 is involved in pre-rRNA processing and normal plant growth. Plant Physiol. 185: 1039-1058. Hsu, Y.W., Juan, C.T., Wang, C.M. and Jauh, G.Y. (2019) Mitochondrial heat shock protein 60s interact with What's This Factor 9 to regulate RNA splicing of ccmFC and rpl2. Plant Cell Physiol. 60: 116-125. Hsu, Y.W., Wang, H.J., Hsieh, M.H., Hsieh, H.L. and Jauh, G.Y. (2014) Arabidopsis mTERF15 is required for mitochondrial nad2 intron 3 splicing and functional complex I activity. Plos One 9: e112360. Huang, J., Struck, F., Matzinger, D.F. and Levings 3rd, C. (1994) Flower-enhanced expression of a nuclear-encoded mitochondrial respiratory protein is associated with changes in mitochondrion number. Plant Cell 6: 439-448. Huang, K.C., Lin, W.C. and Cheng, W.H. (2018) Salt hypersensitive mutant 9, a nucleolar APUM23 protein, is essential for salt sensitivity in association with the ABA signaling pathway in Arabidopsis. BMC Plant Biol. 18: 40. Huang, S., Van Aken, O., Schwarzländer, M., Belt, K. and Millar, A.H. (2016) The roles of mitochondrial reactive oxygen species in cellular signaling and stress response in plants. Plant Physiol. 171: 1551-1559. Kazama, T., Nakamura, T., Watanabe, M., Sugita, M. and Toriyama, K. (2008) Suppression mechanism of mitochondrial ORF79 accumulation by Rf1 protein in BT-type cytoplasmic male sterile rice. Plant J. 55: 619-628. Keren, I., Bezawork-Geleta, A., Kolton, M., Maayan, I., Belausov, E., Levy, M., Mett, A., Gidoni, D., Shaya, F. and Ostersetzer-Biran, O. (2009) AtnMat2, a nuclear-encoded maturase required for splicing of group-II introns in Arabidopsis mitochondria. RNA 15: 2299-2311. Keren, I., Klipcan, L., Bezawork-Geleta, A., Kolton, M., Shaya, F. and Ostersetzer-Biran, O. (2008) Characterization of the molecular basis of group II intron RNA recognition by CRS1-CRM domains. J. Biol. Chem. 283: 23333-23342. Keren, I., Tal, L., des Francs-Small, C.C., Araujo, W.L., Shevtsov, S., Shaya, F., Fernie, A.R., Small, I. and Ostersetzer-Biran, O. (2012) nMAT1, a nuclear-encoded maturase involved in the trans-splicing of nad1 intron 1, is essential for mitochondrial complex I assembly and function. Plant J. 71: 413-426. Kleinboelting, N., Huep, G., Kloetgen, A., Viehoever, P. and Weisshaar, B. (2012) GABI-Kat SimpleSearch: new features of the Arabidopsis thaliana T-DNA mutant database. Nucleic Acids Res. 40: D1211-1215. Knoop, V. (2012) Seed plant mitochondrial genomes: complexity evolving. In Genomics of chloroplasts and mitochondria. Springer 35: 175-200. Kohler, D., Schmidt-Gattung, S. and Binder, S. (2010) The DEAD-box protein PMH2 is required for efficient group II intron splicing in mitochondria of Arabidopsis thaliana. Plant Mol. Biol. 72: 459-467. Koprivova, A., des Francs-Small, C.C., Calder, G., Mugford, S.T., Tanz, S., Lee, B.R., Zechmann, B., Small, I. and Kopriva, S. (2010) Identification of a pentatricopeptide repeat protein implicated in splicing of intron 1 of mitochondrial nad7 transcripts. J. Biol. Chem. 285: 32192-32199. Kuhn, K., Carrie, C., Giraud, E., Wang, Y., Meyer, E.H., Narsai, R., des