Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7925
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor阮雪芬(Hsueh-Fen Juan)
dc.contributor.authorNorton Chengen
dc.contributor.author鄭辰彥zh_TW
dc.date.accessioned2021-05-19T17:58:54Z-
dc.date.available2021-08-03
dc.date.available2021-05-19T17:58:54Z-
dc.date.copyright2016-08-03
dc.date.issued2016
dc.date.submitted2016-07-29
dc.identifier.citation1 Devenish, R. J., Prescott, M. & Rodgers, A. J. The structure and function of mitochondrial F1F0-ATP synthases. Int. Rev. Cell Mol. Biol. 267, 1-58 (2008).
2 Jonckheere, A. I., Smeitink, J. A. M. & Rodenburg, R. J. T. Mitochondrial ATP synthase: architecture, function and pathology. J. Inherit. Metab. Dis. 35, 211-225 (2012).
3 Wittig, I. & Schagger, H. Structural organization of mitochondrial ATP synthase. Biochim. Biophys. Acta 1777, 592-598 (2008).
4 Anderson, S. et al. Sequence and organization of the human mitochondrial genome. Nature 290, 457-465 (1981).
5 Sambongi, Y. et al. Mechanical rotation of the c subunit oligomer in ATP synthase (F0F1): direct observation. Science 286, 1722-1724 (1999).
6 Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K., Jr. Direct observation of the rotation of F1-ATPase. Nature 386, 299-302 (1997).
7 Boyer, P. D. A model for conformational coupling of membrane potential and proton translocation to ATP synthesis and to active transport. FEBS Lett. 58, 1-6 (1975).
8 Walter, P. & Johnson, A. E. Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu. Rev. Cell Biol. 10, 87-119 (1994).
9 Akopian, D., Shen, K., Zhang, X. & Shan, S. Signal Recognition Particle: An essential protein targeting machine. Annu. Rev. Biochem. 82, 693-721 (2013).
10 Weihofen, A., Lemberg, M. K., Ploegh, H. L., Bogyo, M. & Martoglio, B. Release of signal peptide fragments into the cytosol requires cleavage in the transmembrane region by a protease activity that is specifically blocked by a novel cysteine protease inhibitor. J. Biol. Chem. 275, 30951-30956 (2000).
11 Sato, K. COPII coat assembly and selective export from the endoplasmic reticulum. J. Biochem. 136, 755-760 (2004).
12 Urbe, S., Tooze, S. A. & Barr, F. A. Formation of secretory vesicles in the biosynthetic pathway. Biochim. Biophys. Acta 1358, 6-22 (1997).
13 Nebenfuhr, A. Vesicle traffic in the endomembrane system: a tale of COPs, Rabs and SNAREs. Curr. Opin. Plant Biol. 5, 507-512 (2002).
14 Sogaard, M. et al. A rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles. Cell 78, 937-948 (1994).
15 Cai, H., Reinisch, K. & Ferro-Novick, S. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev. Cell 12, 671-682 (2007).
16 Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Biol. 2, 107-117 (2001).
17 Hutagalung, A. H. & Novick, P. J. Role of Rab GTPases in membrane traffic and cell physiology. Physiol. Rev. 91, 119-149 (2011).
18 Jahn, R. & Scheller, R. H. SNAREs--engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631-643 (2006).
19 Cokol, M., Nair, R. & Rost, B. Finding nuclear localization signals. EMBO Rep. 1, 411-415 (2000).
20 Neupert, W. Protein import into mitochondria. Annu. Rev. Biochem. 66, 863-917 (1997).
21 Vantourout, P. et al. Ecto-F(1)-ATPase: A moonlighting protein complex and an unexpected apoA-I receptor. World J Gastroenterol 16, 5925-5935 (2010).
22 Gabriel, K., Egan, B. & Lithgow, T. Tom40, the import channel of the mitochondrial outer membrane, plays an active role in sorting imported proteins. EMBO J. 22, 2380-2386 (2003).
23 Diekert, K., Kispal, G., Guiard, B. & Lill, R. An internal targeting signal directing proteins into the mitochondrial intermembrane space. Proc. Natl Acad. Sci. USA 96, 11752-11757 (1999).
24 Bae, T. J. et al. Lipid raft proteome reveals ATP synthase complex in the cell surface. Proteomics 4, 3536-3548 (2004).
25 Huang, T. C. et al. Targeting therapy for breast carcinoma by ATP synthase inhibitor aurovertin B. J. Proteome Res. 7, 1433-1444 (2008).
26 Mangiullo, R. et al. Structural and functional characterization of F(o)F(1)-ATP synthase on the extracellular surface of rat hepatocytes. Biochim. Biophys. Acta 1777, 1326-1335 (2008).
27 Martinez, L. O. et al. Ectopic beta-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature 421, 75-79 (2003).
28 Chang, H. Y. et al. Ectopic ATP synthase blockade suppresses lung adenocarcinoma growth by activating the unfolded protein response. Cancer Res. 72, 4696-4706 (2012).
29 Chang, H. Y., Huang, T. C., Chen, N. N., Huang, H. C. & Juan, H. F. Combination therapy targeting ectopic ATP synthase and 26S proteasome induces ER stress in breast cancer cells. Cell Death Dis. 5, e1540 (2014).
30 Moser, T. L. et al. Endothelial cell surface F1-F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proc. Natl Acad. Sci. USA 98, 6656-6661 (2001).
31 Ma, Z. et al. Mitochondrial F1Fo-ATP synthase translocates to cell surface in hepatocytes and has high activity in tumor-like acidic and hypoxic environment. Acta Biochim Biophys Sin 42, 530-537 (2010).
32 Schmidt, C. et al. Amyloid precursor protein and amyloid beta-peptide bind to ATP synthase and regulate its activity at the surface of neural cells. Mol. Psychiatry 13, 953-969 (2008).
33 Chiang, S. F., Huang, C. Y., Lin, T. Y., Chiou, S. H. & Chow, K. C. An alternative import pathway of AIF to the mitochondria. Int. J. Mol. Med. 29, 365-372 (2012).
34 Raturi, A. & Simmen, T. Where the endoplasmic reticulum and the mitochondrion tie the knot: the mitochondria-associated membrane (MAM). Biochim. Biophys. Acta 1833, 213-224 (2013).
35 Rai, A. K., Spolaore, B., Harris, D. A., Dabbeni-Sala, F. & Lippe, G. Ectopic F0F 1 ATP synthase contains both nuclear and mitochondrially-encoded subunits. J. Bioenerg. Biomembr. 45, 569-579 (2013).
36 Voo, K. S. et al. CD4+ T-cell response to mitochondrial cytochrome B in human melanoma. Cancer Res. 66, 5919-5926 (2006).
37 Schmid, S. L. Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu. Rev. Biochem. 66, 511-548 (1997).
38 Chang, C. R. & Blackstone, C. Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J. Biol. Chem. 282, 21583-21587 (2007).
39 Cereghetti, G. M. et al. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc. Natl Acad. Sci. USA 105, 15803-15808 (2008).
40 Eura, Y., Ishihara, N., Yokota, S. & Mihara, K. Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J. Biochem. 134, 333-344 (2003).
41 Sugiura, A., McLelland, G. L., Fon, E. A. & McBride, H. M. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J. 33, 2142-2156 (2014).
42 McLelland, G. L., Soubannier, V., Chen, C. X., McBride, H. M. & Fon, E. A. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 33, 282-295 (2014).
43 Andrade-Navarro, M. A., Sanchez-Pulido, L. & McBride, H. M. Mitochondrial vesicles: an ancient process providing new links to peroxisomes. Curr. Opin. Cell Biol. 21, 560-567 (2009).
44 Soubannier, V. et al. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr. Biol. 22, 135-141 (2012).
45 Braschi, E. et al. Vps35 mediates vesicle transport between the mitochondria and peroxisomes. Curr. Biol. 20, 1310-1315 (2010).
46 Morris, R. E., Thomas, P. T. & Hong, R. Cellular enzyme-linked immunospecific assay (CELISA). I. A new micromethod that detects antibodies to cell-surface antigens. Hum. Immunol. 5, 1-19 (1982).
47 Jozefowski, S., Czerkies, M., Sobota, A. & Kwiatkowska, K. Determination of cell surface expression of Toll-like receptor 4 by cellular enzyme-linked immunosorbent assay and radiolabeling. Anal. Biochem. 413, 185-191 (2011).
48 Posner, M. R., Antoniou, D., Griffin, J., Schlossman, S. F. & Lazarus, H. An enzyme-linked immunosorbent assay (ELISA) for the detection of monoclonal antibodies to cell surface antigens on viable cells. J. Immunol. Methods 48, 23-31 (1982).
49 Avrameas, S. & Guilbert, B. A method for quantitative determination of cellular immunoglobulins by enzyme-labeled antibodies. Eur. J. Immunol. 1, 394-396 (1971).
50 Smith, D. D., Cohick, C. B. & Lindsley, H. B. Optimization of cellular ELISA for assay of surface antigens on human synoviocytes. Biotechniques 22, 952-957 (1997).
51 Arunachalam, B., Talwar, G. P. & Raghupathy, R. A simplified cellular ELISA (CELISA) for the detection of antibodies reacting with cell-surface antigens. J. Immunol. Methods 135, 181-189 (1990).
52 Kueng, W., Silber, E. & Eppenberger, U. Quantification of cells cultured on 96-well plates. Anal. Biochem. 182, 16-19 (1989).
53 Orci, L., Glick, B. S. & Rothman, J. E. A new type of coated vesicular carrier that appears not to contain clathrin: its possible role in protein transport within the Golgi stack. Cell 46, 171-184 (1986).
54 Johannes, L. & Popoff, V. Tracing the retrograde route in protein trafficking. Cell 135, 1175-1187 (2008).
55 Santel, A. et al. Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J. Cell Sci. 116, 2763-2774 (2003).
56 Hill, K. et al. Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins. Nature 395, 516-521 (1998).
57 Alto, N. M., Soderling, J. & Scott, J. D. Rab32 is an A-kinase anchoring protein and participates in mitochondrial dynamics. J. Cell Biol. 158, 659-668 (2002).
58 Smirnova, E., Griparic, L., Shurland, D.-L. & van der Bliek, A. M. Dynamin-related Protein Drp1 Is Required for Mitochondrial Division in Mammalian Cells. Mol. Biol. Cell 12, 2245-2256 (2001).
59 Vives-Bauza, C. et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc. Natl Acad. Sci. USA 107, 378-383 (2010).
60 Bielli, A. et al. Regulation of Sar1 NH(2) terminus by GTP binding and hydrolysis promotes membrane deformation to control COPII vesicle fission. J. Cell Biol. 171, 919-924 (2005).
61 Enninga, J., Levay, A. & Fontoura, B. M. Sec13 shuttles between the nucleus and the cytoplasm and stably interacts with Nup96 at the nuclear pore complex. Mol. Cell Biol. 23, 7271-7284 (2003).
62 Orci, L., Palmer, D. J., Amherdt, M. & Rothman, J. E. Coated vesicle assembly in the Golgi requires only coatomer and ARF proteins from the cytosol. Nature 364, 732-734 (1993).
63 Hirst, J. & Robinson, M. S. Clathrin and adaptors. Biochim. Biophys. Acta 1404, 173-193 (1998).
64 Geppert, M., Goda, Y., Stevens, C. F. & Sudhof, T. C. The small GTP-binding protein Rab3A regulates a late step in synaptic vesicle fusion. Nature 387, 810-814 (1997).
65 Ang, A. L., Fölsch, H., Koivisto, U.-M., Pypaert, M. & Mellman, I. The Rab8 GTPase selectively regulates AP-1B–dependent basolateral transport in polarized Madin-Darby canine kidney cells. J. Cell Biol. 163, 339-350 (2003).
66 Urbe, S., Huber, L. A., Zerial, M., Tooze, S. A. & Parton, R. G. Rab11, a small GTPase associated with both constitutive and regulated secretory pathways in PC12 cells. FEBS Lett. 334, 175-182 (1993).
67 Jahn, R. & Scheller, R. H. SNAREs [mdash] engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631-643 (2006).
68 Monier, S., Jollivet, F., Janoueix-Lerosey, I., Johannes, L. & Goud, B. Characterization of novel Rab6-interacting proteins involved in endosome-to-TGN transport. Traffic 3, 289-297 (2002).
69 Rink, J., Ghigo, E., Kalaidzidis, Y. & Zerial, M. Rab conversion as a mechanism of progression from early to late endosomes. Cell 122, 735-749 (2005).
70 van der Sluijs, P. et al. The small GTP-binding protein rab4 controls an early sorting event on the endocytic pathway. Cell 70, 729-740 (1992).
71 Progida, C. et al. Rab7b controls trafficking from endosomes to the TGN. J. Cell Sci. 123, 1480-1491 (2010).
72 Lombardi, D. et al. Rab9 functions in transport between late endosomes and the trans Golgi network. EMBO J. 12, 677-682 (1993).
73 Yang, M. et al. Rab7b, a novel lysosome-associated small GTPase, is involved in monocytic differentiation of human acute promyelocytic leukemia cells. Biochem. Biophys. Res. Commun. 318, 792-799 (2004).
74 Pocard, T., Le Bivic, A., Galli, T. & Zurzolo, C. Distinct v-SNAREs regulate direct and indirect apical delivery in polarized epithelial cells. J. Cell Sci. 120, 3309-3320 (2007).
75 Bucci, C. et al. The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70, 715-728 (1992).
76 McMahon, H. T. & Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 12, 517-533 (2011).
77 Winklhofer, K. F. Parkin and mitochondrial quality control: toward assembling the puzzle. Trends Cell Biol. 24, 332-341 (2014).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7925-
dc.description.abstractATP合成酶是一種以多個次單元組合而成的蛋白複合體,可以進行ATP的生合成,並提供細胞生存所需的能量。粒線體是細胞中重要的ATP合成胞器,因此,長久以來ATP合成酶被認為僅在粒線體中表現;然而,一些近期的研究發現ATP合成酶在癌組織的表皮細胞、淋巴細胞、肝細胞,以及乳癌和肺癌細胞株的細胞膜表現,這一類ATP合成酶我們稱它們為「異位表達ATP合成酶」。這些ATP合成酶具有在胞外合成ATP的功能,我們先前的研究發現透過藥物citreoviridin可以抑制其ATP產生的活性,進而引發癌細胞的死亡,然而它們是如何被運輸至細胞表面的機制至今仍然不清楚。為了找出參與在這種運輸機制的蛋白分子,我們使用RNA干擾為基礎的篩選實驗,首先在抑制25個參與運送有關的基因表現後,以細胞ELISA測量細胞表面的ATP合成酶表現量;我們同時也以流式細胞儀和細胞免疫螢光染色方法,驗證在細胞ELISA的實驗中被認為涉及ATP合成酶運輸的蛋白,是否真的可以改變細胞膜上ATP合成酶的表現量。結果發現有PARK2、MFN1以及COPA等基因可能在異位表現之ATP合成酶組裝、運輸機制中,扮演重要的角色。zh_TW
dc.description.abstractATP synthase is a multimeric protein complex that catalyzes the synthesis of ATP. For a long time, animal ATP synthase was believed to be found only in mitochondria, where most cellular ATP synthesis takes place. However, in recent studies ATP synthase was also found on the extracellular surface of endothelial cells in some cancer tissues, lymphocytes, hepatocytes, proliferating cell lines, breast cancer and lung cancer cells. With the property of facing out-side the cell, this kind of ATP synthase is called ectopic ATP synthase. Our previous studies found that treating lung and breast cells with drug such as citreoviridin inhibited ectopic ATP synthase and caused the cancer cell death. However, how ATP synthase expressed on plasma membrane is still unclear. Therefore, to reveal what kind of the molecules are involved in the ectopic expression of ATP synthase, the RNA interference screening in lung cancer A549 cells was performed. Twenty-five genes were silenced, and then ectopic ATP synthase expressions were measured by cell ELISA assay. Several genes are potentially involved in ectopic ATP synthase expression. The alternations of ectopic ATP synthase expression were further confirmed by flow cytometry and immunocytochemistry. These results suggest that PARK2, MFN1 and COPA may play crucial roles in the trafficking and assembling mechanism of ectopic ATP synthase.en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:58:54Z (GMT). No. of bitstreams: 1
ntu-105-R03b21015-1.pdf: 2124327 bytes, checksum: 991cd86f08868860d905b526c921db44 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
List of Figures vii
List of Tables ix
Chapter 1 Introduction 1
1.1. ATP synthase 1
1.2. Sorting mechanisms of proteins 2
1.3. Ectopic expression of ATP synthase 4
1.4. Identification of the trafficking pathway of ectopic ATP synthase 9
Chapter 2 Materials and Methods 11
2.1. Cell culture 11
2.2. Short interfering RNA (siRNA) transfection 11
2.3. RNA extraction and cDNA preparation from cell culture 12
2.4. Real-time polymerase chain reaction (RT-PCR) 12
2.5. Cell enzyme-linked immunosorbent assay (CELISA) 13
2.6. Crystal violet cell viability assay 14
2.7. Fluorescence immunocytochemistry (ICC) 14
2.8. Flow cytometry 15
Chapter 3 Results 17
3.1. Ectopic ATP synthase expression of A549 lung cancer cell line. 17
3.2. To monitor the ectopic ATP synthase expression and cell viability by CELISA and crystal violate assay, respectively. 17
3.3. Genes of interest were silenced by RNA interference. 18
3.4. Screening of genes involved in ectopic ATP synthase expression by RNA interference. 19
3.5. Eleven genes were further checked if they affected ecto-ATP synthase expression. 20
3.6. Immunocytochemistry (ICC) shows that ectopic ATP synthase expression altered after silencing PARK2, MFN1 and COPA. 21
3.7. Flow cytometry confirmed that the RNAi changed ectopic ATP synthase expression. 22
Chapter 4 Discussion 23
Chapter 5 Conclusions 25
Chapter 6 Figures 26
Chapter 7 Tables 47
References 50
Appendix 56
Summarized process of mitophagy. 56
dc.language.isoen
dc.titleATP合成酶異位表現至肺癌細胞表面之運輸途徑zh_TW
dc.titleThe Trafficking Pathways of Ectopic ATP Synthase to Lung Cancer Cell Surfaceen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃宣誠(Hsuan-Cheng Huang),李岳倫(Yueh-Luen Lee)
dc.subject.keywordATP合成?,肺癌,運輸途徑,zh_TW
dc.subject.keywordTrafficking,Ectopic ATP Synthase,Lung Cancer,en
dc.relation.page56
dc.identifier.doi10.6342/NTU201601624
dc.rights.note同意授權(全球公開)
dc.date.accepted2016-07-29
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf2.07 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved