Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 分子暨比較病理生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79271
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張惠雯(Hui-Wen Chang)
dc.contributor.authorJou-Fei Wuen
dc.contributor.author吳柔霏zh_TW
dc.date.accessioned2022-11-23T08:57:06Z-
dc.date.available2022-02-21
dc.date.available2022-11-23T08:57:06Z-
dc.date.copyright2022-02-21
dc.date.issued2021
dc.date.submitted2021-12-30
dc.identifier.citation1. Millet, J.K.; Whittaker, G.R. Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus research 2015, 202, 120-134, doi:10.1016/j.virusres.2014.11.021. 2. Woo, P.C.; Lau, S.K.; Huang, Y.; Yuen, K.Y. Coronavirus diversity, phylogeny and interspecies jumping. Experimental biology and medicine (Maywood, N.J.) 2009, 234, 1117-1127, doi:10.3181/0903-mr-94. 3. Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet (London, England) 2020, 395, 470-473, doi:10.1016/s0140-6736(20)30185-9. 4. Wang, Q.; Vlasova, A.N.; Kenney, S.P.; Saif, L.J. Emerging and re-emerging coronaviruses in pigs. Current opinion in virology 2019, 34, 39-49, doi:10.1016/j.coviro.2018.12.001. 5. Rohaim, M.A.; El Naggar, R.F.; Clayton, E.; Munir, M. Structural and functional insights into non-structural proteins of coronaviruses. Microbial pathogenesis 2021, 150, 104641, doi:10.1016/j.micpath.2020.104641. 6. von Brunn, A.; Teepe, C.; Simpson, J.C.; Pepperkok, R.; Friedel, C.C.; Zimmer, R.; Roberts, R.; Baric, R.; Haas, J. Analysis of intraviral protein-protein interactions of the SARS coronavirus ORFeome. PloS one 2007, 2, e459, doi:10.1371/journal.pone.0000459. 7. Imbert, I.; Snijder, E.J.; Dimitrova, M.; Guillemot, J.C.; Lécine, P.; Canard, B. The SARS-Coronavirus PLnc domain of nsp3 as a replication/transcription scaffolding protein. Virus research 2008, 133, 136-148, doi:10.1016/j.virusres.2007.11.017. 8. Lei, J.; Kusov, Y.; Hilgenfeld, R. Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein. Antiviral research 2018, 149, 58-74, doi:10.1016/j.antiviral.2017.11.001. 9. Thiel, V.; Ivanov, K.A.; Putics, Á.; Hertzig, T.; Schelle, B.; Bayer, S.; Weißbrich, B.; Snijder, E.J.; Rabenau, H.; Doerr, H.W.; et al. Mechanisms and enzymes involved in SARS coronavirus genome expression. The Journal of general virology 2003, 84, 2305-2315, doi:10.1099/vir.0.19424-0. 10. Sola, I.; Almazán, F.; Zúñiga, S.; Enjuanes, L. Continuous and Discontinuous RNA Synthesis in Coronaviruses. Annu Rev Virol 2015, 2, 265-288, doi:10.1146/annurev-virology-100114-055218. 11. de Haan, C.A.; Masters, P.S.; Shen, X.; Weiss, S.; Rottier, P.J. The group-specific murine coronavirus genes are not essential, but their deletion, by reverse genetics, is attenuating in the natural host. Virology 2002, 296, 177-189, doi:10.1006/viro.2002.1412. 12. Liu, D.X.; Fung, T.S.; Chong, K.K.; Shukla, A.; Hilgenfeld, R. Accessory proteins of SARS-CoV and other coronaviruses. Antiviral research 2014, 109, 97-109, doi:10.1016/j.antiviral.2014.06.013. 13. Nakagawa, K.; Makino, S. Mechanisms of Coronavirus Nsp1-Mediated Control of Host and Viral Gene Expression. Cells 2021, 10, doi:10.3390/cells10020300. 14. Menachery, V.D.; Mitchell, H.D.; Cockrell, A.S.; Gralinski, L.E.; Yount, B.L., Jr.; Graham, R.L.; McAnarney, E.T.; Douglas, M.G.; Scobey, T.; Beall, A.; et al. MERS-CoV Accessory ORFs Play Key Role for Infection and Pathogenesis. mBio 2017, 8, doi:10.1128/mBio.00665-17. 15. Tortorici, M.A.; Veesler, D. Structural insights into coronavirus entry. Advances in virus research 2019, 105, 93-116, doi:10.1016/bs.aivir.2019.08.002. 16. Nieto-Torres, J.L.; Dediego, M.L.; Alvarez, E.; Jiménez-Guardeño, J.M.; Regla-Nava, J.A.; Llorente, M.; Kremer, L.; Shuo, S.; Enjuanes, L. Subcellular location and topology of severe acute respiratory syndrome coronavirus envelope protein. Virology 2011, 415, 69-82, doi:10.1016/j.virol.2011.03.029. 17. Schoeman, D.; Fielding, B.C. Coronavirus envelope protein: current knowledge. Virology journal 2019, 16, 69, doi:10.1186/s12985-019-1182-0. 18. de Haan, C.A.; Vennema, H.; Rottier, P.J. Assembly of the coronavirus envelope: homotypic interactions between the M proteins. Journal of virology 2000, 74, 4967-4978, doi:10.1128/jvi.74.11.4967-4978.2000. 19. Zhang, Q.; Shi, K.; Yoo, D. Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1. Virology 2016, 489, 252-268, doi:10.1016/j.virol.2015.12.010. 20. Wang, R.; Yu, R.; Chen, B.; Si, F.; Wang, J.; Xie, C.; Men, C.; Dong, S.; Li, Z. Identification of host cell proteins that interact with the M protein of porcine epidemic diarrhea virus. Vet Microbiol 2020, 246, 108729-108729, doi:10.1016/j.vetmic.2020.108729. 21. Cong, Y.; Kriegenburg, F.; de Haan, C.A.M.; Reggiori, F. Coronavirus nucleocapsid proteins assemble constitutively in high molecular oligomers. Scientific Reports 2017, 7, 5740, doi:10.1038/s41598-017-06062-w. 22. Sungsuwan, S.; Jongkaewwattana, A.; Jaru-Ampornpan, P. Nucleocapsid proteins from other swine enteric coronaviruses differentially modulate PEDV replication. Virology 2020, 540, 45-56, doi:10.1016/j.virol.2019.11.007. 23. Heald-Sargent, T.; Gallagher, T. Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence. Viruses 2012, 4, 557-580, doi:10.3390/v4040557. 24. Belouzard, S.; Millet, J.K.; Licitra, B.N.; Whittaker, G.R. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 2012, 4, 1011-1033, doi:10.3390/v4061011. 25. Wang, L.; Xiang, Y. Spike Glycoprotein-Mediated Entry of SARS Coronaviruses. Viruses 2020, 12, doi:10.3390/v12111289. 26. Li, F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu Rev Virol 2016, 3, 237-261, doi:10.1146/annurev-virology-110615-042301. 27. Wicht, O.; Li, W.; Willems, L.; Meuleman, T.J.; Wubbolts, R.W.; van Kuppeveld, F.J.M.; Rottier, P.J.M.; Bosch, B.J. Proteolytic activation of the porcine epidemic diarrhea coronavirus spike fusion protein by trypsin in cell culture. Journal of virology 2014, 88, 7952-7961, doi:10.1128/JVI.00297-14. 28. Glowacka, I.; Bertram, S.; Müller, M.A.; Allen, P.; Soilleux, E.; Pfefferle, S.; Steffen, I.; Tsegaye, T.S.; He, Y.; Gnirss, K.; et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. Journal of virology 2011, 85, 4122-4134, doi:10.1128/jvi.02232-10. 29. Hulswit, R.J.; de Haan, C.A.; Bosch, B.J. Coronavirus Spike Protein and Tropism Changes. Advances in virus research 2016, 96, 29-57, doi:10.1016/bs.aivir.2016.08.004. 30. Verma, J.; Subbarao, N. A comparative study of human betacoronavirus spike proteins: structure, function and therapeutics. Archives of virology 2021, 166, 697-714, doi:10.1007/s00705-021-04961-y. 31. Dveksler, G.S.; Pensiero, M.N.; Cardellichio, C.B.; Williams, R.K.; Jiang, G.S.; Holmes, K.V.; Dieffenbach, C.W. Cloning of the mouse hepatitis virus (MHV) receptor: expression in human and hamster cell lines confers susceptibility to MHV. Journal of virology 1991, 65, 6881-6891, doi:10.1128/jvi.65.12.6881-6891.1991. 32. Williams, R.K.; Jiang, G.S.; Holmes, K.V. Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proc Natl Acad Sci U S A 1991, 88, 5533-5536, doi:10.1073/pnas.88.13.5533. 33. Delmas, B.; Gelfi, J.; L'Haridon, R.; Vogel, L.K.; Sjöström, H.; Norén, O.; Laude, H. Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature 1992, 357, 417-420, doi:10.1038/357417a0. 34. Yeager, C.L.; Ashmun, R.A.; Williams, R.K.; Cardellichio, C.B.; Shapiro, L.H.; Look, A.T.; Holmes, K.V. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 1992, 357, 420-422, doi:10.1038/357420a0. 35. Hohdatsu, T.; Izumiya, Y.; Yokoyama, Y.; Kida, K.; Koyama, H. Differences in virus receptor for type I and type II feline infectious peritonitis virus. Archives of virology 1998, 143, 839-850, doi:10.1007/s007050050336. 36. Hofmann, H.; Pyrc, K.; van der Hoek, L.; Geier, M.; Berkhout, B.; Pöhlmann, S. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci U S A 2005, 102, 7988-7993, doi:10.1073/pnas.0409465102. 37. Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, T.C.; et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003, 426, 450-454, doi:10.1038/nature02145. 38. Vlasak, R.; Luytjes, W.; Spaan, W.; Palese, P. Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses. Proc Natl Acad Sci U S A 1988, 85, 4526-4529, doi:10.1073/pnas.85.12.4526. 39. Huang, X.; Dong, W.; Milewska, A.; Golda, A.; Qi, Y.; Zhu, Q.K.; Marasco, W.A.; Baric, R.S.; Sims, A.C.; Pyrc, K.; et al. Human Coronavirus HKU1 Spike Protein Uses O-Acetylated Sialic Acid as an Attachment Receptor Determinant and Employs Hemagglutinin-Esterase Protein as a Receptor-Destroying Enzyme. Journal of virology 2015, 89, 7202-7213, doi:10.1128/jvi.00854-15. 40. Bosch, B.J.; Raj, V.S.; Haagmans, B.L. Spiking the MERS-coronavirus receptor. Cell research 2013, 23, 1069-1070, doi:10.1038/cr.2013.108. 41. Liu, C.; Tang, J.; Ma, Y.; Liang, X.; Yang, Y.; Peng, G.; Qi, Q.; Jiang, S.; Li, J.; Du, L.; et al. Receptor usage and cell entry of porcine epidemic diarrhea coronavirus. Journal of virology 2015, 89, 6121-6125, doi:10.1128/jvi.00430-15. 42. Krempl, C.; Schultze, B.; Laude, H.; Herrler, G. Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus. Journal of virology 1997, 71, 3285-3287, doi:10.1128/jvi.71.4.3285-3287.1997. 43. Cavanagh, D.; Davis, P.J. Coronavirus IBV: removal of spike glycopolypeptide S1 by urea abolishes infectivity and haemagglutination but not attachment to cells. The Journal of general virology 1986, 67 ( Pt 7), 1443-1448, doi:10.1099/0022-1317-67-7-1443. 44. Schwegmann-Wessels, C.; Herrler, G. Sialic acids as receptor determinants for coronaviruses. Glycoconjugate journal 2006, 23, 51-58, doi:10.1007/s10719-006-5437-9. 45. Szczepanski, A.; Owczarek, K.; Bzowska, M.; Gula, K.; Drebot, I.; Ochman, M.; Maksym, B.; Rajfur, Z.; Mitchell, J.A.; Pyrc, K. Canine Respiratory Coronavirus, Bovine Coronavirus, and Human Coronavirus OC43: Receptors and Attachment Factors. Viruses 2019, 11, doi:10.3390/v11040328. 46. Milewska, A.; Zarebski, M.; Nowak, P.; Stozek, K.; Potempa, J.; Pyrc, K. Human coronavirus NL63 utilizes heparan sulfate proteoglycans for attachment to target cells. Journal of virology 2014, 88, 13221-13230, doi:10.1128/jvi.02078-14. 47. Watanabe, R.; Sawicki, S.G.; Taguchi, F. Heparan sulfate is a binding molecule but not a receptor for CEACAM1-independent infection of murine coronavirus. Virology 2007, 366, 16-22, doi:10.1016/j.virol.2007.06.034. 48. Lang, J.; Yang, N.; Deng, J.; Liu, K.; Yang, P.; Zhang, G.; Jiang, C. Inhibition of SARS pseudovirus cell entry by lactoferrin binding to heparan sulfate proteoglycans. PloS one 2011, 6, e23710, doi:10.1371/journal.pone.0023710. 49. Huan, C.C.; Wang, Y.; Ni, B.; Wang, R.; Huang, L.; Ren, X.F.; Tong, G.Z.; Ding, C.; Fan, H.J.; Mao, X. Porcine epidemic diarrhea virus uses cell-surface heparan sulfate as an attachment factor. Archives of virology 2015, 160, 1621-1628, doi:10.1007/s00705-015-2408-0. 50. Jung, K.; Saif, L.J. Porcine epidemic diarrhea virus infection: Etiology, epidemiology, pathogenesis and immunoprophylaxis. Veterinary journal (London, England : 1997) 2015, 204, 134-143, doi:10.1016/j.tvjl.2015.02.017. 51. Wood, E.N. An apparently new syndrome of porcine epidemic diarrhoea. The Veterinary record 1977, 100, 243-244, doi:10.1136/vr.100.12.243. 52. Lee, C. Porcine epidemic diarrhea virus: An emerging and re-emerging epizootic swine virus. Virology journal 2015, 12, 193, doi:10.1186/s12985-015-0421-2. 53. Pensaert, M.B.; de Bouck, P. A new coronavirus-like particle associated with diarrhea in swine. Archives of virology 1978, 58, 243-247, doi:10.1007/bf01317606. 54. Martelli, P.; Lavazza, A.; Nigrelli, A.D.; Merialdi, G.; Alborali, L.G.; Pensaert, M.B. Epidemic of diarrhoea caused by porcine epidemic diarrhoea virus in Italy. The Veterinary record 2008, 162, 307-310, doi:10.1136/vr.162.10.307. 55. Pijpers, A.; van Nieuwstadt, A.P.; Terpstra, C.; Verheijden, J.H. Porcine epidemic diarrhoea virus as a cause of persistent diarrhoea in a herd of breeding and finishing pigs. The Veterinary record 1993, 132, 129-131, doi:10.1136/vr.132.6.129. 56. Nagy, B.; Nagy, G.; Meder, M.; Mocsári, E. Enterotoxigenic Escherichia coli, rotavirus, porcine epidemic diarrhoea virus, adenovirus and calici-like virus in porcine postweaning diarrhoea in Hungary. Acta veterinaria Hungarica 1996, 44, 9-19. 57. Song, D.; Moon, H.; Kang, B. Porcine epidemic diarrhea: a review of current epidemiology and available vaccines. Clinical and experimental vaccine research 2015, 4, 166-176, doi:10.7774/cevr.2015.4.2.166. 58. Horie, M.; Kabemura, M.; Masatani, T.; Matsuu, A.; Ozawa, M. Isolation and molecular characterization of porcine epidemic diarrhea viruses collected in Japan in 2014. Archives of virology 2016, 161, 2189-2195, doi:10.1007/s00705-016-2900-1. 59. Chiou, H.Y.; Huang, Y.L.; Deng, M.C.; Chang, C.Y.; Jeng, C.R.; Tsai, P.S.; Yang, C.; Pang, V.F.; Chang, H.W. Phylogenetic Analysis of the Spike (S) Gene of the New Variants of Porcine Epidemic Diarrhoea Virus in Taiwan. Transboundary and emerging diseases 2017, 64, 157-166, doi:10.1111/tbed.12357. 60. Huang, Y.W.; Dickerman, A.W.; Piñeyro, P.; Li, L.; Fang, L.; Kiehne, R.; Opriessnig, T.; Meng, X.J. Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States. mBio 2013, 4, e00737-00713, doi:10.1128/mBio.00737-13. 61. Kim, Y.K.; Lim, S.I.; Lim, J.A.; Cho, I.S.; Park, E.H.; Le, V.P.; Hien, N.B.; Thach, P.N.; Quynh do, H.; Vui, T.Q.; et al. A novel strain of porcine epidemic diarrhea virus in Vietnamese pigs. Archives of virology 2015, 160, 1573-1577, doi:10.1007/s00705-015-2411-5. 62. Lee, S.; Lee, C. Outbreak-related porcine epidemic diarrhea virus strains similar to US strains, South Korea, 2013. Emerg Infect Dis 2014, 20, 1223-1226, doi:10.3201/eid2007.140294. 63. Shibata, I.; Tsuda, T.; Mori, M.; Ono, M.; Sueyoshi, M.; Uruno, K. Isolation of porcine epidemic diarrhea virus in porcine cell cultures and experimental infection of pigs of different ages. Vet Microbiol 2000, 72, 173-182, doi:10.1016/s0378-1135(99)00199-6. 64. Li, W.; Li, H.; Liu, Y.; Pan, Y.; Deng, F.; Song, Y.; Tang, X.; He, Q. New variants of porcine epidemic diarrhea virus, China, 2011. Emerg Infect Dis 2012, 18, 1350-1353, doi:10.3201/eid1808.120002. 65. Hao, J.; Xue, C.; He, L.; Wang, Y.; Cao, Y. Bioinformatics insight into the spike glycoprotein gene of field porcine epidemic diarrhea strains during 2011-2013 in Guangdong, China. Virus genes 2014, 49, 58-67, doi:10.1007/s11262-014-1055-y. 66. Vlasova, A.N.; Marthaler, D.; Wang, Q.; Culhane, M.R.; Rossow, K.D.; Rovira, A.; Collins, J.; Saif, L.J. Distinct characteristics and complex evolution of PEDV strains, North America, May 2013-February 2014. Emerg Infect Dis 2014, 20, 1620-1628, doi:10.3201/eid2010.140491. 67. Sun, D.; Feng, L.; Shi, H.; Chen, J.; Cui, X.; Chen, H.; Liu, S.; Tong, Y.; Wang, Y.; Tong, G. Identification of two novel B cell epitopes on porcine epidemic diarrhea virus spike protein. Vet Microbiol 2008, 131, 73-81, doi:10.1016/j.vetmic.2008.02.022. 68. Alonso, C.; Goede, D.P.; Morrison, R.B.; Davies, P.R.; Rovira, A.; Marthaler, D.G.; Torremorell, M. Evidence of infectivity of airborne porcine epidemic diarrhea virus and detection of airborne viral RNA at long distances from infected herds. Veterinary research 2014, 45, 73, doi:10.1186/s13567-014-0073-z. 69. Jung, K.; Wang, Q.; Scheuer, K.A.; Lu, Z.; Zhang, Y.; Saif, L.J. Pathology of US porcine epidemic diarrhea virus strain PC21A in gnotobiotic pigs. Emerg Infect Dis 2014, 20, 662-665, doi:10.3201/eid2004.131685. 70. Moon, H.W.; Norman, J.O.; Lambert, G. Age dependent resistance to transmissible gastroenteritis of swine (TGE). I. Clinical signs and some mucosal dimensions in small intestine. Canadian journal of comparative medicine : Revue canadienne de medecine comparee 1973, 37, 157-166. 71. Kim, Y.; Yang, M.; Goyal, S.M.; Cheeran, M.C.J.; Torremorell, M. Evaluation of biosecurity measures to prevent indirect transmission of porcine epidemic diarrhea virus. BMC Veterinary Research 2017, 13, 89, doi:10.1186/s12917-017-1017-4. 72. Jung, K.; Saif, L.J.; Wang, Q. Porcine epidemic diarrhea virus (PEDV): An update on etiology, transmission, pathogenesis, and prevention and control. Virus research 2020, 286, 198045, doi:10.1016/j.virusres.2020.198045. 73. Langel, S.N.; Paim, F.C.; Lager, K.M.; Vlasova, A.N.; Saif, L.J. Lactogenic immunity and vaccines for porcine epidemic diarrhea virus (PEDV): Historical and current concepts. Virus research 2016, 226, 93-107, doi:10.1016/j.virusres.2016.05.016. 74. Langel, S.N.; Wang, Q.; Vlasova, A.N.; Saif, L.J. Host Factors Affecting Generation of Immunity Against Porcine Epidemic Diarrhea Virus in Pregnant and Lactating Swine and Passive Protection of Neonates. Pathogens (Basel, Switzerland) 2020, 9, doi:10.3390/pathogens9020130. 75. Chang, Y.C.; Chang, C.Y.; Tsai, P.S.; Chiou, H.Y.; Jeng, C.R.; Pang, V.F.; Chang, H.W. Efficacy of heat-labile enterotoxin B subunit-adjuvanted parenteral porcine epidemic diarrhea virus trimeric spike subunit vaccine in piglets. Applied microbiology and biotechnology 2018, 102, 7499-7507, doi:10.1007/s00253-018-9110-6. 76. Niederwerder, M.C.; Hesse, R.A. Swine enteric coronavirus disease: A review of 4 years with porcine epidemic diarrhoea virus and porcine deltacoronavirus in the United States and Canada. Transboundary and emerging diseases 2018, 65, 660-675, doi:10.1111/tbed.12823. 77. Kocherhans, R.; Bridgen, A.; Ackermann, M.; Tobler, K. Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence. Virus genes 2001, 23, 137-144, doi:10.1023/a:1011831902219. 78. Li, W.; van Kuppeveld, F.J.M.; He, Q.; Rottier, P.J.M.; Bosch, B.J. Cellular entry of the porcine epidemic diarrhea virus. Virus research 2016, 226, 117-127, doi:10.1016/j.virusres.2016.05.031. 79. Kirchdoerfer, R.N.; Bhandari, M.; Martini, O.; Sewall, L.M.; Bangaru, S.; Yoon, K.J.; Ward, A.B. Structure and immune recognition of the porcine epidemic diarrhea virus spike protein. Structure (London, England : 1993) 2021, 29, 385-392.e385, doi:10.1016/j.str.2020.12.003. 80. Walls, A.C.; Tortorici, M.A.; Bosch, B.-J.; Frenz, B.; Rottier, P.J.M.; DiMaio, F.; Rey, F.A.; Veesler, D. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature 2016, 531, 114-117, doi:10.1038/nature16988. 81. Wrapp, D.; McLellan, J.S. The 3.1-Angstrom Cryo-electron Microscopy Structure of the Porcine Epidemic Diarrhea Virus Spike Protein in the Prefusion Conformation. Journal of virology 2019, 93, doi:10.1128/jvi.00923-19. 82. Kirchdoerfer, R.N.; Wang, N.; Pallesen, J.; Wrapp, D.; Turner, H.L.; Cottrell, C.A.; Corbett, K.S.; Graham, B.S.; McLellan, J.S.; Ward, A.B. Publisher Correction: Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis. Sci Rep 2018, 8, 17823, doi:10.1038/s41598-018-36918-8. 83. Song, W.; Gui, M.; Wang, X.; Xiang, Y. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS pathogens 2018, 14, e1007236, doi:10.1371/journal.ppat.1007236. 84. Buchholz, U.J.; Bukreyev, A.; Yang, L.; Lamirande, E.W.; Murphy, B.R.; Subbarao, K.; Collins, P.L. Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. Proc Natl Acad Sci U S A 2004, 101, 9804-9809, doi:10.1073/pnas.0403492101. 85. Chang, S.H.; Bae, J.L.; Kang, T.J.; Kim, J.; Chung, G.H.; Lim, C.W.; Laude, H.; Yang, M.S.; Jang, Y.S. Identification of the epitope region capable of inducing neutralizing antibodies against the porcine epidemic diarrhea virus. Molecules and cells 2002, 14, 295-299. 86. Lee, D.K.; Park, C.K.; Kim, S.H.; Lee, C. Heterogeneity in spike protein genes of porcine epidemic diarrhea viruses isolated in Korea. Virus research 2010, 149, 175-182, doi:10.1016/j.virusres.2010.01.015. 87. Chen, Q.; Li, G.; Stasko, J.; Thomas, J.T.; Stensland, W.R.; Pillatzki, A.E.; Gauger, P.C.; Schwartz, K.J.; Madson, D.; Yoon, K.J.; et al. Isolation and characterization of porcine epidemic diarrhea viruses associated with the 2013 disease outbreak among swine in the United States. Journal of clinical microbiology 2014, 52, 234-243, doi:10.1128/jcm.02820-13. 88. Gerber, P.F.; Gong, Q.; Huang, Y.W.; Wang, C.; Holtkamp, D.; Opriessnig, T. Detection of antibodies against porcine epidemic diarrhea virus in serum and colostrum by indirect ELISA. Veterinary journal (London, England : 1997) 2014, 202, 33-36, doi:10.1016/j.tvjl.2014.07.018. 89. Oh, J.; Lee, K.W.; Choi, H.W.; Lee, C. Immunogenicity and protective efficacy of recombinant S1 domain of the porcine epidemic diarrhea virus spike protein. Archives of virology 2014, 159, 2977-2987, doi:10.1007/s00705-014-2163-7. 90. Hsu, W.T.; Chang, C.Y.; Tsai, C.H.; Wei, S.C.; Lo, H.R.; Lamis, R.J.S.; Chang, H.W.; Chao, Y.C. PEDV Infection Generates Conformation-Specific Antibodies That Can Be Effectively Detected by a Cell-Based ELISA. Viruses 2021, 13, doi:10.3390/v13020303. 91. Sun, J.; Li, Q.; Shao, C.; Ma, Y.; He, H.; Jiang, S.; Zhou, Y.; Wu, Y.; Ba, S.; Shi, L.; et al. Isolation and characterization of Chinese porcine epidemic diarrhea virus with novel mutations and deletions in the S gene. Vet Microbiol 2018, 221, 81-89, doi:10.1016/j.vetmic.2018.05.021. 92. Ji, Z.; Shi, D.; Shi, H.; Wang, X.; Chen, J.; Liu, J.; Ye, D.; Jing, Z.; Liu, Q.; Fan, Q.; et al. A porcine epidemic diarrhea virus strain with distinct characteristics of four amino acid insertion in the COE region of spike protein. Vet Microbiol 2021, 253, 108955, doi:10.1016/j.vetmic.2020.108955. 93. Park, S.; Kim, S.; Song, D.; Park, B. Novel porcine epidemic diarrhea virus variant with large genomic deletion, South Korea. Emerg Infect Dis 2014, 20, 2089-2092, doi:10.3201/eid2012.131642. 94. Song, D.; Park, B. Porcine epidemic diarrhoea virus: a comprehensive review of molecular epidemiology, diagnosis, and vaccines. Virus genes 2012, 44, 167-175, doi:10.1007/s11262-012-0713-1. 95. EA, J.A.; Jones, I.M. Membrane binding proteins of coronaviruses. Future virology 2019, 14, 275-286, doi:10.2217/fvl-2018-0144. 96. Arndt, A.L.; Larson, B.J.; Hogue, B.G. A conserved domain in the coronavirus membrane protein tail is important for virus assembly. Journal of virology 2010, 84, 11418-11428, doi:10.1128/JVI.01131-10. 97. Fan, J.H.; Zuo, Y.Z.; Shen, X.Q.; Gu, W.Y.; Di, J.M. Development of an enzyme-linked immunosorbent assay for the monitoring and surveillance of antibodies to porcine epidemic diarrhea virus based on a recombinant membrane protein. Journal of virological methods 2015, 225, 90-94, doi:10.1016/j.jviromet.2015.07.021. 98. Kim, O.; Chae, C. In situ hybridization for the detection and localization of porcine epidemic diarrhea virus in the intestinal tissues from naturally infected piglets. Veterinary pathology 2000, 37, 62-67, doi:10.1354/vp.37-1-62. 99. Liu, J.; Sun, Y.; Qi, J.; Chu, F.; Wu, H.; Gao, F.; Li, T.; Yan, J.; Gao, G.F. The membrane protein of severe acute respiratory syndrome coronavirus acts as a dominant immunogen revealed by a clustering region of novel functionally and structurally defined cytotoxic T-lymphocyte epitopes. The Journal of infectious diseases 2010, 202, 1171-1180, doi:10.1086/656315. 100. Xu, X.G.; Zhang, H.L.; Zhang, Q.; Dong, J.; Huang, Y.; Tong, D.W. Porcine epidemic diarrhea virus M protein blocks cell cycle progression at S-phase and its subcellular localization in the porcine intestinal epithelial cells. Acta virologica 2015, 59, 265-275, doi:10.4149/av_2015_03_265. 101. Raamsman, M.J.; Locker, J.K.; de Hooge, A.; de Vries, A.A.; Griffiths, G.; Vennema, H.; Rottier, P.J. Characterization of the coronavirus mouse hepatitis virus strain A59 small membrane protein E. Journal of virology 2000, 74, 2333-2342, doi:10.1128/jvi.74.5.2333-2342.2000. 102. DeDiego, M.L.; Alvarez, E.; Almazán, F.; Rejas, M.T.; Lamirande, E.; Roberts, A.; Shieh, W.J.; Zaki, S.R.; Subbarao, K.; Enjuanes, L. A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. Journal of virology 2007, 81, 1701-1713, doi:10.1128/jvi.01467-06. 103. Pervushin, K.; Tan, E.; Parthasarathy, K.; Lin, X.; Jiang, F.L.; Yu, D.; Vararattanavech, A.; Soong, T.W.; Liu, D.X.; Torres, J. Structure and inhibition of the SARS coronavirus envelope protein ion channel. PLoS pathogens 2009, 5, e1000511, doi:10.1371/journal.ppat.1000511. 104. Kuo, L.; Hurst, K.R.; Masters, P.S. Exceptional flexibility in the sequence requirements for coronavirus small envelope protein function. Journal of virology 2007, 81, 2249-2262, doi:10.1128/jvi.01577-06. 105. Mortola, E.; Roy, P. Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS letters 2004, 576, 174-178, doi:10.1016/j.febslet.2004.09.009. 106. Corse, E.; Machamer, C.E. Infectious bronchitis virus E protein is targeted to the Golgi complex and directs release of virus-like particles. Journal of virology 2000, 74, 4319-4326, doi:10.1128/jvi.74.9.4319-4326.2000. 107. Xu, X.; Zhang, H.; Zhang, Q.; Dong, J.; Liang, Y.; Huang, Y.; Liu, H.J.; Tong, D. Porcine epidemic diarrhea virus E protein causes endoplasmic reticulum stress and up-regulates interleukin-8 expression. Virology journal 2013, 10, 26, doi:10.1186/1743-422x-10-26. 108. Ortego, J.; Ceriani, J.E.; Patiño, C.; Plana, J.; Enjuanes, L. Absence of E protein arrests transmissible gastroenteritis coronavirus maturation in the secretory pathway. Virology 2007, 368, 296-308, doi:10.1016/j.virol.2007.05.032. 109. Zheng, L.; Wang, X.; Guo, D.; Cao, J.; Cheng, L.; Li, X.; Zou, D.; Zhang, Y.; Xu, J.; Wu, X.; et al. Porcine epidemic diarrhea virus E protein suppresses RIG-I signaling-mediated interferon-β production. Vet Microbiol 2021, 254, 108994, doi:10.1016/j.vetmic.2021.108994. 110. McBride, R.; van Zyl, M.; Fielding, B.C. The coronavirus nucleocapsid is a multifunctional protein. Viruses 2014, 6, 2991-3018, doi:10.3390/v6082991. 111. de Haan, C.A.; Rottier, P.J. Molecular interactions in the assembly of coronaviruses. Advances in virus research 2005, 64, 165-230, doi:10.1016/s0065-3527(05)64006-7. 112. Huang, Q.; Yu, L.; Petros, A.M.; Gunasekera, A.; Liu, Z.; Xu, N.; Hajduk, P.; Mack, J.; Fesik, S.W.; Olejniczak, E.T. Structure of the N-terminal RNA-binding domain of the SARS CoV nucleocapsid protein. Biochemistry 2004, 43, 6059-6063, doi:10.1021/bi036155b. 113. Yu, I.M.; Oldham, M.L.; Zhang, J.; Chen, J. Crystal structure of the severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein dimerization domain reveals evolutionary linkage between corona- and arteriviridae. The Journal of biological chemistry 2006, 281, 17134-17139, doi:10.1074/jbc.M602107200. 114. Chang, C.K.; Hsu, Y.L.; Chang, Y.H.; Chao, F.A.; Wu, M.C.; Huang, Y.S.; Hu, C.K.; Huang, T.H. Multiple nucleic acid binding sites and intrinsic disorder of severe acute respiratory syndrome coronavirus nucleocapsid protein: implications for ribonucleocapsid protein packaging. Journal of virology 2009, 83, 2255-2264, doi:10.1128/jvi.02001-08. 115. Li, Z.; Chen, F.; Yuan, Y.; Zeng, X.; Wei, Z.; Zhu, L.; Sun, B.; Xie, Q.; Cao, Y.; Xue, C.; et al. Sequence and phylogenetic analysis of nucleocapsid genes of porcine epidemic diarrhea virus (PEDV) strains in China. Archives of virology 2013, 158, 1267-1273, doi:10.1007/s00705-012-1592-4. 116. Ding, Z.; Fang, L.; Jing, H.; Zeng, S.; Wang, D.; Liu, L.; Zhang, H.; Luo, R.; Chen, H.; Xiao, S. Porcine epidemic diarrhea virus nucleocapsid protein antagonizes beta interferon production by sequestering the interaction between IRF3 and TBK1. Journal of virology 2014, 88, 8936-8945, doi:10.1128/jvi.00700-14. 117. Shi, D.; Shi, H.; Sun, D.; Chen, J.; Zhang, X.; Wang, X.; Zhang, J.; Ji, Z.; Liu, J.; Cao, L.; et al. Nucleocapsid Interacts with NPM1 and Protects it from Proteolytic Cleavage, Enhancing Cell Survival, and is Involved in PEDV Growth. Scientific Reports 2017, 7, 39700, doi:10.1038/srep39700. 118. Zhang, Q.; Ma, J.; Yoo, D. Inhibition of NF-κB activity by the porcine epidemic diarrhea virus nonstructural protein 1 for innate immune evasion. Virology 2017, 510, 111-126, doi:10.1016/j.virol.2017.07.009. 119. Xing, Y.; Chen, J.; Tu, J.; Zhang, B.; Chen, X.; Shi, H.; Baker, S.C.; Feng, L.; Chen, Z. The papain-like protease of porcine epidemic diarrhea virus negatively regulates type I interferon pathway by acting as a viral deubiquitinase. The Journal of general virology 2013, 94, 1554-1567, doi:10.1099/vir.0.051169-0. 120. Wang, D.; Fang, L.; Shi, Y.; Zhang, H.; Gao, L.; Peng, G.; Chen, H.; Li, K.; Xiao, S. Porcine Epidemic Diarrhea Virus 3C-Like Protease Regulates Its Interferon Antagonism by Cleaving NEMO. Journal of virology 2016, 90, 2090-2101, doi:10.1128/jvi.02514-15. 121. Li, Z.; Ma, Z.; Li, Y.; Gao, S.; Xiao, S. Porcine epidemic diarrhea virus: Molecular mechanisms of attenuation and vaccines. Microbial pathogenesis 2020, 149, 104553, doi:10.1016/j.micpath.2020.104553. 122. Yu, L.; Dong, J.; Wang, Y.; Zhang, P.; Liu, Y.; Zhang, L.; Liang, P.; Wang, L.; Song, C. Porcine epidemic diarrhea virus nsp4 induces pro-inflammatory cytokine and chemokine expression inhibiting viral replication in vitro. Archives of virology 2019, 164, 1147-1157, doi:10.1007/s00705-019-04176-2. 123. Wang, K.; Lu, W.; Chen, J.; Xie, S.; Shi, H.; Hsu, H.; Yu, W.; Xu, K.; Bian, C.; Fischer, W.B.; et al. PEDV ORF3 encodes an ion channel protein and regulates virus production. FEBS letters 2012, 586, 384-391, doi:10.1016/j.febslet.2012.01.005. 124. Beall, A.; Yount, B.; Lin, C.-M.; Hou, Y.; Wang, Q.; Saif, L.; Baric, R.; Lipkin, W.I. Characterization of a Pathogenic Full-Length cDNA Clone and Transmission Model for Porcine Epidemic Diarrhea Virus Strain PC22A. mBio 7, e01451-01415, doi:10.1128/mBio.01451-15. 125. Lee, S.; Son, K.Y.; Noh, Y.H.; Lee, S.C.; Choi, H.W.; Yoon, I.J.; Lee, C. Genetic characteristics, pathogenicity, and immunogenicity associated with cell adaptation of a virulent genotype 2b porcine epidemic diarrhea virus. Vet Microbiol 2017, 207, 248-258, doi:10.1016/j.vetmic.2017.06.019. 126. Si, F.; Hu, X.; Wang, C.; Chen, B.; Wang, R.; Dong, S.; Yu, R.; Li, Z. Porcine Epidemic Diarrhea Virus (PEDV) ORF3 Enhances Viral Proliferation by Inhibiting Apoptosis of Infected Cells. Viruses 2020, 12, 214, doi:10.3390/v12020214. 127. Ye, S.; Li, Z.; Chen, F.; Li, W.; Guo, X.; Hu, H.; He, Q. Porcine epidemic diarrhea virus ORF3 gene prolongs S-phase, facilitates formation of vesicles and promotes the proliferation of attenuated PEDV. Virus genes 2015, 51, 385-392, doi:10.1007/s11262-015-1257-y. 128. Zou, D.; Xu, J.; Duan, X.; Xu, X.; Li, P.; Cheng, L.; Zheng, L.; Li, X.; Zhang, Y.; Wang, X.; et al. Porcine epidemic diarrhea virus ORF3 protein causes endoplasmic reticulum stress to facilitate autophagy. Vet Microbiol 2019, 235, 209-219, doi:https://doi.org/10.1016/j.vetmic.2019.07.005. 129. Debouck, P.; Pensaert, M.; Coussement, W. The pathogenesis of an enteric infection in pigs, experimentally induced by the coronavirus-like agent, CV 777. Vet Microbiol 1981, 6, 157-165, doi:10.1016/0378-1135(81)90007-9. 130. Stevenson, G.W.; Hoang, H.; Schwartz, K.J.; Burrough, E.R.; Sun, D.; Madson, D.; Cooper, V.L.; Pillatzki, A.; Gauger, P.; Schmitt, B.J.; et al. Emergence of Porcine epidemic diarrhea virus in the United States: clinical signs, lesions, and viral genomic sequences. Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc 2013, 25, 649-654, doi:10.1177/1040638713501675. 131. Niederwerder, M.C.; Nietf………
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79271-
dc.description.abstract豬流行性下痢病毒(Porcine epidemic diarrhea virus; PEDV)屬於冠狀病毒屬中的甲型冠狀病毒,可引發具有高度傳染性的豬流行性下痢(Porcine epidemic diarrhea; PED),受其感染之仔豬會出現急性水漾腹瀉、嘔吐及脫水,最終導致死亡。PEDV之細胞受器最初被認為是豬丙胺酸胺肽酶(Porcine Aminopeptidase N; pAPN),但pAPN是否為PEDV細胞受器卻在近幾年受到質疑。在本研究中,我們利用免疫共同沈降與質譜分析技術,將PEDV棘狀蛋白(Spike; S)三聚體分別與新生仔豬之腸上皮細胞和非洲綠猴腎細胞(Vero-E6 cell)膜蛋白進行交互作用,以辨識PEDV之可能細胞受器。本研究發現在新生仔豬腸細胞與Vero-E6細胞膜蛋白中葡萄糖調節蛋白78(Glucose regulated protein 78; GRP78)可與PEDV S蛋白進行免疫沉降。為了更近一步探討GRP78在PEDV感染機制中所扮演的角色,我們轉染豬腸上皮細胞株 (Intestinal porcine epithelial cell line-1; IPEC-1)與豬睪丸細胞豬 (Swine testicular cell line; ST )使其可以穩定表現GRP78後,再以第七代PEDV-PT-52(PEDV-PT-P7)進行了感染試驗,並與未轉染之IPEC-1細胞、ST細胞與Vero-E6細胞進行比較。結果發現相對於病毒感染之Vero-E6細胞可見特徵性融合細胞形成之外,轉染GRP78之IPEC-1細胞與ST細胞以及未轉染之IPEC-1細胞與ST細胞均無法觀察到細胞病變作用(Cytopathic effect)。此外,除了Vero-E6 細胞株外,本實驗其他細胞株的上清液均無法檢測到病毒核酸。依據實驗結果推測,GRP78雖能與PEDV S進行鍵結,但並非扮演宿主細胞受器之角色,而GRP78是否能夠做為輔助細胞受器蛋白協助病毒的組裝或複製則需要後續實驗證明。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T08:57:06Z (GMT). No. of bitstreams: 1
U0001-2812202118040400.pdf: 5939489 bytes, checksum: 4655dcfdd9d47d5c963cf4709e5a3db5 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 VII 致謝 VIII 中文摘要 X Abstract XI Chapter I. General Introduction 0 1. Coronaviruses 1 2. Porcine epidemic diarrhea virus 6 3. Methods for identifying viral receptor 19 4. Glucose-Regulated Protein 78 20 5. Aim of study 22 Chapter II. Materials and Methods 23 Chapter III. Results 33 Chapter IV. Discussion 37 Table 42 Figures 49 References 57
dc.language.isoen
dc.title辨識葡萄糖調節蛋白78為豬流行性下痢病毒可能之細胞輔助受器蛋白zh_TW
dc.titleIdentification of Glucose Regulated Protein 78 as a Potential Cellular (Co-) Receptor Protein for Porcine Epidemic Diarrhea Virusen
dc.date.schoolyear110-1
dc.description.degree碩士
dc.contributor.coadvisor張晏禎(Yen-Chen Chang)
dc.contributor.oralexamcommittee鄭謙仁(Hsin-Tsai Liu),徐尚德(Chih-Yang Tseng)
dc.subject.keyword豬流行性下痢病毒,葡萄糖調節蛋白78,細胞輔助受器蛋白,zh_TW
dc.subject.keywordorcine Epidemic Diarrhea Virus,Glucose Regulated Protein 78,Cellular (Co-) Receptor Protein,en
dc.relation.page97
dc.identifier.doi10.6342/NTU202104591
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-12-30
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept分子暨比較病理生物學研究所zh_TW
顯示於系所單位:分子暨比較病理生物學研究所

文件中的檔案:
檔案 大小格式 
U0001-2812202118040400.pdf5.8 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved