請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79280完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉興華(Shing-Hwa Liu) | |
| dc.contributor.author | Cheng-Hsuan Ho | en |
| dc.contributor.author | 何政軒 | zh_TW |
| dc.date.accessioned | 2022-11-23T08:57:16Z | - |
| dc.date.available | 2022-01-18 | |
| dc.date.available | 2022-11-23T08:57:16Z | - |
| dc.date.copyright | 2022-01-18 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-12-29 | |
| dc.identifier.citation | 1. Mao Y-C, Hung D-Z. Epidemiology of Snake Envenomation in Taiwan. In: Gopalakrishnakone P, editor. Clinical Toxinology in Asia Pacific and Africa. 1 ed. New York Dordrecht London: Springer Heidelberg 2015. p. 3-22. 2. Hung DZ. Taiwan's venomous snakebite: epidemiological, evolution and geographic differences. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2004 Feb;98(2):96-101. 3. Mao Y-C, Hung D-Z. Management of Snake Envenomation in Taiwan. In: Gopalakrishnakone P, editor. Clinical Toxinology in Asia Pacific and Africa, Toxinology. 1 ed. Heidelberg New York Dordrecht London: Springer 2015. p. 23-52. 4. Ho C-H, Mao Y-C, Tsai Y-D, et al. Descriptive study of snakebite patients in Northern Taiwan: 2009 to 2016. Journal of Medical Sciences. 2019;39(3):114-120. 5. Mao YC, Liu PY, Chiang LC, et al. Naja atra snakebite in Taiwan. Clin Toxicol (Phila). 2017 Aug 23:273-80. 6. Mao YC, Liu PY, Chiang LC, et al. Clinical manifestations and treatments of Protobothrops mucrosquamatus bite and associated factors for wound necrosis and subsequent debridement and finger or toe amputation surgery. Clin Toxicol (Phila). 2020 May 13:28-37. 7. Torlincasi AM, Lopez RA, Waseem M. Acute Compartment Syndrome. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2021, StatPearls Publishing LLC.; 2021. p. 1-4. 8. Turkmen A, Temel M. Algorithmic approach to the prevention of unnecessary fasciotomy in extremity snake bite. Injury. 2016 Dec;47(12):2822-2827. 9. Andrea Stracciolini M, Mark Hammerberg M. Acute compartment syndrome of the extremities UpToDate2018 [updated Apr 18, 2018.]. Available from: https://www.uptodate.com/contents/acute-compartment-syndrome-of-the-extremities 10. Hsieh YH, Hsueh JH, Liu WC, et al. Contributing Factors for Complications and Outcomes in Patients With Snakebite: Experience in a Medical Center in Southern Taiwan. Annals of plastic surgery. 2017 Mar;78(3 Suppl 2):S32-6. 11. Chang KP, Lai CS, Lin SD. Management of poisonous snake bites in southern Taiwan. The Kaohsiung journal of medical sciences. 2007 Oct;23(10):511-8. 12. Chen JC, Liaw SJ, Bullard MJ, et al. Treatment of poisonous snakebites in northern Taiwan. J Formos Med Assoc. 2000 Feb;99(2):135-9. 13. Kanaan NC, Ray J, Stewart M, et al. Wilderness Medical Society Practice Guidelines for the Treatment of Pitviper Envenomations in the United States and Canada. Wilderness environmental medicine. 2015 Dec;26(4):472-87. 14. Cumpston KL. Is there a role for fasciotomy in Crotalinae envenomations in North America? Clin Toxicol (Phila). 2011 Jun;49(5):351-65. 15. Halanski MA, Morris MR, Lee Harper B, et al. Intracompartmental Pressure Monitoring Using a Handheld Pressure Monitoring System. JBJS Essent Surg Tech. 2015;5(1):e171-5. 16. STIC Intra-Compartmental Pressure Monitor [Internet]2021. Available from: https://c2dx.co/products/stic-pressure-monitor/. 17. Intracompartmental Pressures [Internet]. Available from: https://millar.com/Clinical/Clinical-Applications/Intracompartmental-Pressures/. 18. Hammerberg EM, Whitesides TE, Jr., Seiler JG, 3rd. The reliability of measurement of tissue pressure in compartment syndrome. Journal of orthopaedic trauma. 2012 Sep;26(9):24-32. 19. Ho CH, Ismail AK, Liu SH, et al. The role of a point-of-care ultrasound protocol in facilitating clinical decisions for snakebite envenomation in Taiwan: a pilot study. Clin Toxicol (Phila). 2021 Sep;59(9):794-800. 20. Mc Loughlin S, Mc Loughlin MJ, Mateu F. Pulsed Doppler in simulated compartment syndrome: a pilot study to record hemodynamic compromise. Ochsner J. 2013 Winter;13(4):500-6. 21. Gutierrez JM, Calvete JJ, Habib AG, et al. Snakebite envenoming. Nature reviews Disease primers. 2017 Sep 14;3:1-20. 22. Jimenez-Alcazar M, Rangaswamy C, Panda R, et al. Host DNases prevent vascular occlusion by neutrophil extracellular traps. Science (New York, NY). 2017 Dec 1;358(6367):1202-6. 23. Katkar GD, Sundaram MS, NaveenKumar SK, et al. NETosis and lack of DNase activity are key factors in Echis carinatus venom-induced tissue destruction. Nature communications. 2016 Apr 19;7:1-13. 24. Noutsos T, Currie BJ, Isbister GK. Snakebite associated thrombotic microangiopathy: a protocol for the systematic review of clinical features, outcomes, and role of interventions. Syst Rev. 2019 Aug 22;8(1):s13643-019. 25. Mao YC, Liu PY, Hung DZ, et al. Bacteriology of Naja atra Snakebite Wound and Its Implications for Antibiotic Therapy. The American journal of tropical medicine and hygiene. 2016 May 04;94(5):1129-35. 26. Ghose A, White J. Asian Snakes. Critical Care Toxicology2017. p. 2343-2403. 27. Warrell DA. Snake bite. The Lancet. 2010 2010/01/02/;375(9708):77-88. 28. Rivel M, Solano D, Herrera M, et al. Pathogenesis of dermonecrosis induced by venom of the spitting cobra, Naja nigricollis: An experimental study in mice. Toxicon : official journal of the International Society on Toxinology. 2016 Sep 1;119:171-9. 29. Warrell DA, Greenwood BM, Davidson NM, et al. Necrosis, haemorrhage and complement depletion following bites by the spitting cobra (Naja nigricollis). Q J Med. 1976 Jan;45(177):1-22. 30. Iddon D, Theakston RD, Ownby CL. A study of the pathogenesis of local skin necrosis induced by Naja nigricollis (spitting cobra) venom using simple histological staining techniques. Toxicon : official journal of the International Society on Toxinology. 1987;25(6):665-72. 31. Zuliani JP, Soares AM, Gutiérrez JM. Polymorphonuclear neutrophil leukocytes in snakebite envenoming. Toxicon : official journal of the International Society on Toxinology. 2020 Nov;187:188-97. 32. Gutiérrez JM, Chaves F, Cerdas L. Inflammatory infiltrate in skeletal muscle injected with Bothrops asper venom. Rev Biol Trop. 1986 Nov;34(2):209-14. 33. Liew PX, Kubes P. The Neutrophil's Role During Health and Disease. Physiol Rev. 2019 Apr 1;99(2):1223-48. 34. Hickey MJ, Kubes P. Intravascular immunity: the host-pathogen encounter in blood vessels. Nature reviews Immunology. 2009 May;9(5):364-75. 35. Mortaz E, Alipoor SD, Adcock IM, et al. Update on Neutrophil Function in Severe Inflammation. Front Immunol. 2018;9:1-14. 36. Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science (New York, NY). 2004 Mar 5;303(5663):1532-5. 37. Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nature reviews Immunology. 2018 Feb;18(2):134-47. 38. Urban CF, Ermert D, Schmid M, et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS pathogens. 2009 Oct;5(10):1-18. 39. Fuchs TA, Abed U, Goosmann C, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007 Jan 15;176(2):231-41. 40. Pilsczek FH, Salina D, Poon KK, et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. Journal of immunology (Baltimore, Md : 1950). 2010 Dec 15;185(12):7413-25. 41. Yipp BG, Petri B, Salina D, et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med. 2012 Sep;18(9):1386-93. 42. Mutua V, Gershwin LJ. A Review of Neutrophil Extracellular Traps (NETs) in Disease: Potential Anti-NETs Therapeutics. Clin Rev Allergy Immunol. 2021 Oct;61(2):194-211. 43. Dunbar JP, Sulpice R, Dugon MM. The kiss of (cell) death: can venom-induced immune response contribute to dermal necrosis following arthropod envenomations? Clin Toxicol (Phila). 2019 Aug;57(8):677-85. 44. Xu Y-L, Kou J-Q, Wang S-Z, et al. Neurotoxin from Naja naja atra venom inhibits skin allograft rejection in rats. International Immunopharmacology. 2015;28(1):188-98. 45. Standker L, Harvey AL, Furst S, et al. Improved method for the isolation, characterization and examination of neuromuscular and toxic properties of selected polypeptide fractions from the crude venom of the Taiwan cobra Naja naja atra. Toxicon : official journal of the International Society on Toxinology. 2012 Sep 15;60(4):623-31. 46. Liu CC, Wu CJ, Hsiao YC, et al. Snake venom proteome of Protobothrops mucrosquamatus in Taiwan: Delaying venom-induced lethality in a rodent model by inhibition of phospholipase A2 activity with varespladib. J Proteomics. 2021 Mar 15;234:104084-93. 47. Huang HW, Liu BS, Chien KY, et al. Cobra venom proteome and glycome determined from individual snakes of Naja atra reveal medically important dynamic range and systematic geographic variation. J Proteomics. 2015 Oct 14;128:92-104. 48. Sun QY, Bao J. Purification, cloning and characterization of a metalloproteinase from Naja atra venom. Toxicon : official journal of the International Society on Toxinology. 2010 Dec;56(8):1459-69. 49. Guan HH, Goh KS, Davamani F, et al. Structures of two elapid snake venom metalloproteases with distinct activities highlight the disulfide patterns in the D domain of ADAMalysin family proteins. J Struct Biol. 2010 Mar;169(3):294-303. 50. Li R, Zhu S, Wu J, et al. L-amino acid oxidase from Naja atra venom activates and binds to human platelets. Acta Biochim Biophys Sin (Shanghai). 2008 Jan;40(1):19-26. 51. Tan NH, Saifuddin MN. Isolation and characterization of a hemorrhagin from the venom of Ophiophagus hannah (king cobra). Toxicon : official journal of the International Society on Toxinology. 1990;28(4):385-92. 52. José María Gutiérrez, Alexandra Rucavado, Escalante T. Snake Venom Metalloproteinases Biological Roles and Participation in the Pathophysiology of Envenomation. In: Mackessy SP, Mackessy SP, editors. Handbook of Venoms and Toxins of Reptiles2009. p. 115-39. 53. Fernandes CM, Zamuner SR, Zuliani JP, et al. Inflammatory effects of BaP1 a metalloproteinase isolated from Bothrops asper snake venom: leukocyte recruitment and release of cytokines. Toxicon : official journal of the International Society on Toxinology. 2006 Apr;47(5):549-59. 54. Laing GD, Clissa PB, Theakston RD, et al. Inflammatory pathogenesis of snake venom metalloproteinase-induced skin necrosis. Eur J Immunol. 2003 Dec;33(12):3458-63. 55. Rucavado A, Escalante T, Teixeira CF, et al. Increments in cytokines and matrix metalloproteinases in skeletal muscle after injection of tissue-damaging toxins from the venom of the snake Bothrops asper. Mediators Inflamm. 2002 Apr;11(2):121-8. 56. Dennis EA. Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem. 1994 May 6;269(18):13057-60. 57. Robin Doley, Xingding Zhou, Kini RM. Snake Venom Phospholipase A2 Enzymes. In: Stephen P. Mackessy, Mackessy SP, editors. Handbook of Venoms and Toxins of Reptiles. Boca Raton2009. p. 173-207. 58. Six DA, Dennis EA. The expanding superfamily of phospholipase A(2) enzymes: classification and characterization. Biochim Biophys Acta. 2000 Oct 31;1488(1-2):1-19. 59. Murakami MT, Gabdoulkhakov A, Genov N, et al. Insights into metal ion binding in phospholipases A2: ultra high-resolution crystal structures of an acidic phospholipase A2 in the Ca2+ free and bound states. Biochimie. 2006 May;88(5):543-9. 60. Ali SA, Alam JM, Stoeva S, et al. Sea snake Hydrophis cyanocinctus venom. I. Purification, characterization and N-terminal sequence of two phospholipases A2. Toxicon : official journal of the International Society on Toxinology. 1999 Nov;37(11):1505-20. 61. Angulo Y, Chaves E, Alape A, et al. Isolation and characterization of a myotoxic phospholipase A2 from the venom of the arboreal snake Bothriechis (Bothrops) schlegelii from Costa Rica. Arch Biochem Biophys. 1997 Mar 15;339(2):260-6. 62. Kini RM, Evans HJ. A model to explain the pharmacological effects of snake venom phospholipases A2. Toxicon : official journal of the International Society on Toxinology. 1989;27(6):613-35. 63. Freedman JE, Snyder SH. Vipoxin. A protein from Russell's viper venom with high affinity for biogenic amine receptors. J Biol Chem. 1981 Dec 25;256(24):13172-9. 64. Jiang MS, Fletcher JE, Smith LA. Effects of divalent cations on snake venom cardiotoxin-induced hemolysis and 3H-deoxyglucose-6-phosphate release from human red blood cells. Toxicon : official journal of the International Society on Toxinology. 1989;27(12):1297-305. 65. Huang MZ, Wang QC, Liu GF. Effects of an acidic phospholipase A2 purified from Ophiophagus hannah (king cobra) venom on rat heart. Toxicon : official journal of the International Society on Toxinology. 1993 May;31(5):627-35. 66. Gutiérrez JM, Ownby CL. Skeletal muscle degeneration induced by venom phospholipases A2: insights into the mechanisms of local and systemic myotoxicity. Toxicon : official journal of the International Society on Toxinology. 2003 Dec 15;42(8):915-31. 67. Gasanov SE, Dagda RK, Rael ED. Snake Venom Cytotoxins, Phospholipase A(2)s, and Zn(2+)-dependent Metalloproteinases: Mechanisms of Action and Pharmacological Relevance. Journal of clinical toxicology. 2014;4(1):1000181-215. 68. Montecucco C, Gutiérrez JM, Lomonte B. Cellular pathology induced by snake venom phospholipase A2 myotoxins and neurotoxins: common aspects of their mechanisms of action. Cell Mol Life Sci. 2008 Sep;65(18):2897-912. 69. Hiu JJ, Yap MKK. Cytotoxicity of snake venom enzymatic toxins: phospholipase A2 and l-amino acid oxidase. Biochem Soc Trans. 2020 Apr 29;48(2):719-31. 70. Ebrahim K, Shirazi FH, Mirakabadi AZ, et al. Cobra venom cytotoxins; apoptotic or necrotic agents? Toxicon : official journal of the International Society on Toxinology. 2015 Dec 15;108:134-40. 71. Raghurama P. Hegde, Nandhakishore Rajagopalan, Robin Doley, et al. Snake Venom Three-Finger Toxins In: Mackessy SP, Mackessy SP, editors. Handbook of Venoms and Toxins of Reptiles2009. p. 287-303. 72. Tsetlin V. Snake venom alpha-neurotoxins and other 'three-finger' proteins. Eur J Biochem. 1999 Sep;264(2):281-6. 73. Ménez A. Functional architectures of animal toxins: a clue to drug design? Toxicon : official journal of the International Society on Toxinology. 1998 Nov;36(11):1557-72. 74. Pahari S, Bickford D, Fry BG, et al. Expression pattern of three-finger toxin and phospholipase A2 genes in the venom glands of two sea snakes, Lapemis curtus and Acalyptophis peronii: comparison of evolution of these toxins in land snakes, sea kraits and sea snakes. BMC Evol Biol. 2007 Sep 27;7:175-84. 75. Pahari S, Mackessy SP, Kini RM. The venom gland transcriptome of the Desert Massasauga rattlesnake (Sistrurus catenatus edwardsii): towards an understanding of venom composition among advanced snakes (Superfamily Colubroidea). BMC Mol Biol. 2007 Dec 20;8:115-32. 76. Boffa MC, Barbier D, de Angulo M. Anticoagulant effect of cardiotoxins. Thromb Res. 1983 Dec 15;32(6):635-40. 77. Dubovskii PV, Konshina AG, Efremov RG. Cobra cardiotoxins: membrane interactions and pharmacological potential. Curr Med Chem. 2014;21(3):270-87. 78. Wu M, Ming W, Tang Y, et al. The anticancer effect of cytotoxin 1 from Naja atra Cantor venom is mediated by a lysosomal cell death pathway involving lysosomal membrane permeabilization and cathepsin B release. Am J Chin Med. 2013;41(3):643-63. 79. Huang RJ, Chen SW, Chen TK, et al. [The detoxification of Naja naja atra venom and preparation of potent antivenin]. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi. 1985 Aug;18(3):177-83. 80. Chien-Hsin Liu, Chia-jung Lee, Rung Li, et al. Application of Snake-Venom and Technology of Antivenom Manufactory. Taiwan Epidemiology Bulletin. 2015:76-86. 81. WHO Expert Committee on Biological Standardization, sixty-seventh report.Geneva: World Health Organization; 2017 (WHO technical report series ; no. 1004). In: Organization WH, editor. 2017. p. 321-2. 82. Liu CC, Chou YS, Chen CY, et al. Pathogenesis of local necrosis induced by Naja atra venom: Assessment of the neutralization ability of Taiwanese freeze-dried neurotoxic antivenom in animal models. PLoS neglected tropical diseases. 2020 Feb;14(2):e0008054-74. 83. 徐亞莉、吳佳蓉、周祖楨、謝文欽、鄭雅芬、江正榮. 台灣抗蛇毒血清製造之回顧與展望. 2013:64-78. 84. Halverson TW, Wilton M, Poon KK, et al. DNA is an antimicrobial component of neutrophil extracellular traps. PLoS pathogens. 2015 Jan;11(1):e1004593-616. 85. Kuhns DB, Long Priel DA, Chu J, et al. Isolation and Functional Analysis of Human Neutrophils. Current protocols in immunology. 2015 Nov 02;111:7.23.1-16. 86. Wong SL, Demers M, Martinod K, et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med. 2015 Jul;21(7):815-9. 87. Chen KC, Lin AC, Chong CF, et al. An overview of point-of-care ultrasound for soft tissue and musculoskeletal applications in the emergency department. J Intensive Care. 2016;4:55-66. 88. Vohra R, Rangan C, Bengiamin R. Sonographic signs of snakebite. Clin Toxicol (Phila). 2014 Nov;52(9):948-51. 89. Sivaganabalan R, Ismail AK, Salleh M, et al. QUICK GUIDE ON SNAKEBITE MANAGEMENT FOR HEALTHCARE PROVIDERS IN MALAYSIA. 2017. p. 1-10. 90. Mc Loughlin MJ, Mc Loughlin S. Diastolic retrograde arterial flow and biphasic abdominal aortic Doppler wave pattern: an early sign of arterial wall deterioration? Ultrasound in medicine biology. 2013 Apr;39(4):592-6. 91. Credeur DP, Dobrosielski DA, Arce-Esquivel AA, et al. Brachial artery retrograde flow increases with age: relationship to physical function. Eur J Appl Physiol. 2009 Sep;107(2):219-25. 92. Najmeh S, Cools-Lartigue J, Giannias B, et al. Simplified Human Neutrophil Extracellular Traps (NETs) Isolation and Handling. J Vis Exp. 2015 Apr 16(98):e52687-93. 93. Swethakumar B, NaveenKumar SK, Girish KS, et al. The action of Echis carinatus and Naja naja venoms on human neutrophils; an emphasis on NETosis. Biochim Biophys Acta Gen Subj. 2020 Jun;1864(6):129561-73. 94. Stackowicz J, Balbino B, Todorova B, et al. Evidence that neutrophils do not promote Echis carinatus venom-induced tissue destruction. Nature communications. 2018 Jun 13;9(1):2304-7. 95. Chiou JT, Wang LJ, Lee YC, et al. Naja atra Cardiotoxin 1 Induces the FasL/Fas Death Pathway in Human Leukemia Cells. Cells. 2021 Aug 12;10(8):2073-88. 96. Jiang WJ, Liang YX, Han LP, et al. Purification and characterization of a novel antinociceptive toxin from Cobra venom (Naja naja atra). Toxicon : official journal of the International Society on Toxinology. 2008 Oct;52(5):638-46. 97. Sun JJ, Walker MJ. Actions of cardiotoxins from the southern Chinese cobra (Naja naja atra) on rat cardiac tissue. Toxicon : official journal of the International Society on Toxinology. 1986;24(3):233-45. 98. Rochat H, Gregoire J, Martin-Moutot N, et al. Purification of animal neurotoxins: isolation and characterization of three neurotoxins from the venom of Naja nigricollis mossambica peters. FEBS Lett. 1974 Jun 15;42(3):335-9. 99. Petras D, Sanz L, Segura A, et al. Snake venomics of African spitting cobras: toxin composition and assessment of congeneric cross-reactivity of the pan-African EchiTAb-Plus-ICP antivenom by antivenomics and neutralization approaches. J Proteome Res. 2011 Mar 4;10(3):1266-80. 100. Jiang W-j, Liang Y-x, Han L-p, et al. Purification and characterization of a novel antinociceptive toxin from Cobra venom (Naja naja atra). Toxicon : official journal of the International Society on Toxinology. 2008 2008/10/01/;52(5):638-646. 101. Donnelly-Roberts DL, Lentz TL. Synthetic peptides of neurotoxins and rabies virus glycoprotein behave as antagonists in a functional assay for the acetylcholine receptor. Pept Res. 1989 May-Jun;2(3):221-6. 102. Afifiyan F, Armugam A, Tan CH, et al. Postsynaptic alpha-neurotoxin gene of the spitting cobra, Naja naja sputatrix: structure, organization, and phylogenetic analysis. Genome Res. 1999;9(3):259-266. 103. THALLAMPURANAM KRISHNASWAMY SURESH KUMAR, SHUNMUGIAH THEVAR KARUTHA PANDIAN, GURUNATHAN JAYARAMAN, et al. Understanding the Structure, Function and Folding of Cobra Toxins. Proceedings of the National Science Council, Republic of China. 1999;23(1):1-19. 104. Sala A, Cabassi CS, Santospirito D, et al. Novel Naja atra cardiotoxin 1 (CTX-1) derived antimicrobial peptides with broad spectrum activity. PLoS One. 2018;13(1):e0190778-800. 105. Gutierrez JM, Lomonte B. Phospholipases A2: unveiling the secrets of a functionally versatile group of snake venom toxins. Toxicon : official journal of the International Society on Toxinology. 2013 Feb;62:27-39. 106. Singh SB, Armugam A, Kini RM, et al. Phospholipase A(2) with platelet aggregation inhibitor activity from Austrelaps superbus venom: protein purification and cDNA cloning. Arch Biochem Biophys. 2000 Mar 15;375(2):289-303. 107. Condrea E, Barzilay M, Mager J. Role of cobra venom direct lytic factor and Ca2+ in promoting the activity of snake venom phospholipase A. Biochim Biophys Acta. 1970 Jun 9;210(1):65-73. 108. Helden DFV, Dosen PJ, O'Leary MA, et al. Two pathways for venom toxin entry consequent to injection of an Australian elapid snake venom. Sci Rep. 2019 Jun 13;9(1):8595-605. 109. Chieh-Fan C, Tzeng-Jih L, Wen-Chi H, et al. Appropriate antivenom doses for six types of envenomations caused by snakes in taiwan. Journal of Venomous Animals and Toxins including Tropical Diseases. 2009;15:479-90. 110. 劉健信*、李佳蓉、李蓉、許靜侖、陳昭宏、張筱琦、謝文欽. 蛇毒蛋白應用研究及抗蛇毒血清製造技術 [original]. 疫情報導. 2015 年2 月24 日 第31 卷 第4 期 2015 年2 月24 日 第31 卷 第4 期;31(4):76-86. 111. Mao YC, Liu PY, Chiang LC, et al. Bungarus multicinctus multicinctus Snakebite in Taiwan. The American journal of tropical medicine and hygiene. 2017 Jun;96(6):1497-1504. 112. Su HY, Huang SW, Mao YC, et al. Clinical and laboratory features distinguishing between Deinagkistrodon acutus and Daboia siamensis envenomation. The journal of venomous animals and toxins including tropical diseases. 2018;24:43-51. 113. Chiang LC, Tsai WJ, Liu PY, et al. Envenomation by Trimeresurus stejnegeri stejnegeri: clinical manifestations, treatment and associated factors for wound necrosis. The journal of venomous animals and toxins including tropical diseases. 2020 Sep 18;26:e20200043-55. 114. Liu CC, You CH, Wang PJ, et al. Analysis of the efficacy of Taiwanese freeze-dried neurotoxic antivenom against Naja kaouthia, Naja siamensis and Ophiophagus hannah through proteomics and animal model approaches. PLoS neglected tropical diseases. 2017 Dec;11(12):e0006138-58. 115. Lewin M, Samuel S, Merkel J, et al. Varespladib (LY315920) Appears to Be a Potent, Broad-Spectrum, Inhibitor of Snake Venom Phospholipase A2 and a Possible Pre-Referral Treatment for Envenomation. Toxins. 2016;8(9):248-64. 116. Ownby CL, Colberg TR, Claypool PL, et al. In vivo test of the ability of antiserum to myotoxin a from prairie rattlesnake (Crotalus viridis viridis) venom to neutralize local myonecrosis induced by myotoxin a and homologous crude venom. Toxicon : official journal of the International Society on Toxinology. 1984;22(1):99-105. 117. Leão-Torres AG, Pires CV, Ribelato AC, et al. Protective action of N-acetyl-L-cysteine associated with a polyvalent antivenom on the envenomation induced by Lachesis muta muta (South American bushmaster) in rats. Toxicon : official journal of the International Society on Toxinology. 2021 Jul 30;198:36-47. 118. Rudresha GV, Urs AP, Manjuprasanna VN, et al. Echis carinatus snake venom metalloprotease-induced toxicities in mice: Therapeutic intervention by a repurposed drug, Tetraethyl thiuram disulfide (Disulfiram). PLoS neglected tropical diseases. 2021 Feb;15(2):e0008596-620. 119. Snakes of Taiwan [Internet]. Matthew Clarke: Hans Breuer William Christopher Murphy. 2021. Available from: https://www.snakesoftaiwan.com/home_zh.html. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79280 | - |
| dc.description.abstract | 蛇類咬傷是(亞)熱帶地區重要且特有的疾病。台灣民眾最常被咬傷的三種陸生蛇種,分屬兩科,蝮蛇科(龜殼花與青竹絲)以及眼鏡蛇科(中華眼鏡蛇)。共同臨床症狀為疼痛與持續腫脹,中華眼鏡蛇咬傷的病人有高比例呈現傷口潰爛與組織壞死。台灣抗蛇毒血清成功降低了蛇咬傷病人的死亡率,但臨床研究發現血清似乎無法立即改善進展性腫脹或傷口潰爛,因此何時需要手術介入,一直是臨床決策困擾之處。隨著研究發現,使用超音波監測模組可以判斷蛇咬傷後進展性腫脹是否產生急性腔室症候群,臨床醫師依據結果建議病人是否需要接受筋膜切開術。然而眼鏡蛇咬傷後傷口潰爛的機轉與血清中和效果仍是待釐清的問題。推測此潰爛機轉可能為蛇毒引發的免疫反應與毒素組織破壞作用的兩者共同效果。先前研究發現黑頸眼鏡蛇蛇毒會吸引嗜中性球參與免疫反應;蛇毒成分中的細胞毒素,磷脂酶A2,及蛇毒金屬蛋白酶也具有破壞組織作用。本研究目標在探討中華眼鏡蛇蛇毒造成皮膚組織潰爛的機轉,分析蛇毒粗毒是否誘發嗜中性球胞外陷阱的免疫反應,使用細胞毒性方式分析毒素中主要致潰爛成分,同時評估現行使用血清中和潰爛的有效性。 首先利用不同溶解度與滲透度的特性,分離出健康成年人之嗜中性白血球,使用中華眼鏡蛇的不同粗毒濃度刺激180分鐘,西方墨點法定量第四型蛋白精氨酸脫亞氨酶和第三型瓜氨酸化組織蛋白,隨著粗毒濃度上升會誘發嗜中性球胞外陷阱反應。有別於以半數致死劑量與存活率討論血清的有效性,本研究採用世界衛生組織建議的最小致潰爛劑量方式做細胞毒性評估,來確立中華眼鏡蛇毒粗毒中何者為主要致潰爛毒素且評估血清的中和效果。然而使用中華眼鏡蛇粗毒進行動物潰爛評估測時,動物會死亡而未出現傷口潰爛。因此本研究先移除中華眼鏡蛇毒中對於動物的致命毒素,神經毒素,再以不同濃度注射於小鼠背部皮內,三天後,測量潰爛面積是否達直徑5毫米,實驗結果最小致潰爛濃度為0.494±0.029 µg/g。以組織切片的方式觀察潰爛進展,越深層的皮膚,潰爛情形越嚴重。再依序去除其他主要毒素成分,釐清主要致潰爛成分為細胞毒素。最後以不同稀釋倍數血清與挑戰劑量(兩倍最小致潰爛濃度)蛇毒混合後,打入小鼠背部皮膚,三天後,不論何種稀釋倍數,相比於挑戰劑量造成的潰爛直徑,均無法使其減少一半以上。 蛇毒誘發嗜中性球胞外陷阱後,蛇毒毒素被胞外陷阱圈住,阻止擴散反而提高局部環境的毒素濃度,附著於胞外陷阱網狀骨架上的蛋白酶,也會造成局部組織破壞。研究指出破壞胞外陷阱結構,可以減少毒素與蛋白酶對組織破壞但卻使毒素散布,反而會降低小鼠存活率。因此為了避免蛇咬傷後傷口組織潰爛而破壞胞外陷阱結構,整體效益仍有待評估。至於不同蛇種產生的胞外陷阱現象,過往研究有不同的結果。歸納而言,蝮蛇科與眼鏡蛇科誘發嗜中性球胞外陷阱機轉不同,蝮蛇科可能為自殺性胞外陷阱,需要刺激一段時間後才會出現,且隨刺激濃度增高而反應增加;眼鏡蛇科則為存活性胞外陷阱,可以短時間內出現。本研究的結果與先前其他種類眼鏡蛇的結果相似,嗜中性球胞外陷阱反應會在毒素刺激後短時間內產生,隨著毒素濃度上升但是高濃度時會減少。中華眼鏡蛇有別於黑頸眼鏡蛇,有較多的神經毒素成分,中華眼鏡蛇需先移除神經毒素才能在動物模式上觀察到傷口潰爛變化。病人被中華眼鏡蛇咬傷後幾乎無神經症狀,表示神經毒素在人體似乎作用不大,因此移除神經毒素後探討傷口變化的動物模式更貼近臨床狀況。台灣抗蛇毒血清抗體計量為田中單位,以往由動物實驗獲得半數致死劑量再求得半數有效劑量,進而推估建議的血清施打劑量。近年學者建議根據臨床症狀來調整施打劑量。然而根據本研究,現行血清並無法中和中華眼鏡蛇致潰爛效果。 本研究釐清了中華眼鏡蛇的粗毒會引起嗜中性球胞外陷阱,主要致潰爛成分為細胞毒素。毒素引發嗜中性球胞外陷阱的免疫反應與細胞毒素的破壞作用,兩者協同結果造成中華眼鏡蛇咬傷後潰爛變化,且現行血清並無中和中華眼鏡蛇毒致潰爛的效果。展望未來,中華眼鏡蛇咬傷的病人除了接受現行血清以減少系統性毒素,也許還要合併其他輔助治療,如對細胞毒素的單株抗體,或是有效的除汙治療。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T08:57:16Z (GMT). No. of bitstreams: 1 U0001-2212202121344300.pdf: 3281821 bytes, checksum: ee077bdf3425fd5d9a5b23d6be1afba4 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "謝辭 i 摘要 ii Abstract iv Abbreviation vi Contents vii Chapter 1 Introduction 1 1-1 Snake classification and regional distribution in Taiwan 1 1-2 Clinical presentation of snakebite 2 1-3 Pathogenesis of snakebite-related dermonecrosis 5 1-3-1 Progression of dermonecrosis 5 1-3-2 Neutrophil reaction 5 1-4 Features of venom 8 1-4-1 SVMPs, snake venom metalloproteinases 8 1-4-2 PLA2, phospholipase A2 9 1-4-3 CTXs, cytotoxins (also called cardiotoxins) 10 1-5 Evaluation of the venom-induced cytotoxic effect 11 1-6 AIM 12 Chapter 2 Materials and Methods 13 2-1 Patient recruitment 13 2-2 Animals 15 2-3 Human neutrophil isolation 16 2-4 Western blot analysis of snake venom-induced NET formation 18 2-5 Chemicals and reagents 19 2-6 Snake Venom Approach and Analysis 20 2-7 Preparation of deNTXs, deNTXs-deCTXs, and deNTXs-dePLA2 21 2-8 Minimum Necrotizing Dose (MND) 22 2-9 MND50: Efficacy of Antivenom Neutralization 23 2-10 Biopsy and Necrosis Score 24 2-11 Point-of-care ultrasound (POCUS) 25 2-12 data analysis 27 Chapter 3 Results 28 3-1 Crude N. atra venom induces NET formation 28 3-2 Characterization of Naja atra Crude Venom and the MND of the deNTXs 29 3-3 CTXs are the Major Component Causing Necrosis 30 3-4 Development of Necrosis 31 3-5 Neutralization Ability of the Antivenom 32 Chapter 4 Discussion 33 Chapter 5 Conclusions 40 Chapter 6 Future perspectives 41 Chapter 7 List of publications 42 References 65" | |
| dc.language.iso | en | |
| dc.title | 眼鏡蛇咬傷致潰爛毒性機轉探討 | zh_TW |
| dc.title | Approach for the mechanisms of Naja atra snakebite-related dermonecrosis | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0001-8692-2572 | |
| dc.contributor.oralexamcommittee | 藍國徵(Hsin-Tsai Liu),姜至剛(Chih-Yang Tseng),鄧昭芳,蕭水銀 | |
| dc.subject.keyword | 中華眼鏡蛇,急性腔室症候群,超音波,最小致潰爛濃度,細胞毒素,嗜中性球胞外陷阱, | zh_TW |
| dc.subject.keyword | Naja atra,Snakebite,Taiwan,point-of-care ultrasound,acute compartment syndrome,minimum necrotizing dose,neurotoxin,cytotoxin,neutrophil extracellular trap, | en |
| dc.relation.page | 79 | |
| dc.identifier.doi | 10.6342/NTU202104560 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-12-29 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 毒理學研究所 | zh_TW |
| 顯示於系所單位: | 毒理學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2212202121344300.pdf | 3.2 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
