請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7927
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林水龍 | |
dc.contributor.author | Chia-Hao Liu | en |
dc.contributor.author | 劉家豪 | zh_TW |
dc.date.accessioned | 2021-05-19T17:58:59Z | - |
dc.date.available | 2021-08-26 | |
dc.date.available | 2021-05-19T17:58:59Z | - |
dc.date.copyright | 2016-08-26 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-07-28 | |
dc.identifier.citation | 1. Kurts C, Panzer U, Anders HJ, and Rees AJ. The immune system and kidney disease: basic concepts and clinical implications. Nature reviews Immunology. 2013;13(10):738-53.
2. Pan SY, Chang YT, and Lin SL. Microvascular pericytes in healthy and diseased kidneys. International journal of nephrology and renovascular disease. 2014;7(39-48. 3. Carey RM, Wang ZQ, and Siragy HM. Role of the angiotensin type 2 receptor in the regulation of blood pressure and renal function. Hypertension. 2000;35(1 Pt 2):155-63. 4. Lacombe C, Da Silva JL, Bruneval P, Casadevall N, Camilleri JP, Bariety J, Tambourin P, and Varet B. Erythropoietin: sites of synthesis and regulation of secretion. American journal of kidney diseases : the official journal of the National Kidney Foundation. 1991;18(4 Suppl 1):14-9. 5. Kumar R, Tebben PJ, and Thompson JR. Vitamin D and the kidney. Archives of biochemistry and biophysics. 2012;523(1):77-86. 6. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, and Acute Dialysis Quality Initiative w. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Critical care. 2004;8(4):R204-12. 7. Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Levin A, and Acute Kidney Injury N. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Critical care. 2007;11(2):R31. 8. Raj Munshi CH, Jonathan Himmelfarb. Advances in understanding ischemic acute kidney injury. BMC Medicine. 2011. 9. Saran R, Li Y, Robinson B, Abbott KC, Agodoa LY, Ayanian J, Bragg-Gresham J, Balkrishnan R, Chen JL, Cope E, et al. US Renal Data System 2015 Annual Data Report: Epidemiology of Kidney Disease in the United States. American journal of kidney diseases : the official journal of the National Kidney Foundation. 2016;67(3 Suppl 1):S1-S434. 10. Sharfuddin AA, and Molitoris BA. Pathophysiology of ischemic acute kidney injury. Nature reviews Nephrology. 2011;7(4):189-200. 11. Sutton TA. Alteration of microvascular permeability in acute kidney injury. Microvascular research. 2009;77(1):4-7. 12. Yang JVBaL. Cellular pathophysiology of ischemic acute kidney injury. The Journal of clinical investigation. 2011;121(11):4210-21. 13. Furuichi K, Wada T, Iwata Y, Kitagawa K, Kobayashi K, Hashimoto H, Ishiwata Y, Asano M, Wang H, Matsushima K, et al. CCR2 signaling contributes to ischemia-reperfusion injury in kidney. Journal of the American Society of Nephrology : JASN. 2003;14(10):2503-15. 14. Costa DL, Lima-Junior DS, Nascimento MS, Sacramento LA, Almeida RP, Carregaro V, and Silva JS. CCR2 signaling contributes to the differentiation of protective inflammatory dendritic cells in Leishmania braziliensis infection. Journal of leukocyte biology. 2016. 15. Miura M, Fu X, Zhang QW, Remick DG, and Fairchild RL. Neutralization of Gro alpha and macrophage inflammatory protein-2 attenuates renal ischemia/reperfusion injury. Am J Pathol. 2001;159(6):2137-45. 16. Oh DJ, Dursun B, He Z, Lu L, Hoke TS, Ljubanovic D, Faubel S, and Edelstein CL. Fractalkine receptor (CX3CR1) inhibition is protective against ischemic acute renal failure in mice. American journal of physiology Renal physiology. 2008;294(1):F264-71. 17. Stroo I, Stokman G, Teske GJ, Raven A, Butter LM, Florquin S, and Leemans JC. Chemokine expression in renal ischemia/reperfusion injury is most profound during the reparative phase. International immunology. 2010;22(6):433-42. 18. Yang Z, Luo W, Fu R, Tan Y, Yuan L, and Fang B. [CCL2/CCR2 signaling activation contributes to tooth movement pain]. Zhonghua kou qiang yi xue za zhi = Zhonghua kouqiang yixue zazhi = Chinese journal of stomatology. 2014;49(8):500-5. 19. Furuichi K, Wada T, Iwata Y, Kitagawa K, Kobayashi K, Hashimoto H, Ishiwata Y, Tomosugi N, Mukaida N, Matsushima K, et al. Gene therapy expressing amino-terminal truncated monocyte chemoattractant protein-1 prevents renal ischemia-reperfusion injury. Journal of the American Society of Nephrology : JASN. 2003;14(4):1066-71. 20. Fiorina P, Ansari MJ, Jurewicz M, Barry M, Ricchiuti V, Smith RN, Shea S, Means TK, Auchincloss H, Jr., Luster AD, et al. Role of CXC chemokine receptor 3 pathway in renal ischemic injury. Journal of the American Society of Nephrology : JASN. 2006;17(3):716-23. 21. Sutton TA, Mang HE, Campos SB, Sandoval RM, Yoder MC, and Molitoris BA. Injury of the renal microvascular endothelium alters barrier function after ischemia. American journal of physiology Renal physiology. 2003;285(2):F191-8. 22. Bonventre JV. Mechanisms of Acute Kidney Injury and Repair. 2010. 23. Legrand M, Mik EG, Johannes T, Payen D, and Ince C. Renal hypoxia and dysoxia after reperfusion of the ischemic kidney. Molecular medicine. 2008;14(7-8):502-16. 24. Basile DP, Friedrich JL, Spahic J, Knipe N, Mang H, Leonard EC, Changizi-Ashtiyani S, Bacallao RL, Molitoris BA, and Sutton TA. Impaired endothelial proliferation and mesenchymal transition contribute to vascular rarefaction following acute kidney injury. American journal of physiology Renal physiology. 2011;300(3):F721-33. 25. Basile DP, Fredrich K, Chelladurai B, Leonard EC, and Parrish AR. Renal ischemia reperfusion inhibits VEGF expression and induces ADAMTS-1, a novel VEGF inhibitor. American journal of physiology Renal physiology. 2008;294(4):F928-36. 26. Karasawa K, Asano K, Moriyama S, Ushiki M, Monya M, Iida M, Kuboki E, Yagita H, Uchida K, Nitta K, et al. Vascular-Resident CD169-Positive Monocytes and Macrophages Control Neutrophil Accumulation in the Kidney with Ischemia-Reperfusion Injury. Journal of the American Society of Nephrology : JASN. 2015;26(4):896-906. 27. Kusaba T, Lalli M, Kramann R, Kobayashi A, and Humphreys BD. Differentiated kidney epithelial cells repair injured proximal tubule. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(4):1527-32. 28. Berger K, Bangen JM, Hammerich L, Liedtke C, Floege J, Smeets B, and Moeller MJ. Origin of regenerating tubular cells after acute kidney injury. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(4):1533-8. 29. Basile DP. The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney international. 2007;72(2):151-6. 30. Duffield JS. Macrophages and immunologic inflammation of the kidney. Seminars in nephrology. 2010;30(3):234-54. 31. Ko GJ, Boo CS, Jo SK, Cho WY, and Kim HK. Macrophages contribute to the development of renal fibrosis following ischaemia/reperfusion-induced acute kidney injury. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. 2008;23(3):842-52. 32. Basile DP, Donohoe D, Roethe K, and Osborn JL. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. American journal of physiology Renal physiology. 2001;281(5):F887-99. 33. Shoskes DA, Parfrey NA, and Halloran PF. Increased major histocompatibility complex antigen expression in unilateral ischemic acute tubular necrosis in the mouse. Transplantation. 1990;49(1):201-7. 34. Singh AP, Junemann A, Muthuraman A, Jaggi AS, Singh N, Grover K, and Dhawan R. Animal models of acute renal failure. Pharmacological reports : PR. 2012;64(1):31-44. 35. Sanz AB, Sanchez-Nino MD, Martin-Cleary C, Ortiz A, and Ramos AM. Progress in the development of animal models of acute kidney injury and its impact on drug discovery. Expert opinion on drug discovery. 2013;8(7):879-95. 36. Wei Q, and Dong Z. Mouse model of ischemic acute kidney injury: technical notes and tricks. American journal of physiology Renal physiology. 2012;303(11):F1487-94. 37. Hesketh EE, Czopek A, Clay M, Borthwick G, Ferenbach D, Kluth D, and Hughes J. Renal ischaemia reperfusion injury: a mouse model of injury and regeneration. Journal of visualized experiments : JoVE. 201488). 38. Delbridge MS, Shrestha BM, Raftery AT, El Nahas AM, and Haylor JL. The effect of body temperature in a rat model of renal ischemia-reperfusion injury. Transplantation proceedings. 2007;39(10):2983-5. 39. Molitoris BA, Dagher PC, Sandoval RM, Campos SB, Ashush H, Fridman E, Brafman A, Faerman A, Atkinson SJ, Thompson JD, et al. siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury. Journal of the American Society of Nephrology : JASN. 2009;20(8):1754-64. 40. Swaminathan M. ACT-AKI: A Phase 2 Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial of AC607 for the Treatment of Acute Kidney Injury in Cardiac Surgery Subjects. Journal of the American Society of Nephrology : JASN. 2014;25(B3. 41. Rettig WJ, Garin-Chesa P, Healey JH, Su SL, Jaffe EA, and Old LJ. Identification of endosialin, a cell surface glycoprotein of vascular endothelial cells in human cancer. Proceedings of the National Academy of Sciences of the United States of America. 1992;89(22):10832-6. 42. Christian S, Ahorn H, Koehler A, Eisenhaber F, Rodi HP, Garin-Chesa P, Park JE, Rettig WJ, and Lenter MC. Molecular cloning and characterization of endosialin, a C-type lectin-like cell surface receptor of tumor endothelium. The Journal of biological chemistry. 2001;276(10):7408-14. 43. Opavsky R, Haviernik P, Jurkovicova D, Garin MT, Copeland NG, Gilbert DJ, Jenkins NA, Bies J, Garfield S, Pastorekova S, et al. Molecular characterization of the mouse Tem1/endosialin gene regulated by cell density in vitro and expressed in normal tissues in vivo. The Journal of biological chemistry. 2001;276(42):38795-807. 44. Valdez Y, Maia M, and Conway EM. CD248: reviewing its role in health and disease. Current drug targets. 2012;13(3):432-9. 45. Greenlee MC, Sullivan SA, and Bohlson SS. CD93 and related family members: their role in innate immunity. Current drug targets. 2008;9(2):130-8. 46. Conway EM, Van de Wouwer M, Pollefeyt S, Jurk K, Van Aken H, De Vriese A, Weitz JI, Weiler H, Hellings PW, Schaeffer P, et al. The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor kappaB and mitogen-activated protein kinase pathways. The Journal of experimental medicine. 2002;196(5):565-77. 47. Van de Wouwer M, Collen D, and Conway EM. Thrombomodulin-protein C-EPCR system: integrated to regulate coagulation and inflammation. Arteriosclerosis, thrombosis, and vascular biology. 2004;24(8):1374-83. 48. St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, et al. Genes expressed in human tumor endothelium. Science. 2000;289(5482):1197-202. 49. Carson-Walter EB, Watkins DN, Nanda A, Vogelstein B, Kinzler KW, and St Croix B. Cell surface tumor endothelial markers are conserved in mice and humans. Cancer research. 2001;61(18):6649-55. 50. Brady J, Neal J, Sadakar N, and Gasque P. Human endosialin (tumor endothelial marker 1) is abundantly expressed in highly malignant and invasive brain tumors. Journal of neuropathology and experimental neurology. 2004;63(12):1274-83. 51. MacFadyen JR, Haworth O, Roberston D, Hardie D, Webster MT, Morris HR, Panico M, Sutton-Smith M, Dell A, van der Geer P, et al. Endosialin (TEM1, CD248) is a marker of stromal fibroblasts and is not selectively expressed on tumour endothelium. FEBS letters. 2005;579(12):2569-75. 52. Christian S, Winkler R, Helfrich I, Boos AM, Besemfelder E, Schadendorf D, and Augustin HG. Endosialin (Tem1) is a marker of tumor-associated myofibroblasts and tumor vessel-associated mural cells. Am J Pathol. 2008;172(2):486-94. 53. Hardie DL, Baldwin MJ, Naylor A, Haworth OJ, Hou TZ, Lax S, Curnow SJ, Willcox N, MacFadyen J, Isacke CM, et al. The stromal cell antigen CD248 (endosialin) is expressed on naive CD8+ human T cells and regulates proliferation. Immunology. 2011;133(3):288-95. 54. Bagley RG, Rouleau C, St Martin T, Boutin P, Weber W, Ruzek M, Honma N, Nacht M, Shankara S, Kataoka S, et al. Human endothelial precursor cells express tumor endothelial marker 1/endosialin/CD248. Molecular cancer therapeutics. 2008;7(8):2536-46. 55. Naylor AJ, Azzam E, Smith S, Croft A, Poyser C, Duffield JS, Huso DL, Gay S, Ospelt C, Cooper MS, et al. The mesenchymal stem cell marker CD248 (endosialin) is a negative regulator of bone formation in mice. Arthritis and rheumatism. 2012;64(10):3334-43. 56. Huang HP, Hong CL, Kao CY, Lin SW, Lin SR, Wu HL, Shi GY, You LR, Wu CL, and Yu IS. Gene targeting and expression analysis of mouse Tem1/endosialin using a lacZ reporter. Gene expression patterns : GEP. 2011;11(5-6):316-26. 57. Maia M, de Vriese A, Janssens T, Moons M, van Landuyt K, Tavernier J, Lories RJ, and Conway EM. CD248 and its cytoplasmic domain: a therapeutic target for arthritis. Arthritis and rheumatism. 2010;62(12):3595-606. 58. Smith SW, Eardley KS, Croft AP, Nwosu J, Howie AJ, Cockwell P, Isacke CM, Buckley CD, and Savage CO. CD248+ stromal cells are associated with progressive chronic kidney disease. Kidney international. 2011;80(2):199-207. 59. Nanda A, Karim B, Peng Z, Liu G, Qiu W, Gan C, Vogelstein B, St Croix B, Kinzler KW, and Huso DL. Tumor endothelial marker 1 (Tem1) functions in the growth and progression of abdominal tumors. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(9):3351-6. 60. Maia M, DeVriese A, Janssens T, Moons M, Lories RJ, Tavernier J, and Conway EM. CD248 facilitates tumor growth via its cytoplasmic domain. BMC cancer. 2011;11(162. 61. Naylor AJ, McGettrick HM, Maynard WD, May P, Barone F, Croft AP, Egginton S, and Buckley CD. A differential role for CD248 (Endosialin) in PDGF-mediated skeletal muscle angiogenesis. PloS one. 2014;9(9):e107146. 62. Mogler C, Wieland M, Konig C, Hu J, Runge A, Korn C, Besemfelder E, Breitkopf-Heinlein K, Komljenovic D, Dooley S, et al. Hepatic stellate cell-expressed endosialin balances fibrogenesis and hepatocyte proliferation during liver damage. EMBO molecular medicine. 2015;7(3):332-8. 63. Tomkowicz B, Rybinski K, Sebeck D, Sass P, Nicolaides NC, Grasso L, and Zhou Y. Endosialin/TEM-1/CD248 regulates pericyte proliferation through PDGF receptor signaling. Cancer biology & therapy. 2010;9(11):908-15. 64. Tomkowicz B, Rybinski K, Foley B, Ebel W, Kline B, Routhier E, Sass P, Nicolaides NC, Grasso L, and Zhou Y. Interaction of endosialin/TEM1 with extracellular matrix proteins mediates cell adhesion and migration. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(46):17965-70. 65. Becker R, Lenter MC, Vollkommer T, Boos AM, Pfaff D, Augustin HG, and Christian S. Tumor stroma marker endosialin (Tem1) is a binding partner of metastasis-related protein Mac-2 BP/90K. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2008;22(8):3059-67. 66. Lin SL, Li B, Rao S, Yeo EJ, Hudson TE, Nowlin BT, Pei H, Chen L, Zheng JJ, Carroll TJ, et al. Macrophage Wnt7b is critical for kidney repair and regeneration. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(9):4194-9. 67. Ricardo SD, van Goor H, and Eddy AA. Macrophage diversity in renal injury and repair. The Journal of clinical investigation. 2008;118(11):3522-30. 68. Lichtnekert J, Kawakami T, Parks WC, and Duffield JS. Changes in macrophage phenotype as the immune response evolves. Current opinion in pharmacology. 2013;13(4):555-64. 69. Lin SL, Castano AP, Nowlin BT, Lupher ML, Jr., and Duffield JS. Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations. Journal of immunology. 2009;183(10):6733-43. 70. Lee S, Huen S, Nishio H, Nishio S, Lee HK, Choi BS, Ruhrberg C, and Cantley LG. Distinct macrophage phenotypes contribute to kidney injury and repair. Journal of the American Society of Nephrology : JASN. 2011;22(2):317-26. 71. Lin SLD, J.S. Macrophages in Kidney Injury and Repair. Acta Nephrologica. 2012;26(2):45-57. 72. Castano AP, Lin SL, Surowy T, Nowlin BT, Turlapati SA, Patel T, Singh A, Li S, Lupher ML, Jr., and Duffield JS. Serum amyloid P inhibits fibrosis through Fc gamma R-dependent monocyte-macrophage regulation in vivo. Science translational medicine. 2009;1(5):5ra13. 73. Van Dyken SJ, and Locksley RM. Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. Annual review of immunology. 2013;31(317-43. 74. Wang Y, and Harris DC. Macrophages in renal disease. Journal of the American Society of Nephrology : JASN. 2011;22(1):21-7. 75. Rogers NM, Ferenbach DA, Isenberg JS, Thomson AW, and Hughes J. Dendritic cells and macrophages in the kidney: a spectrum of good and evil. Nature reviews Nephrology. 2014;10(11):625-43. 76. Kitamoto K, Machida Y, Uchida J, Izumi Y, Shiota M, Nakao T, Iwao H, Yukimura T, Nakatani T, and Miura K. Effects of liposome clodronate on renal leukocyte populations and renal fibrosis in murine obstructive nephropathy. Journal of pharmacological sciences. 2009;111(3):285-92. 77. Day YJ, Huang L, Ye H, Linden J, and Okusa MD. Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: role of macrophages. American journal of physiology Renal physiology. 2005;288(4):F722-31. 78. Jo SK, Sung SA, Cho WY, Go KJ, and Kim HK. Macrophages contribute to the initiation of ischaemic acute renal failure in rats. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. 2006;21(5):1231-9. 79. Sung SA, Jo SK, Cho WY, Won NH, and Kim HK. Reduction of renal fibrosis as a result of liposome encapsulated clodronate induced macrophage depletion after unilateral ureteral obstruction in rats. Nephron Experimental nephrology. 2007;105(1):e1-9. 80. Ferenbach DA, Sheldrake TA, Dhaliwal K, Kipari TM, Marson LP, Kluth DC, and Hughes J. Macrophage/monocyte depletion by clodronate, but not diphtheria toxin, improves renal ischemia/reperfusion injury in mice. Kidney international. 2012;82(8):928-33. 81. 白振學,博士論文:內皮唾酸蛋白質在慢性腎病之角色。2015。 82. Rybinski K, Imtiyaz HZ, Mittica B, Drozdowski B, Fulmer J, Furuuchi K, Fernando S, Henry M, Chao QM, Kline B, et al. Targeting endosialin/CD248 through antibody-mediated internalization results in impaired pericyte maturation and dysfunctional tumor microvasculature. Oncotarget. 2015;6(28):25429-40. 83. Smith SW, Croft AP, Morris HL, Naylor AJ, Huso DL, Isacke CM, Savage CO, and Buckley CD. Genetic Deletion of the Stromal Cell Marker CD248 (Endosialin) Protects against the Development of Renal Fibrosis. Nephron. 2015;131(4):265-77. 84. Krohn AG, Ogden DA, and Holmes JH. Renal function in 29 healthy adults before and after nephrectomy. Jama. 1966;196(4):322-4. 85. Saxena AB, Myers BD, Derby G, Blouch KL, Yan J, Ho B, and Tan JC. Adaptive hyperfiltration in the aging kidney after contralateral nephrectomy. American journal of physiology Renal physiology. 2006;291(3):F629-34. 86. Vinuesa E, Hotter G, Jung M, Herrero-Fresneda I, Torras J, and Sola A. Macrophage involvement in the kidney repair phase after ischaemia/reperfusion injury. The Journal of pathology. 2008;214(1):104-13. 87. Lu L, Faubel S, He Z, Andres Hernando A, Jani A, Kedl R, and Edelstein CL. Depletion of macrophages and dendritic cells in ischemic acute kidney injury. American journal of nephrology. 2012;35(2):181-90. 88. Schrimpf C, Xin CY, Campanholle G, Gill SE, Stallcup W, Lin SL, Davis GE, Gharib SA, Humphreys BD, and Duffield JS. Pericyte TIMP3 and ADAMTS1 Modulate Vascular Stability after Kidney Injury. Journal of the American Society of Nephrology. 2012;23(5):868-83. 89. Okusa MD, Chertow GM, Portilla D, and Acute Kidney Injury Advisory Group of the American Society of N. The nexus of acute kidney injury, chronic kidney disease, and World Kidney Day 2009. Clinical journal of the American Society of Nephrology : CJASN. 2009;4(3):520-2. 90. Chawla LS, and Kimmel PL. Acute kidney injury and chronic kidney disease: an integrated clinical syndrome. Kidney international. 2012;82(5):516-24. 91. Cerda J, Lameire N, Eggers P, Pannu N, Uchino S, Wang H, Bagga A, and Levin A. Epidemiology of acute kidney injury. Clinical journal of the American Society of Nephrology : CJASN. 2008;3(3):881-6. 92. Diaz LA, Jr., Coughlin CM, Weil SC, Fishel J, Gounder MM, Lawrence S, Azad N, O'Shannessy DJ, Grasso L, Wustner J, et al. A first-in-human phase I study of MORAb-004, a monoclonal antibody to endosialin in patients with advanced solid tumors. Clinical cancer research : an official journal of the American Association for Cancer Research. 2015;21(6):1281-8. 93. Faubel S, Chawla LS, Chertow GM, Goldstein SL, Jaber BL, Liu KD, and Acute Kidney Injury Advisory Group of the American Society of N. Ongoing clinical trials in AKI. Clinical journal of the American Society of Nephrology : CJASN. 2012;7(5):861-73. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7927 | - |
dc.description.abstract | 即便在現今醫療水準大幅提升的環境下,急性腎損傷 (acute kidney injury;AKI)的發病率、盛行率及死亡率仍高居不下。而至今仍然沒有發展出有效的藥物或治療方式來改善急性腎損傷,因此尋找出有效的藥物或者治療方式是十分迫切的。
根據過去的研究中發現到Endosialin (中文稱內皮唾酸蛋白;又稱Tumor endothelial marker 1;CD248)在健康的成體中,只有腎臟及子宮有大量的表現;在腫瘤生長或者發炎反應時,Endosialin也會被大量的表現出來。先前實驗室在單側輸尿管阻塞的慢性腎臟病模型研究中,發現到將Endosialin剔除後,可以有效地降低腎臟的纖維化,而腎臟內的巨噬細胞數量也會減少;但巨噬細胞在急性發炎所扮演的角色跟慢性發炎又不相同,普遍認為巨噬細胞在急性發炎時對於組織的支持、修復是有正面的幫助,因此我們想看看在急性腎損傷的情況下,Endosialin 剔除後會有什麼樣的影響。 本論文是將7週大的公鼠先施予右側腎臟摘除,兩週後再將左側腎臟做缺血再灌流手術,做為本實驗的急性腎損傷模型,藉此來比較Endosialin基因剔除鼠與C57BL/6小鼠是否有差異性。 實驗的結果顯示,老鼠在受到缺血再灌流的損傷之後,不論是在第二天或第十天,其血液尿素氮和肌酸酐的數值,基因剔除鼠都比一般的小鼠低。而在第二天的PAS stain中,組織的損傷程度也有一樣的趨勢。不過在檢測巨噬細胞相關的RNA表現上,卻沒有看到明顯的變化。所以再利用免疫組織化學染色的方式去看巨噬細胞及嗜中性球浸潤之情形,結果可以看到這兩種免疫細胞的浸潤都沒有差異。接著我們想看看在腎臟細胞的凋亡與增生的情況,於是利用TUNEL assay及Ki67進行免疫螢光染色,結果發現將endosialin剔除後,可以減少細胞的凋亡,並增加細胞的增生。 根據實驗的結果可以知道把endosialin剔除後可以減少IRI造成的腎損傷,並且會促進腎臟細胞的增生。但endosialin的剔除並不會影響到免疫細胞的浸潤,且相關的基因表現並無明顯差異。由於過去的研究指出,endosialin會去影響到血管的新生或者是組織的血液灌流量,我們推測或許是這些原因造成上述的結果,而這部分仍需更多實驗來驗證。 過去臨床報告中指出,發生急性腎損傷的病人即使在治療後恢復到了正常,但在日後轉為慢性腎臟病的機會還是比一般正常人來的高,且AKI的嚴重程度與未來轉變成CKD又有高度的相關性;而本實驗中可以發現到基因剔除鼠在於預防急性腎損傷有良好的效果,未來我們可以利用這個老鼠去觀察其轉為慢性腎病變的機率是否也比正常老鼠來的低,以期許未來可以利用Endosialin的抗體做為一個治療的方式。 | zh_TW |
dc.description.abstract | Although medical care advances significantly , the incidence, morbidity and mortality of acute kidney injury (AKI) are still high. But there is no promising drug or therapy for AKI treatment, so it is an unmet medical issue to discover effective therapeutics for AKI.
According to a previous study, endosialin (also known as tumor endothelial marker-1 or CD248) is only highly expressed in kidney and uterus of a healthy adult; in the tumor growth or inflammation, endosialin will be overexpressed. Previous laboratory studies of chronic kidney disease model of unilateral ureteral obstruction found that the endosialin knockout mice could effectively reduce fibrosis and the number of macrophages within the kidney. Because macrophages play different roles in acute and chronic inflammation, we are intrigued by the effect of endosialin knockout on the AKI. To compare the difference between endosialin knockout mice and wild type mice, we performed right nephrectomy to 7-week-old male mice and induced ischemia-reperfusion injury in the left kidney 2 weeks later, as an AKI model. Our data showed that mice subjected to ischemia- reperfusion injury, the plasma levels of blood urea nitrogen and creatinine were lower in knockout mice at either day 2 or 10 after injury. Periodic-acid Schiff stain showed that extent of tissue damage was less severe in knockout mice, too. In the injured kidneys of knockout mice, moreover, cell apoptosis detected by terminal deoxynucleotidyl transferase dUTP nick end labeling was decreased. In contrast, cell proliferation detected by Ki67 staining was increased. However, we did not detect significant difference in the expression of function-related genes in macrophages using quantitative polymerase chain reaction. The numbers of macrophages and neutrophils infiltration in the injured kidneys detected by immunohistochemistry were not different, either. According to the results, endosialin knockout can attenuate renal injury caused by ischemia-reperfuion and enhance kidney cell proliferation. But the infiltration of macrophages and neutrophils as well as the function-realted gene expression of macrophages in injured kidneys are not changed by enosialin knockout. Because endosialin has been shown to affect angiogenesis and blood perfusion in previous studies, we will explore whether endosialin regulates renal blood flow and microvasculature in heathy and injured kidneys in the future. Evidence has shown that AKI patients, even with functional recovery after supportive care, will experience increased risk for progression to chronic kidney disease. Based on our data showing the potential of endosialin disruption in protection of mice from AKI, we will advance our knowledge for the mechaisms responsible for such a renoprotective effect. Furthermore, we will use this mouse to study whether endosialin knockout can block the progression from AKI to chronic kidney disease. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T17:58:59Z (GMT). No. of bitstreams: 1 ntu-105-R02441017-1.pdf: 3968728 bytes, checksum: 0f7a129ce33feee261e5b151d1cf1134 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 口試委員會審定書……………………………………………………………………..i
謝辭…………………………………………………………………………………….ii 摘要……………………………………………………………………………………iii Abstract…………………………………………………………………………………v 目錄…………………………………………………………………………...……...viii 圖目錄…………………………………………………………………………………xi 表目錄………………………………………………………………………………...xii 第一章 緒論…………………………………………………………………………....1 1.1 腎臟與急性腎損傷……………………………………………………...1 1.1.1 腎臟簡介……………………………………………………...1 1.1.2 急性腎損傷(Acute Kidney Injury,AKI)……………………2 1.1.3 急性發炎、修復及再生的機制………………………………3 1.1.4 缺血再灌流損傷(Ischemia-Reperfusion Injury,IRI)……….6 1.2 內皮唾酸蛋白(Endosialin)………………………………………………8 1.2.1 Endosialin的發現與蛋白質結構. ……………………….…..8 1.2.2 Endosialin的表現…………………………………………….9 1.2.3 Endosialin的功能…………………………………………...10 1.3 巨噬細胞……………………………………………………………….11 1.3.1 組織的損傷及修復……………………………………….…11 1.3.2 剔除巨噬細胞之影響…………………………………….…13 1.4 實驗目的…………………………………………………………….…15 第二章 材料與方法…………………………………………………………………..16 2.1 材料………………………………………………………………….…16 2.1.1 實驗動物………………………………………………….…16 2.1.2 藥品與試劑………………………………………….………16 2.1.3 溶液………………………………………………….………20 2.1.4 抗體………………………………………………….………22 2.2 方法……………………………………………………………….……23 2.2.1 小鼠基因型鑑定………………………………………….…23 2.2.1.1 DNA萃取………………………………………………..…23 2.2.1.2 聚合酶連鎖反應(polymerase chain reaction;PCR) ………23 2.2.2 缺血再灌流模式…………………………………………….23 2.2.3 檢體採集……………………………………………………24 2.2.3.1 血漿的採集…………………………………………………24 2.2.3.2 腎臟組織的採集……………………………………………24 2.2.3.3 腎臟巨噬細胞的分離………………………………………25 2.2.4 RNA萃取……………………………………………………25 2.2.5 反轉錄(reverse transcription)及即時聚合酶連鎖反應(real-time polymerase chain reaction;real-time PCR) ……...26 2.2.6 X-gal染色…………………………………………………...26 2.2.7 PAS染色…………………………………………………….27 2.2.8 免疫組織化學染色………………………………………….27 2.2.9 免疫螢光染色……………………………………………….28 2.2.10 TUNEL分析 (Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay;TUNEL assays) ……………………………………………..28 2.2.11 統計分析……………………………………………………29 第三章 實驗結果……………………………………………………………………..30 3.1 腎臟受到IRI後,LacZ於腎間質的表現量增加………………………30 3.2 Endosialin的剔除可降低IRI在第二天的損傷………………………30 3.3 IRI後第二天巨噬細胞相關基因表現之情形…………………………32 3.4 IRI後第二天免疫細胞浸潤之情形……………………………………33 3.5 IRI後第二天腎臟細胞的凋亡與增生之情形…………………………33 第四章 討論…………………………………………………………………………..35 4.1 Endosialin剔除後,於IRI第二、十天腎臟損傷之情形…………….35 4.2 Endosialin剔除後,減少了免疫細胞的浸潤…………………………36 4.3 Endosialin剔除後,減少IRI後腎小管上皮細胞的凋亡並增加細胞的增生…………………………………………………………………….37 4.4 未來可進行的相關實驗……………………………………………….37 第五章 結論與未來展望……………………………………………………………..39 圖表………………………………………………………...........................40 附錄……………………………………………………………………………………56 第六章 參考文獻……………………………………………………………………..66 | |
dc.language.iso | zh-TW | |
dc.title | 內皮唾酸蛋白基因剃除後對缺血再灌流的
內皮唾酸蛋白基因剃除後對缺血再灌流的急性腎損傷之影響 | zh_TW |
dc.title | The effect of endosialin knockout on the ischemia-reperfusion acute kidney injury | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳明修,姜文智 | |
dc.subject.keyword | 急性腎損傷,缺血再灌流,內皮唾酸蛋白,巨噬細胞,嗜中性球, | zh_TW |
dc.subject.keyword | Acute kidney injury (AKI),ischemia-reperfusion injury (IRI),Endosialin (TEM-1 CD248),macrophage,neutrophil, | en |
dc.relation.page | 74 | |
dc.identifier.doi | 10.6342/NTU201601581 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2016-07-28 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 生理學研究所 | zh_TW |
顯示於系所單位: | 生理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf | 3.88 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。