Francs-Small, C.C., Zhang, B.T., Murcha, M.W. and Whelan, J. (2011) The RCC1 family protein RUG3 is required for splicing of nad2 and complex I biogenesis in mitochondria of Arabidopsis thaliana. Plant J. 67: 1067-1080. Kuhn, K., Richter, U., Meyer, E.H., Delannoy, E., de Longevialle, A.F., O'Toole, N., Borner, T., Millar, A.H., Small, I.D. and Whelan, J. (2009) Phage-type RNA polymerase RPOTmp performs gene-specific transcription in mitochondria of Arabidopsis thaliana. Plant Cell 21: 2762-2779. Lambowitz, A.M. and Zimmerly, S. (2011) Group II introns: mobile ribozymes that invade DNA. Cold Spring Harb. perspect. Biol. 3: a003616. Lee, K., Lee, H.J., Kim, D.H., Jeon, Y., Pai, H.-S. and Kang, H. (2014) A nuclear-encoded chloroplast protein harboring a single CRM domain plays an important role in the Arabidopsis growth and stress response. BMC Plant Biol. 14: 1-11. Lee, K., Park, S.J., Park, Y.-I. and Kang, H. (2019) CFM9, a mitochondrial CRM protein, is crucial for mitochondrial intron splicing, mitochondria function and Arabidopsis growth and stress responses. Plant Cell Physiol. 60: 2538-2548. Lelandais, C., Albert, B., Gutierres, S., De Paepe, R., Godelle, B., Vedel, F. and Chetrit, P. (1998) Organization and expression of the mitochondrial genome in the Nicotiana sylvestris CMSII mutant. Genetics 150: 873-882. León, G., Holuigue, L. and Jordana, X. (2007) Mitochondrial complex II is essential for gametophyte development in Arabidopsis. Plant physiol. 143: 1534-1546. Liberatore, K.L., Dukowic-Schulze, S., Miller, M.E., Chen, C. and Kianian, S.F. (2016) The role of mitochondria in plant development and stress tolerance. Free Radic. Biol. Med. 100: 238-256. Liere, K., Weihe, A. and Borner, T. (2011) The transcription machineries of plant mitochondria and chloroplasts: Composition, function, and regulation. J. Plant Physiol. 168: 1345-1360. Linke, B. and Borner, T. (2005) Mitochondrial effects on flower and pollen development. Mitochondrion 5: 389-402. Liu, Y., He, J., Chen, Z., Ren, X., Hong, X. and Gong, Z. (2010) ABA overly-sensitive 5 (ABO5), encoding a pentatricopeptide repeat protein required for cis-splicing of mitochondrial nad2 intron 3, is involved in the abscisic acid response in Arabidopsis. Plant J. 63: 749-765. Luo, D., Xu, H., Liu, Z., Guo, J., Li, H., Chen, L., Fang, C., Zhang, Q., Bai, M., Yao, N., Wu, H., Wu, H., Ji, C., Zheng, H., Chen, Y., Ye, S., Li, X., Zhao, X., Li, R. and Liu, Y.G. (2013) A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat. Genet. 45: 573-577. Malek, O. and Knoop, V. (1998) Trans-splicing group II introns in plant mitochondria: the complete set of cis-arranged homologs in ferns, fern allies, and a hornwort. RNA 4: 1599-1609. Malik, S., Upadhyaya, K.C. and Khurana, S.P. (2017) Phylogenetic analysis of nuclear-encoded RNA maturases. Evol. Bioinform. Online 13: 1176-9343. Martijn, J., Vosseberg, J., Guy, L., Offre, P. and Ettema, T.J.G. (2018) Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature 557: 101-105. Martin, W. and Herrmann, R.G. (1998) Gene transfer from organelles to the nucleus: how much, what happens, and why? Plant Physiol. 118: 9-17. Martin, W. and Koonin, E.V. (2006) Introns and the origin of nucleus-cytosol compartmentalization. Nature 440: 41-45. Matsuura, M., Saldanha, R., Ma, H., Wank, H., Yang, J., Mohr, G., Cavanagh, S., Dunny, G.M., Belfort, M. and Lambowitz, A.M. (1997) A bacterial group II intron encoding reverse transcriptase, maturase, and DNA endonuclease activities: biochemical demonstration of maturase activity and insertion of new genetic information within the intron. Genes Dev. 11: 2910-2924. Melonek, J., Duarte, J., Martin, J., Beuf, L., Murigneux, A., Varenne, P., Comadran, J., Specel, S., Levadoux, S., Bernath-Levin, K., Torney, F., Pichon, J.P., Perez, P. and Small, I. (2021) The genetic basis of cytoplasmic male sterility and fertility restoration in wheat. Nat. Commun. 12: 1036. Meyer, E.H., Giege, P., Gelhaye, E., Rayapuram, N., Ahuja, U., Thony-Meyer, L., Grienenberger, J.M. and Bonnard, G. (2005) AtCCMH, an essential component of the c-type cytochrome maturation pathway in Arabidopsis mitochondria, interacts with apocytochrome c. Proc. Natl. Acad. Sci. USA 102: 16113-16118. Millar, A.H., Whelan, J., Soole, K.L. and Day, D.A. (2011) Organization and regulation of mitochondrial respiration in plants. Annu. Rev. Plant Biol. 62: 79-104. Mohr, G. and Lambowitz, A.M. (2003) Putative proteins related to group II intron reverse transcriptase/maturases are encoded by nuclear genes in higher plants. Nucleic Acids Res. 31: 647-652. Nakagawa, N. and Sakurai, N. (2006) A mutation in At-nMat1a, which encodes a nuclear gene having high similarity to group II intron maturase, causes impaired splicing of mitochondrial NAD4 transcript and altered carbon metabolism in Arabidopsis thaliana. Plant Cell Physiol. 47: 772-783. Nakagawa, T., Suzuki, T., Murata, S., Nakamura, S., Hino, T., Maeo, K., Tabata, R., Kawai, T., Tanaka, K., Niwa, Y., Watanabe, Y., Nakamura, K., Kimura, T. and Ishiguro, S. (2007) Improved Gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants. Biosci. Biotechnol. Biochem. 71: 2095-2100. Navrot, N., Rouhier, N., Gelhaye, E. and Jacquot, J.P. (2007) Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol. Plant. 129: 185-195. Ostersetzer, O., Cooke, A.M., Watkins, K.P. and Barkan, A. (2005) CRS1, a chloroplast group II intron splicing factor, promotes intron folding through specific interactions with two intron domains. Plant Cell 17: 241-255. Ostheimer, G.J., Williams‐Carrier, R., Belcher, S., Osborne, E., Gierke, J. and Barkan, A. (2003) Group II intron splicing factors derived by diversification of an ancient RNA‐binding domain. EMBO J. 22: 3919-3929. Paumard, P., Vaillier, J., Coulary, B., Schaeffer, J., Soubannier, V., Mueller, D.M., Brèthes, D., di Rago, J.P. and Velours, J. (2002) The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J. 21: 221-230. Pla, M., Mathieu, C., De Paepe, R., Chetrit, P. and Vedel, F. (1995) Deletion of the last two exons of the mitochondrial nad7 gene results in lack of the NAD7 polypeptide in a Nicotiana sylvestris CMS mutant. Mol. Gen. Genet. 248: 79-88. Pyle, A.M. (2010) The tertiary structure of group II introns: implications for biological function and evolution. Crit. Rev. Biochem. Mol. Biol. 45: 215-232. Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H. and Vilo, J. (2019) g: Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47: W191-W198. Rhoads, D.M. and Subbaiah, C.C. (2007) Mitochondrial retrograde regulation in plants. Mitochondrion 7: 177-194. Roger, A.J., Muñoz-Gómez, S.A. and Kamikawa, R. (2017) The origin and diversification of mitochondria. Curr. Biol. 27: R1177-R1192. Sanders, P.M., Bui, A.Q., Weterings, K., McIntire, K., Hsu, Y.-C., Lee, P.Y., Truong, M.T., Beals, T. and Goldberg, R. (1999) Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex. Plant Reprod. 11: 297-322. Schertl, P. and Braun, H.P. (2014) Respiratory electron transfer pathways in plant mitochondria. Front. Plant Sci. 5: 163. Schmidtmann, E., Konig, A.C., Orwat, A., Leister, D., Hartl, M. and Finkemeier, I. (2014) Redox regulation of Arabidopsis mitochondrial citrate synthase. Mol. Plant 7: 156-169. Schnable, P.S. and Wise, R.P. (1998) The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci. 3: 175-180. Shevtsov-Tal, S., Best, C., Matan, R., Chandran, S.A., Brown, G.G. and Ostersetzer-Biran, O. (2021) nMAT3 is an essential maturase splicing factor required for holo-complex I biogenesis and embryo development in Arabidopsis thaliana plants. Plant J. 106: 1128-1147. Siebert, P.D., Chenchik, A., Kellogg, D.E., Lukyanov, K.A. and Lukyanov, S.A. (1995) An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res. 23: 1087-1088. Small, I.D., Schallenberg‐Rüdinger, M., Takenaka, M., Mireau, H. and Ostersetzer‐Biran, O. (2020) Plant organellar RNA editing: what 30 years of research has revealed. Plant J. 101: 1040-1056. Smart, C.J., Moneger, F. and Leaver, C.J. (1994) Cell-specific regulation of gene expression in mitochondria during anther development in sunflower. Plant Cell 6: 811-825. Steitz, T.A. and Steitz, J.A. (1993) A general two-metal-ion mechanism for catalytic RNA. Proc. Natl. Acad. Sci. USA 90: 6498-6502. Sugiyama, Y., Watase, Y., Nagase, M., Makita, N., Yagura, S., Hirai, A. and Sugiura, M. (2005) The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Mol. Genet. Genomics 272: 603-615. Sultan, L.D., Mileshina, D., Grewe, F., Rolle, K., Abudraham, S., Głodowicz, P., Niazi, A.K., Keren, I., Shevtsov, S. and Klipcan, L. (2016) The reverse transcriptase/RNA maturase protein MatR is required for the splicing of various group II introns in Brassicaceae mitochondria. Plant Cell 28: 2805-2829. Sweetman, C., Waterman, C.D., Rainbird, B.M., Smith, P.M., Jenkins, C.D., Day, D.A. and Soole, K.L. (2019) AtNDB2 is the main external NADH dehydrogenase in mitochondria and is important for tolerance to environmental stress. Plant physiol. 181: 774-788. Thordal‐Christensen, H., Zhang, Z., Wei, Y. and Collinge, D.B. (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—powdery mildew interaction. Plant J. 11: 1187-1194. Unseld, M., Marienfeld, J.R., Brandt, P. and Brennicke, A. (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat. Genet. 15: 57-61. Wahleithner, J.A., MacFarlane, J.L. and Wolstenholme, D.R. (1990) A sequence encoding a maturase-related protein in a group II intron of a plant mitochondrial nad1 gene. Proc. Natl. Acad. Sci. USA 87: 548-552. Wang, C., Aube, F., Quadrado, M., Dargel-Graffin, C. and Mireau, H. (2018) Three new pentatricopeptide repeat proteins facilitate the splicing of mitochondrial transcripts and complex I biogenesis in Arabidopsis. J. Exp. Bot. 69: 5131-5140. Wang, C.D., Fourdin, R., Quadrado, M., Dargel-Graffin, C., Tolleter, D., Macherel, D. and Mireau, H. (2020) Rerouting of ribosomal proteins into splicing in plant organelles. Proc. Natl. Acad. Sci. USA 117: 29979-29987. Wang, Z., Zou, Y., Li, X., Zhang, Q., Chen, L., Wu, H., Su, D., Chen, Y., Guo, J. and Luo, D. (2006) Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell 18: 676-687. Yoshida, K. and Hisabori, T. (2014) Mitochondrial isocitrate dehydrogenase is inactivated upon oxidation and reactivated by thioredoxin-dependent reduction in Arabidopsis. Front. Environ. Sci. 2: 38. Yoshida, K., Noguchi, K., Motohashi, K. and Hisabori, T. (2013) Systematic exploration of thioredoxin target proteins in plant mitochondria. Plant Cell Physiol. 54: 875-892. Zimorski, V., Ku, C., Martin, W.F. and Gould, S.B. (2014) Endosymbiotic theory for organelle origins. Curr. Opin. Microbiol. 22: 38-48. Zmudjak, M., Colas des Francs‐Small, C., Keren, I., Shaya, F., Belausov, E., Small, I. and Ostersetzer‐Biran, O. (2013) m CSF 1, a nucleus‐encoded CRM protein required for the processing of many mitochondrial introns, is involved in the biogenesis of respiratory complexes I and IV in Arabidopsis. New Phytol. 199: 379-394. Zmudjak, M., Shevtsov, S., Sultan, L.D., Keren, I. and Ostersetzer-Biran, O. (2017) Analysis of the roles of the Arabidopsis nMAT2 and PMH2 proteins provided with new Insights into the regulation of Group II intron splicing in land-plant mitochondria. Int. J. Mol. Sci. 18: 2428.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79296-
dc.description.abstract粒線體是由原核細菌(α-proteobacteria)演化而來,在長期互利共生的關係下,逐漸演化成真核細胞的能量工廠並轉移了多數的基因到核基因組(nuclear genome)。因此,維持粒線體的呼吸作用正常運作並產生能量,需要核基因所編碼的蛋白質對粒線體基因進行多種後轉錄修飾。特別是許多組成粒線體呼吸傳遞鏈的蛋白質,這些編碼蛋白質的基因帶有退化的Group II 內含子,己失去自行剪切的能力,需要協同多種細胞核的蛋白質來完成內含子剪切(intron splicing)。CRM蛋白家族是細胞核編碼的核酸結合蛋白,目前多數的研究報導CRM蛋白經由參與group I 和group II內含子剪切來調控葉綠體基因的表現。然而CRM蛋白在粒線體中扮演的生理功能及作用機制仍未完全明瞭。本研究進一步分析阿拉伯芥CFM6基因的生理功能及分子機制,並揭開這個具單一CRM蛋白結構域(CRM domain)的家族成員在粒線體中扮演的角色。當T-DNA插入造成CFM6基因突變,會嚴重影響cfm6突變株的發育,包含生長遲緩、葉片捲曲、種子皺縮、延遲胚及花粉的發育。實驗結果顯示CFM6蛋白具專一性調控粒線體nad5基因第四個內含子的剪切;因此,在cfm6突變株中造成未經剪切的轉錄物(pretranscripts)。於cfm6突變株中大量表現CFM6-YFP(CFM6蛋白融合黃色螢光蛋白)可恢復植株發育不良的性狀及內含子剪切功能的缺失。因nad5蛋白為組成呼吸傳遞鏈複合體 I (respiratory complex I) 的元件,其轉錄後內含子剪切的缺失進一步造成cfm6突變株粒線體內複合體 I 的生合成降低及活性損壞,伴隨粒線體形態發育異常,並且誘導替代呼吸途徑(alternative respiration pathway)相關基因的表現。根據RNA-seq分析的結果,CFM6基因突變擾動細胞核及胞器基因之表現,全數2764個受擾動的基因中,多數與光合作用相關的基因表量下降,而與核糖體生合成相關的基因表現量則呈現上升的趨勢。目前的研究結果顯示CFM6是一個參與粒線體內nad5基因第四個內含子剪切的剪切因子,在粒線體呼吸作用複合體 I 的生合成及植物生長發育過程中扮演重要的角色。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T08:57:37Z (GMT). No. of bitstreams: 1
U0001-1611202116042600.pdf: 16242565 bytes, checksum: 684481a8b857fa7668b166a7ab7eb198 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents英文摘要 ....V List of figures and tables ....IX 1. Introduction ....1 1.1 Endosymbiotic origin of mitochondria ....1 1.2 The role of mitochondria ....1 1.3 Mitochondrial gene expression ....4 1.4 Group II intron splicing ....5 1.5 Splicing factors ....6 1.6 CRM domain proteins ....8 1.7 Aim of this study ....9 2. Materials and Methods ....10 2.1 Plant materials and growth conditions ....10 2.2 Complementation test ....11 2.3 RT-PCR and RT-qPCR analyses ....11 2.4 Blue native gel electrophoresis (BN-PAGE) and immunoblot detection ....12 2.5 Microscopy analyses ....13 2.6 Statistical analyses ....13 2.7 RNA-seq and gene ontology (GO) analysis ....14 2.8 Yeast two hybrid (Y2H) interaction assay ....15 3. Results ....16 3.1 Mutation of CFM6 causes defects in the development of vegetative and reproductive tissues in Arabidopsis cfm6 mutant ....16 3.2 Degenerative pollen grains occur predominantly at the mature stage in cfm6 mutant ....18 3.3 complementation and functional rescue test of cfm6 mutant ....20 3.4 Tissue-specific expression and subcellular localization of CFM6 ....21 3.5 CFM6 is required for cis-splicing of mitochondrial nad5 intron 4 ....22 3.6 CFM6 affects mitochondrial complex I function and biogenesis ....25 3.7 Mitochondria of cfm6 have an altered structure and are less sensitive to the complex I inhibitor rotenone ....28 3.8 CFM6-mediated gene expression profiling ....30 4. Discussion ....31 4.1 CFM6 functions in the specific splicing of the nad5 intron 4 and affects mitochondrial complex I biogenesis and normal plant growth ....31 4.2 Male sterility occurs at the late developmental stage of gametophytes in cfm6 mutants ....35 5. Conclusions and outlook ....38 References ....40 Appendix ....69 Figure S1 ....69 Figure S2 ....70 Figure S3 ....71 Figure S4 ....72 Preparations for the crude mitochondria isolation and complex I activity assay ....73
dc.language.isoen
dc.title阿拉伯芥細胞核編碼的一個粒線體CRM結構域蛋白CFM6之功能性分析zh_TW
dc.title"Functional characterization of CFM6, a nuclear-encoded mitochondrial CRM domain-containing protein, in Arabidopsis thaliana"en
dc.date.schoolyear110-1
dc.description.degree博士
dc.contributor.author-orcid0000-0003-3262-2755
dc.contributor.advisor-orcid鄭萬興(0000-0003-4924-7429)
dc.contributor.coadvisor張英峯(Ing-Feng Chang)
dc.contributor.oralexamcommittee洪傳揚(Hsin-Tsai Liu),張孟基(Chih-Yang Tseng),趙光裕
dc.subject.keyword阿拉伯芥,CRM蛋白結構域,胚胎發生,Group II內含子,雄不稔,粒線體NADH去氫酶,zh_TW
dc.subject.keywordArabidopsis thaliana,CRM domain-containing protein,Embryogenesis,Group II intron,Male sterility,Mitochondrial respiratory complex I,en
dc.relation.page76
dc.identifier.doi10.6342/NTU202104481
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-11-22
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
U0001-1611202116042600.pdf15.86 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved