請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7928完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林水龍 | |
| dc.contributor.author | Yi-Ting Chen | en |
| dc.contributor.author | 陳怡婷 | zh_TW |
| dc.date.accessioned | 2021-05-19T17:59:02Z | - |
| dc.date.available | 2021-08-26 | |
| dc.date.available | 2021-05-19T17:59:02Z | - |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-28 | |
| dc.identifier.citation | 1. Kdoqi. KDOQI Clinical Practice Guidelines and Clinical Practice Recommendations for Diabetes and Chronic Kidney Disease. American journal of kidney diseases : the official journal of the National Kidney Foundation 2007; 49(2 Suppl 2): S12-154.
2. Grassmann A, Gioberge S, Moeller S, Brown G. ESRD patients in 2004: global overview of patient numbers, treatment modalities and associated trends. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 2005; 20(12): 2587-93. 3. Shiao CC, Kao TW, Hung KY, et al. Seven-year follow-up of peritoneal dialysis patients in Taiwan. Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis 2009; 29(4): 450-7. 4. Aroeira LS, Aguilera A, Sanchez-Tomero JA, et al. Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. Journal of the American Society of Nephrology : JASN 2007; 18(7): 2004-13. 5. Devuyst O, Margetts PJ, Topley N. The pathophysiology of the peritoneal membrane. Journal of the American Society of Nephrology : JASN 2010; 21(7): 1077-85. 6. Krediet RT, Struijk DG. Peritoneal changes in patients on long-term peritoneal dialysis. Nature reviews Nephrology 2013; 9(7): 419-29. 7. Rippe B. A three-pore model of peritoneal transport. Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis 1993; 13 Suppl 2: S35-8. 8. Flessner MF. Osmotic barrier of the parietal peritoneum. The American journal of physiology 1994; 267(5 Pt 2): F861-70. 9. Yang AH, Chen JY, Lin JK. Myofibroblastic conversion of mesothelial cells. Kidney international 2003; 63(4): 1530-9. 10. Sarah E. Herrick SE. Mesothelial progenitor cells and their potential in tissue engineering. The international journal of biochemistry & cell biology 2004; 36. 11. Yanez-Mo M, Lara-Pezzi E, Selgas R, et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. The New England journal of medicine 2003; 348(5): 403-13. 12. Habib SM, Betjes MG, Fieren MW, et al. Management of encapsulating peritoneal sclerosis: a guideline on optimal and uniform treatment. The Netherlands journal of medicine 2011; 69(11): 500-7. 13. Clatworthy MR, Williams P, Watson CJ, Jamieson NV. The calcified abdominal cocoon. Lancet 2008; 371(9622): 1452. 14. Augustine T, Brown PW, Davies SD, Summers AM, Wilkie ME. Encapsulating peritoneal sclerosis: clinical significance and implications. Nephron Clinical practice 2009; 111(2): c149-54; discussion c54. 15. Hoff CM. Experimental animal models of encapsulating peritoneal sclerosis. Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis 2005; 25 Suppl 4: S57-66. 16. Nevado J, Peiro C, Vallejo S, et al. Amadori adducts activate nuclear factor-kappaB-related proinflammatory genes in cultured human peritoneal mesothelial cells. British journal of pharmacology 2005; 146(2): 268-79. 17. Combet S, Miyata T, Moulin P, Pouthier D, Goffin E, Devuyst O. Vascular proliferation and enhanced expression of endothelial nitric oxide synthase in human peritoneum exposed to long-term peritoneal dialysis. Journal of the American Society of Nephrology : JASN 2000; 11(4): 717-28. 18. Kihm LP, Wibisono D, Muller-Krebs S, et al. RAGE expression in the human peritoneal membrane. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 2008; 23(10): 3302-6. 19. Honda K, Oda H. Pathology of encapsulating peritoneal sclerosis. Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis 2005; 25 Suppl 4: S19-29. 20. Cho HJ, Baek KE, Saika S, Jeong MJ, Yoo J. Snail is required for transforming growth factor-beta-induced epithelial-mesenchymal transition by activating PI3 kinase/Akt signal pathway. Biochemical and biophysical research communications 2007; 353(2): 337-43. 21. Bolos V, Peinado H, Perez-Moreno MA, Fraga MF, Esteller M, Cano A. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. Journal of cell science 2003; 116(Pt 3): 499-511. 22. Yang MH, Wu KJ. TWIST activation by hypoxia inducible factor-1 (HIF-1): implications in metastasis and development. Cell cycle 2008; 7(14): 2090-6. 23. Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nature reviews Cancer 2007; 7(6): 415-28. 24. Margetts PJ, Bonniaud P, Liu L, et al. Transient overexpression of TGF-{beta}1 induces epithelial mesenchymal transition in the rodent peritoneum. Journal of the American Society of Nephrology : JASN 2005; 16(2): 425-36. 25. Okada H, Inoue T, Kanno Y, et al. Selective depletion of fibroblasts preserves morphology and the functional integrity of peritoneum in transgenic mice with peritoneal fibrosing syndrome. Kidney international 2003; 64(5): 1722-32. 26. Lin SL, Kisseleva T, Brenner DA, Duffield JS. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. The American journal of pathology 2008; 173(6): 1617-27. 27. Kisseleva T, Cong M, Paik Y, et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proceedings of the National Academy of Sciences of the United States of America 2012; 109(24): 9448-53. 28. Hoyles RK, Derrett-Smith EC, Khan K, et al. An essential role for resident fibroblasts in experimental lung fibrosis is defined by lineage-specific deletion of high-affinity type II transforming growth factor beta receptor. American journal of respiratory and critical care medicine 2011; 183(2): 249-61. 29. Sakai N, Chun J, Duffield JS, Wada T, Luster AD, Tager AM. LPA1-induced cytoskeleton reorganization drives fibrosis through CTGF-dependent fibroblast proliferation. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2013; 27(5): 1830-46. 30. Sekiguchi Y, Hamada C, Ro Y, et al. Differentiation of bone marrow-derived cells into regenerated mesothelial cells in peritoneal remodeling using a peritoneal fibrosis mouse model. Journal of artificial organs : the official journal of the Japanese Society for Artificial Organs 2012; 15(3): 272-82. 31. Kokubo S, Sakai N, Furuichi K, et al. Activation of p38 mitogen-activated protein kinase promotes peritoneal fibrosis by regulating fibrocytes. Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis 2012; 32(1): 10-9. 32. Glik A, Douvdevani A. T lymphocytes: the 'cellular' arm of acquired immunity in the peritoneum. Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis 2006; 26(4): 438-48. 33. Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annual review of immunology 1989; 7: 145-73. 34. Littman DR, Rudensky AY. Th17 and regulatory T cells in mediating and restraining inflammation. Cell 2010; 140(6): 845-58. 35. Waite JC, Skokos D. Th17 response and inflammatory autoimmune diseases. International journal of inflammation 2012; 2012: 819467. 36. Liappas G, Gonzalez-Mateo GT, Majano P, et al. T Helper 17/Regulatory T Cell Balance and Experimental Models of Peritoneal Dialysis-Induced Damage. BioMed research international 2015; 2015: 416480. 37. Rodrigues-Diez R, Aroeira LS, Orejudo M, et al. IL-17A is a novel player in dialysis-induced peritoneal damage. Kidney international 2014; 86(2): 303-15. 38. Sandoval P, Loureiro J, Gonzalez-Mateo G, et al. PPAR-gamma agonist rosiglitazone protects peritoneal membrane from dialysis fluid-induced damage. Laboratory investigation; a journal of technical methods and pathology 2010; 90(10): 1517-32. 39. Ahmad S, North BV, Qureshi A, et al. CCL18 in peritoneal dialysis patients and encapsulating peritoneal sclerosis. European journal of clinical investigation 2010; 40(12): 1067-73. 40. Loureiro J, Aguilera A, Selgas R, et al. Blocking TGF-beta1 protects the peritoneal membrane from dialysate-induced damage. Journal of the American Society of Nephrology : JASN 2011; 22(9): 1682-95. 41. Yao Q, Qian JQ, Lin XH, Lindholm B. Inhibition of the effect of high glucose on the expression of Smad in human peritoneal mesothelial cells. The International journal of artificial organs 2004; 27(10): 828-34. 42. Yao Q, Pawlaczyk K, Ayala ER, et al. The role of the TGF/Smad signaling pathway in peritoneal fibrosis induced by peritoneal dialysis solutions. Nephron Experimental nephrology 2008; 109(2): e71-8. 43. Guo H, Leung JC, Lam MF, et al. Smad7 transgene attenuates peritoneal fibrosis in uremic rats treated with peritoneal dialysis. Journal of the American Society of Nephrology : JASN 2007; 18(10): 2689-703. 44. Patel P, Sekiguchi Y, Oh KH, Patterson SE, Kolb MR, Margetts PJ. Smad3-dependent and -independent pathways are involved in peritoneal membrane injury. Kidney international 2010; 77(4): 319-28. 45. Banh A, Deschamps PA, Gauldie J, Overbeek PA, Sivak JG, West-Mays JA. Lens-specific expression of TGF-beta induces anterior subcapsular cataract formation in the absence of Smad3. Investigative ophthalmology & visual science 2006; 47(8): 3450-60. 46. Ada S, Ersan S, Sifil A, et al. Effect of bevacizumab, a vascular endothelial growth factor inhibitor, on a rat model of peritoneal sclerosis. International urology and nephrology 2015; 47(12): 2047-51. 47. Fielding CA, Jones GW, McLoughlin RM, et al. Interleukin-6 signaling drives fibrosis in unresolved inflammation. Immunity 2014; 40(1): 40-50. 48. Schmahl J, Raymond CS, Soriano P. PDGF signaling specificity is mediated through multiple immediate early genes. Nature genetics 2007; 39(1): 52-60. 49. Patel P, West-Mays J, Kolb M, Rodrigues JC, Hoff CM, Margetts PJ. Platelet derived growth factor B and epithelial mesenchymal transition of peritoneal mesothelial cells. Matrix biology : journal of the International Society for Matrix Biology 2010; 29(2): 97-106. 50. Chen YT, Chang FC, Wu CF, et al. Platelet-derived growth factor receptor signaling activates pericyte-myofibroblast transition in obstructive and post-ischemic kidney fibrosis. Kidney international 2011; 80(11): 1170-81. 51. Hurst SM, Wilkinson TS, McLoughlin RM, et al. Il-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity 2001; 14(6): 705-14. 52. Sime PJ, Xing Z, Graham FL, Csaky KG, Gauldie J. Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung. The Journal of clinical investigation 1997; 100(4): 768-76. 53. Huang JW, Yen CJ, Wu HY, et al. Tamoxifen downregulates connective tissue growth factor to ameliorate peritoneal fibrosis. Blood purification 2011; 31(4): 252-8. 54. Nakamoto H, Imai H, Ishida Y, et al. New animal models for encapsulating peritoneal sclerosis--role of acidic solution. Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis 2001; 21 Suppl 3: S349-53. 55. Mortier S, Faict D, Schalkwijk CG, Lameire NH, De Vriese AS. Long-term exposure to new peritoneal dialysis solutions: Effects on the peritoneal membrane. Kidney international 2004; 66(3): 1257-65. 56. Mortier S, Faict D, Lameire NH, De Vriese AS. Benefits of switching from a conventional to a low-GDP bicarbonate/lactate-buffered dialysis solution in a rat model. Kidney international 2005; 67(4): 1559-65. 57. Velioglu A, Tugtepe H, Asicioglu E, et al. Role of tyrosine kinase inhibition with imatinib in an encapsulating peritoneal sclerosis rat model. Renal failure 2013; 35(4): 531-7. 58. Zheng B, Zhang Z, Black CM, de Crombrugghe B, Denton CP. Ligand-dependent genetic recombination in fibroblasts : a potentially powerful technique for investigating gene function in fibrosis. The American journal of pathology 2002; 160(5): 1609-17. 59. Zhou B, Ma Q, Rajagopal S, et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 2008; 454(7200): 109-13. 60. Andersson KB, Winer LH, Mork HK, Molkentin JD, Jaisser F. Tamoxifen administration routes and dosage for inducible Cre-mediated gene disruption in mouse hearts. Transgenic research 2010; 19(4): 715-25. 61. Cailhier JF, Partolina M, Vuthoori S, et al. Conditional macrophage ablation demonstrates that resident macrophages initiate acute peritoneal inflammation. Journal of immunology 2005; 174(4): 2336-42. 62. Wu JM, Hsueh YC, Ch'ang HJ, et al. Circulating cells contribute to cardiomyocyte regeneration after injury. Circulation research 2015; 116(4): 633-41. 63. Lin SL, Castano AP, Nowlin BT, Lupher ML, Jr., Duffield JS. Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations. Journal of immunology 2009; 183(10): 6733-43. 64. Humphreys BD, Lin SL, Kobayashi A, et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. The American journal of pathology 2010; 176(1): 85-97. 65. Peters SO, Bauermeister K, Simon JP, Branke B, Wagner T. Quantitative polymerase chain reaction-based assay with fluorogenic Y-chromosome specific probes to measure bone marrow chimerism in mice. Journal of immunological methods 2002; 260(1-2): 109-16. 66. Naglich JG, Metherall JE, Russell DW, Eidels L. Expression cloning of a diphtheria toxin receptor: identity with a heparin-binding EGF-like growth factor precursor. Cell 1992; 69(6): 1051-61. 67. Koesters R, Kaissling B, Lehir M, et al. Tubular overexpression of transforming growth factor-beta1 induces autophagy and fibrosis but not mesenchymal transition of renal epithelial cells. The American journal of pathology 2010; 177(2): 632-43. 68. Asada N, Takase M, Nakamura J, et al. Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice. The Journal of clinical investigation 2011; 121(10): 3981-90. 69. Goritz C, Dias DO, Tomilin N, Barbacid M, Shupliakov O, Frisen J. A pericyte origin of spinal cord scar tissue. Science 2011; 333(6039): 238-42. 70. Rock JR, Barkauskas CE, Cronce MJ, et al. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proceedings of the National Academy of Sciences of the United States of America 2011; 108(52): E1475-83. 71. Dulauroy S, Di Carlo SE, Langa F, Eberl G, Peduto L. Lineage tracing and genetic ablation of ADAM12(+) perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nature medicine 2012; 18(8): 1262-70. 72. Bajo MA, Perez-Lozano ML, Albar-Vizcaino P, et al. Low-GDP peritoneal dialysis fluid ('balance') has less impact in vitro and ex vivo on epithelial-to-mesenchymal transition (EMT) of mesothelial cells than a standard fluid. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 2011; 26(1): 282-91. 73. Hung C, Linn G, Chow YH, et al. Role of lung pericytes and resident fibroblasts in the pathogenesis of pulmonary fibrosis. American journal of respiratory and critical care medicine 2013; 188(7): 820-30. 74. Li Y, Wang J, Asahina K. Mesothelial cells give rise to hepatic stellate cells and myofibroblasts via mesothelial-mesenchymal transition in liver injury. Proceedings of the National Academy of Sciences of the United States of America 2013; 110(6): 2324-9. 75. Lichtnekert J, Kawakami T, Parks WC, Duffield JS. Changes in macrophage phenotype as the immune response evolves. Current opinion in pharmacology 2013; 13(4): 555-64. 76. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nature reviews Immunology 2011; 11(11): 723-37. 77. Barron L, Wynn TA. Fibrosis is regulated by Th2 and Th17 responses and by dynamic interactions between fibroblasts and macrophages. American journal of physiology Gastrointestinal and liver physiology 2011; 300(5): G723-8. 78. Roberts AB, Sporn MB, Assoian RK, et al. Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proceedings of the National Academy of Sciences of the United States of America 1986; 83(12): 4167-71. 79. Sunderkotter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C. Macrophages and angiogenesis. Journal of leukocyte biology 1994; 55(3): 410-22. 80. Shimokado K, Raines EW, Madtes DK, Barrett TB, Benditt EP, Ross R. A significant part of macrophage-derived growth factor consists of at least two forms of PDGF. Cell 1985; 43(1): 277-86. 81. Bellon T, Martinez V, Lucendo B, et al. Alternative activation of macrophages in human peritoneum: implications for peritoneal fibrosis. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 2011; 26(9): 2995-3005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7928 | - |
| dc.description.abstract | 慢性腎臟病病患近年來在台灣逐年增加,而多數慢性腎臟病患者最後會進展至末期腎病,須藉由進行透析將體內產生的毒素及多餘的水分排出。目前的透析模式有腹膜透析和血液透析兩種。利用腹膜透析的患者約占台灣末期腎病病患中約10-15%。腹膜透析患者因長期使用高葡萄糖透析液,使得腹膜長期浸泡在高濃度葡萄糖溶液中,促使氧化因子GDPs (Glucose degradation products) 和AGEs (Advanced glycated end-products) 產生,使得腹膜通透性發生改變,若加上反覆的腹膜炎,都會促使腹膜纖維化的發生。雖然高葡萄糖透析液與反覆腹膜炎是最可能的致病因素,然而包囊性腹膜硬化症(encapsulating peritoneal sclerosis)的確實病因並不十分清楚。正常腹膜是由單一層細胞的間皮細胞(mesothelial cells),基底膜(basement membrane),和間皮下組織(submesothelial layer)等組成。間皮細胞是由中胚層發育而來具有上皮及間質細胞的特性。間皮下組織內含間皮下纖維母細胞(submesothelial fibroblasts),微血管,淋巴球及結締組織。腹膜發生纖維化過程為喪失間皮細胞,間皮下組織增生纖維化,血管新生以致血管通透性增加。臨床上患者會出現腹膜超過濾率降低 (ultrafiltration failure),腸阻塞,營養不良,嚴重者腹腔內器官整個被包裹沾黏在一起。造成腹膜纖維化的主要細胞是肌纖維母細胞,肌纖維母細胞的來源一直有爭議。目前最廣為接受的理論是間皮細胞受到葡萄糖透析液或感染等的刺激,使得間皮細胞轉分化為肌纖維母細胞,即所謂的上皮-間質細胞轉分化(epithelial-mesenchymal transition,EMT)。且間皮細胞進入間皮下組織轉變為肌纖維母細胞的過程為轉分化transdifferentiation。但有關這部分的動物實驗都是間接性證據,沒有直接動物實驗的結果。
我們利用基因改造小鼠與譜系追蹤技術發現小鼠的腹膜在損傷後會引發腹膜間皮細胞與腹膜間皮下纖維母細胞產生截然不同的命運。在餵食Col1a2-CreERTTg;Rosa26fstdTomato/+小鼠tamoxifen以誘導其腹膜間皮下纖維母細胞表現出紅色螢光蛋白(RFP)以作為譜系標誌之後,不論是利用次氯酸鈉、高糖腹膜透析液、或腺病毒表現乙型轉分化生長因子來傷害腹膜,我們都證實腹膜間皮下纖維母細胞是腹膜肌肉纖維母細胞的主要來源。而在WT1CreERT2/+;Rosa26fstdTomato小鼠利用相同的譜系追蹤技術研究則發現WT1-RFP+腹膜間皮細胞則主要負責修補受傷害的間皮層。但我們同時發現一小部份的WT1-RFP+細胞位於腹膜基底膜之下,也會表現第一型膠原蛋白,但並不表現cytokeratin;而且受傷增厚的間皮下層結疤組織中則有少數的肌肉纖維母細胞源自WT1-RFP+細胞。因此WT1促進子活化的CreERT2重組脢並無法專一性地活化間皮細胞的標記螢光蛋白或修改間皮細胞的表現基因。因此腹膜間皮下纖維母細胞雖是腹膜肌肉纖維母細胞的主要來源。我們也觀察到當腹膜受傷時是由存活下來的間皮細胞進行修補。 亦有其他研究指出來自骨髓的纖維細胞會在腹膜纖維化中轉變為肌纖維母細胞,為更瞭解肌纖維母細胞的來源,我利用parabiosis及骨髓移植技術將collagen I(α1)-GFP基因轉植小鼠的骨髓細胞移植到野生型小鼠,誘發腹膜纖維化後發現,受傷的腹膜上僅有少許綠色螢光(GFP)細胞且同時表現骨髓標記因子CD45,表示這些綠色螢光細胞是由骨髓來的纖維細胞,但藉由螢光染色發現這些來自骨髓的纖維細胞在腹膜纖維過程中並沒有表現肌纖維母細胞特定因子(α-smooth muscle actin ; αSMA)。此同時我也發現有許多巨噬細胞在受傷的腹膜上,我再利用基因譜系追蹤研究,並且將巨噬細胞去除以瞭解它在腹膜纖維化過程的角色,發現將巨噬細胞去除時,原本因纖維化而增厚的腹膜厚度不僅減少,連肌纖維母細胞的數量也減少了。此表示巨噬細胞對於間皮下纖維母細胞轉變為肌纖維母細胞的過程有特定的作用,這些仍是我需要再進一步研究瞭解的。 經由這些腹膜纖維化研究發現,間皮下纖維母細胞是肌纖維母細胞的主要來源,非來自骨髓的纖維細胞或間皮細胞。而巨噬細胞在間皮下纖維母細胞轉變為肌纖維母細胞過程中扮有一定角色,可能透過釋放細胞激素或因子作用在間皮下纖維母細胞。然而當腹膜受傷時,是透過存活的間皮細胞所修復的。 | zh_TW |
| dc.description.abstract | Peritoneal dialysis (PD) is one modality of renal replacement therapy for end-stage renal disease. Preservation of peritoneal membrane function is important for peritoneal dialysis. However, there are many challenges for peritoneal dialysis, such as peritonitis and peritoneal fibrosis. Peritoneal fibrosis means adhesion, calcification and fibrosis between peritoneal contents, leads to ultrafiltration failure and loss peritoneal function, then finally cocooning intra-abdominal organs. The severe type of peritoneal fibrosis is encapsulating peritoneal sclerosis (EPS). There is high mortality for EPS due to ileus, malnutrition, and intestinal obstruction. The risk factors to predisposing peritoneal fibrosis are peritonitis, high glucose PD solution, and glucose degradation products (GDPs), etc.
Normal peritoneum is composed of single layer of mesothelial cells, basement membrane, and submesothelial layer. There are submesothelial fibroblasts, capillaries, lymphocytes, vessels and connective tissue in submesothelial layer. Peritoneal fibrosis is characterized by peritoneal thickening, and progressive fibrosis, which can be seen as with thickening of basal lamina and accumulation of α-smooth muscle actin (αSMA)+ myofibroblasts. There are three origins of myofibroblasts in peritoneal fibrosis, like mesothelial cells, submesothelial fibroblasts, and circulating fibrocytes. The major theory is epithelial-mesenchymal transition (EMT). Mesothelial cells are mesodermal origin and have both epithelial and mesenchymal characteristics. EMT means that mesothelial cells transform to myofibroblasts and/then migrate into submesothelial layer after injury. But there are most in vitro studies to support EMT and in vivo study is lacking. We used tamoxifen-inducible Cre/Lox techniques to genetically label and fate map mesothelial cells and submesothelial fibroblasts. We used sodium hypochlorite, TGF-β1, 4.25% PD solution plus methylglyoxal (MGO) to induce mice models of peritoneal fibrosis. After pulse labeling induced by tamoxifen, the cell number of Col1α2-tdTomato+ submesothelial fibroblasts increased markedly in fibrotic peritoneum. And more than 60% of Col1α2-tdTomato+ submesothelial fibroblasts are αSMA positive. However, WT1-tdTomato+ mesothelial cells are cytokeratin positive, Ki67 positive but αSMA negative in injured peritoneum. We also found surviving Ki67+ mesothelial cells repair injured peritoneum. For studying roles of circulating fibrocytes during peritoneal fibrosis, we used bone marrow transplantation and parabiosis to create chimeric mice. The bone marrow cells of Collagen I (α)1-GFP transgenic mice were transferred to wild type C57BL/6 mice. We induced peritoneal fibrosis models by sodium hypochlorite. In immunofluorescence stain, only few Col1a1-GFP+ fibrocytes expressing CD45, not αSMA, were seen in fibrotic peritoneum, however, many Col1a1-GFP-;CD11b+ cells were seen. Thereafter we also used tamoxifen-inducible Cre/Lox techniques to genetically label and fate map monocytes/macrophages. After pulse labeling induced by tamoxifen, the cell number of Csf1r-tdTomato+ macrophages increased markedly in fibrotic peritoneum. Ablation of macrophages in vivo in Csf1r-Cre/Esr1;tdTomato;iDTR mice were performed by diphtheria toxin during peritoneal fibrosis. The thickness of injured peritoneum and the number of myofibroblasts were decreased markedly under macrophage depletion. Thereafter, we conclude that submesothelial fibroblasts are major origin of αSMA+ myofibroblasts during peritoneal injury. Few circulating fibrocytes are recruited into injured peritoneum but do not transform into myofibroblasts directly. The significance of recruited fibrocytes in peritoneal fibrosis needs further study. Macrophages may cross talk with submesothelial fibroblasts that will transit to myofibroblasts during injury. And injured peritoneum is repaired by surviving mesothelial cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:59:02Z (GMT). No. of bitstreams: 1 ntu-105-D01441004-1.pdf: 38172295 bytes, checksum: 35a4efbca144bdb130329269a7c8d78c (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract iii Table of contents目錄 v Table of figures viii Abbreviations ix Chapter 1. Introduction 1 1.1. Chronic kidney disease and end-stage renal disease in Taiwan 1 1.2. Peritoneal dialysis (PD) 3 1.3. Physiology of peritoneum 4 1.3.1. Mesothelial cells (MC) 6 1.4. Peritoneal fibrosis 10 1.4.1. Risk factors 12 1.4.2. The mechanism of peritoneal fibrosis 14 1.4.3. Cytokines and growth factors involved in peritoneal fibrosis 29 1.5. Animal models of peritoneal fibrosis 35 1.5.1. Supernatant of Staphylococcus epidermidis (SES) 36 1.5.2. Overexpression of TGFβ1 36 1.5.3. Chlorhexidine gluconate (CG) 37 1.5.4. Sodium hypochlorite (NaOCl, bleach) 38 1.5.5. Low-pH solution 38 1.6. Prevention and treatment of peritoneal fibrosis 40 1.6.1. Corticosteroid 41 1.6.2. Tamoxifen 42 1.6.3. ACEi (inhibitors of angiotensin-converting enzyme) and ARB (Angiotensin II receptor blockers) 43 1.6.4. Other antifibrotic medications 43 1.6.5. Surgery (Enterolysis) 44 1.7. Mesothelial repair 44 1.8. The aim of my study 45 1.8.1. Identify the cell source of myofibroblasts during peritoneal fibrosis. 45 1.8.2. Identify the cell source of mesothelial repair and regeneration. 45 1.8.3. Clarify the cross talk between mesothelial cells, submesothelial cells and macrophages in injured peritoneum. 45 Chapter 2. Material and Method 46 2.1. Materials 46 2.1.1. Animals 46 2.1.2. Tamoxifen administration 48 2.1.3. Imatinib administration 49 2.1.4. Diphtheria toxin (DT) 49 2.1.5. Chemicals 49 2.1.6. Buffer 56 2.1.7. Antibodies 60 2.1.8. Instruments 64 2.2. Methods 66 2.2.1. Peritoneal fibrosis model 66 2.2.2. Chimeric mice model 68 2.2.3. Sample preparation 69 2.2.4. Fluorescence-activated cell sorting (FACS) system 70 2.2.5. Immunofluorescence stain 70 2.2.6. Masson’s trichrome stain 71 2.2.7. Isolation of bone marrow cells and measurement of engraftment efficiency 71 2.2.8. Statistical analysis 72 Chapter 3. Result 73 3.1. Expanded population of myofibroblasts in models of peritoneal fibrosis 73 3.2. The Fate Marker Activated in WT1CreERT2/+ Mice Identified MCs and a Small Population of SM Fibroblasts 75 3.3. Injured peritoneum was remesothelialized by WT1-RFP+ MCs 76 3.4. TGF-β1 upregulated αSMA in WT1-RFP+ MCs in vitro but not in vivo 79 3.5. SM fibroblasts were the major precursors of peritoneal myofibroblasts 80 3.6. Imatinib reduced peritoneal myofibroblasts and fibrosis 84 3.7. Chimeric mice are created by bone marrow transplantation and parabiosis 84 3.8. Circulating fibrocytes do not transform to myofiborblasts in peritoneal fibrosis 86 3.9. Macrophages accumulated in injured peritoneum but do not produce collagen 87 3.10. Animal model of conditional ablation of macrophages 88 3.11. Ablation of macrophages could attenuate peritoneal fibrosis 89 Chapter 4. Discussion 91 Chapter 5. Conclusion and future prospects 98 Chapter 6. References 149 | |
| dc.language.iso | en | |
| dc.title | 使用命運追蹤方式研究間皮細胞,間皮下纖維母細胞,及纖維球細胞在腹膜纖維化過程的變化 | zh_TW |
| dc.title | Lineage tracing the fates of mesothelial cells, submesothelial fibroblasts, and fibrocytes in peritoneal fibrosis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 姜文智,方震中,賴逸儒,楊鎧鍵 | |
| dc.subject.keyword | 腹膜透析,腹膜纖維化,間皮細胞,間皮下纖維母細胞,肌纖維母細胞,骨髓纖維細胞,單核球/巨噬細胞, | zh_TW |
| dc.subject.keyword | peritoneal dialysis,peritoneal fibrosis,mesothelial cells,submesothelial fibroblasts,myofibroblasts,circulation fibrocytes,monocytes/macrophages, | en |
| dc.relation.page | 157 | |
| dc.identifier.doi | 10.6342/NTU201601450 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2016-07-28 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf | 37.28 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
