Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79259
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王尚禮(Shan-Li Wang)
dc.contributor.authorPuu-Tai Yangen
dc.contributor.author楊圃臺zh_TW
dc.date.accessioned2022-11-23T08:56:51Z-
dc.date.available2023-01-31
dc.date.available2022-11-23T08:56:51Z-
dc.date.copyright2022-02-21
dc.date.issued2022
dc.date.submitted2022-01-12
dc.identifier.citationAdriano, D. C. 2001. Trace Elements in Terrestrial Environments. Springer, New York. Aeppli, M., R. Kaegi, R. Kretzschmar, A. Voegelin, T. B. Hofstetter, and M. Sander. 2019. Electrochemical analysis of changes in iron oxide reducibility during abiotic ferrihydrite transformation into goethite and magnetite. Environmental Science Technology 53: 3568−3578. Allain, A., J. Kang, K. Banerjee, and A. Kis. 2015. Electrical contacts to two-dimensional semiconductors. Nature Materials 14: 1195−1205. Alloway, B. J. 2013. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability. 3rd ed. Springer, Dordrecht. Arai, Y. 2010. X-ray absorption spectroscopic investigation of molybdenum multinuclear sorption mechanism at the goethite−water Interface. Environmental Science Technology 44: 8491−8496. Armour, A. W., M. G. B. Drew, and P. C. H. Mitchell. 1975. Crystal and molecular structure and properties of ammonium dimolybdate. Journal of the Chemical Society, Dalton Transactions: 1493−1496. Aydin, I., F. Aydin, and C. Hamamci. 2012. Molybdenum speciation in asphaltite bottom ash (Seguruk, SE Anatolia, Turkey). Fuel 95: 481−485. Balint, R., C. Orbeci, G. Nechifor, M. Plesca, and F. Ajmone-Marsan. 2013. Effect of redox conditions on the crystallinity of Fe oxides in soil. Revista De Chimie 64: 1218−1223. Barling, J., and A. D. Anbar. 2004. Molybdenum isotope fractionation during adsorption by manganese oxides. Earth and Planetary Science Letters 217: 315−329. Basak, A., L. N. Mandal, and M. Haldar. 1982. Interaction of phosphorus and molybdenum in relation to uptake and utilization of molybdenum, phosphorus, zinc, copper and manganese by rice. Plant and Soil 68: 261−269. Behrens, P. 1992. X-ray absorption spectroscopy in chemistry II. X-ray absorption near edge structure. Trends in Analytical Chemistry 11: 237–244. Bergmann, W., and V. M. Shorrocks. 1992. Nutritional Disorders of Plants: Development, Visual and Analytical Diagnosis. Gustav Fischer Verlag, Jena, Germany. Bibak, A., and O. K. Borggaard. 1994. Molybdenum adsorption by aluminum and iron oxides and humic acid. Soil Science 158: 323−328. Biswas, K. C., N. A. Woodards, H. Xu, and L. L. Barton. 2009. Reduction of molybdate by sulfate-reducing bacteria. Biometals 22: 131−139. Bolanz, R. M., C. Grauer, R. E. Cooper, J. Göttlicher, R. Steininger, S. Perry, and K. Küsel. 2017. Incorporation of molybdenum(VI) in akaganéite (β-FeOOH) and the microbial reduction of Mo–akaganéite by Shewanella loihica PV-4. CrystEngComm 19: 6189−6198. Bolster, C., and G. Hornberger. 2008. On the use of linearized Langmuir equations. Soil Science Society of America Journal 71: 1796−1806. Bostick, B. C., S. Fendorf, and G. R. Helz. 2003. Differential adsorption of molybdate and tetrathiomolybdate on pyrite (FeS2). Environmental Science Technology 37: 285−291. Bothwell, M. K., and L. P. Walker. 1995. Evaluation of parameter estimation methods for estimating cellulase binding constants. Bioresource Technology 53: 21−29. Brandt, B. G., and A. C. Skapski. 1968. On the application of Zachariasen's extinction correction to a set of visually estimated intensity data. Acta Crystallographica Section A A24: 699. Brinza, L., L. G. Benning, and P. J. Statham. 2008. Adsorption studies of Mo and V onto ferrihydrite. Mineralogical Magazine 72: 385−388. Brinza, L., H. P. Vu, M. Neamtu, and L. G. Benning. 2019. Experimental and simulation results of the adsorption of Mo and V onto ferrihydrite. Scientific Reports 9: 1365. Brinza, L., H. P. Vu, S. Shaw, J. F. W. Mosselmans, and L. G. Benning. 2015. Effect of Mo and V on the hydrothermal crystallization of hematite from ferrihydrite: An in situ energy dispersive X-ray diffraction and X-ray absorption spectroscopy study. Crystal Growth Design 15: 4768−4780. Calvin, S. 2013. XAFS for Everyone. CRC Press. Carroll, K. C., J. F. Artiola, and M. L. Brusseau. 2006. Transport of molybdenum in a biosolid-amended alkaline soil. Chemosphere 65: 778−785. Chen, J., F. Wei, C. Zheng, Y. Wu, and D. C. Adriano. 1991. Background concentrations of elements in soils of China. Water, Air, and Soil Pollution 57−58: 699−712. Chen, J. Y., H. V. T. Luong, and J. C. Liu. 2015. Fractionation and release behaviors of metals (In, Mo, Sr) from industrial sludge. Water Research 82: 86−93. Chen, M., C. Liu, X. Li, W. Huang, and F. Li. 2014. Iron reduction coupled to reductive dechlorination in red soil: A review. Soil science 179: 457−467. Chen, Z., Y. G. Zhu, W. J. Liu, and A. A. Meharg. 2005. Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. New Phytologist 165: 91−97. Conlan, M., K. Mayer, R. Blaskovich, and R. Beckie. 2012. Solubility controls for molybdenum in neutral rock drainage. Geochemistry: Exploration, Environment, Analysis 12: 21−32. Cornell, R. M., R. Giovanoli, and P. W. Schindler. 1987. Effect of silicate species on the transformation of ferrihydrite into goethite and hematite in alkaline media. Clays and Clay Minerals 35: 21−28. Crusius, J., S. Calvert, T. Pedersen, and D. Sage. 1996. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth and Planetary Science Letters 145: 65−78. Cruywagen, J. J. 1999. Protonation, Oligomerization, and Condensation Reactions of Vanadate(V), Molybdate(VI), and Tungstate(VI). pp. 127−182. In A. G. Sykes (Ed.) Advances in Inorganic Chemistry. Vol. 49. Academic Press. Cruywagen, J. J., A. G. Draaijer, J. B. B. Heyns, and E. A. Rohwer. 2002. Molybdenum(VI) equilibria in different ionic media. Formation constants and thermodynamic quantities. Inorganica Chimica Acta 331: 322−329. Dai, J., Z. Tang, N. Jiang, P. M. Kopittke, F.-J. Zhao, and P. Wang. 2020. Increased arsenic mobilization in the rice rhizosphere is mediated by iron-reducing bacteria. Environmental Pollution 263: 114561. Das, S., J. Essilfie-Dughan, and M. Jim Hendry. 2016. Sequestration of molybdate during transformation of 2-line ferrihydrite under alkaline conditions. Applied Geochemistry 73: 70−80. Das, S., M. J. Hendry, and J. Essilfie-Dughan. 2011. Transformation of two-line ferrihydrite to goethite and hematite as a function of pH and temperature. Environmental Science Technology 45: 268−275. Davantès, A., D. Costa, and G. Lefèvre. 2016. Molybdenum(VI) adsorption onto lepidocrocite (γ-FeOOH): In situ vibrational spectroscopy and DFT+U theoretical study. The Journal of Physical Chemistry C 120: 11871−11881. Davantès, A., and G. Lefèvre. 2015. In situ characterization of (poly)molybdate and (poly)tungstate ions sorbed onto iron (hydr)oxides by ATR-FTIR spectroscopy. The European Physical Journal Special Topics 224: 1977−1983. Davidson, C. M., R. P. Thomas, S. E. McVey, R. Perala, D. Littlejohn, and A. M. Ure. 1994. Evaluation of a sequential extraction procedure for the speciation of heavy metals in sediments. Analytica Chimica Acta 291: 277−286. del Amo, B., L. Veleva, A. R. Di Sarli, and C. I. Elsner. 2004. Performance of coated steel systems exposed to different media - Part I. Painted galvanized steel. Progress in Organic Coatings 50: 179−192. Domingo, J. L. 2003. Aluminum (Aluminium) | Toxicology. pp. 160−166. In B. Caballero (Ed.) Encyclopedia of Food Sciences and Nutrition. 2nd ed. Academic Press, Oxford. Domingo, L. E., and K. Kyuma. 1983. Trace elements in tropical Asian paddy soils. Soil Science and Plant Nutrition 29: 439−452. Duval, B. D., S. M. Natali, and B. A. Hungate. 2015. What Constitutes Plant-Available Molybdenum in Sandy Acidic Soils? Communications in Soil Science and Plant Analysis 46: 318-326. Elliott, H. A., and L. M. Herzig. 1999. Oxalate extraction of Pb and Zn from polluted soils: Solubility limitations. Journal of Soil Contamination 8: 105−116. Environmental Protection Administration (Taiwan). 2009. Drinking Water Quality Standards. 0980106331E C.F.R.,Taiwan. Erickson, B. E., and G. R. Helz. 2000. Molybdenum(VI) speciation in sulfidic waters: Stability and lability of thiomolybdates. Geochimica Et Cosmochimica Acta 64: 1149−1158. European Commision Scientific Committee on Food. 2000. Opinion of the Scientific Committee on Food on the Tolerable Upper Intake Level of Molybdenum. Brussel, Belgium. Fageria, N. K., G. D. Carvalho, A. B. Santos, E. P. B. Ferreira, and A. M. Knupp. 2011. Chemistry of lowland rice soils and nutrient availability. Communications in Soil Science and Plant Analysis 42: 1913−1933. Fageria, N. K., and A. B. Santos. 2014. Requirement of micronutrients by lowland rice. Communications in Soil Science and Plant Analysis 45: 844−863. Ferreiro, E. A., A. K. Helmy, and S. G. de Bussetti. 1985. Molybdate sorption by oxides of aluminium and iron. Zeitschrift für Pflanzenernährung und Bodenkunde 148: 559−566. Filgueiras, A. V., I. Lavilla, and C. Bendicho. 2002. Chemical sequential extraction for metal partitioning in environmental solid samples. Journal of Environmental Monitoring 4: 823−857. Filippini, T., S. Tancredi, C. Malagoli, M. Malavolti, A. Bargellini, L. Vescovi, F. Nicolini, and M. Vinceti. 2020. Dietary estimated intake of trace elements: Risk assessment in an Italian population. Exposure and Health 12: 641−655. Fitzpatrick, K. L., S. D. Tyerman, and B. N. Kaiser. 2008. Molybdate transport through the plant sulfate transporter SHST1. FEBS Letters 582: 1508−1513. Fortin, D., G. G. Leppard, and A. Tessier. 1993. Characteristics of lacustrine diagenetic iron oxyhydroxides. Geochimica Et Cosmochimica Acta 57: 4391−4404. Fox, P. M., and H. E. Doner. 2002. Trace element retention and release on minerals and soil in a constructed wetland. Journal of Environmental Quality 31: 331−338. Frascoli, F., and K. A. Hudson-Edwards. 2018. Geochemistry, mineralogy and microbiology of molybdenum in mining-Affected environments. Minerals 8: 42. Freund, C., A. Wishard, R. Brenner, M. Sobel, J. Mizelle, A. Kim, D. A. Meyer, and J. L. Morford. 2016. The effect of a thiol-containing organic molecule on molybdenum adsorption onto pyrite. Geochimica Et Cosmochimica Acta 174: 222−235. Görn, M. G., R. M. Bolanz, S. Parry, J. Gottlicher, R. Steininger, and J. Majzlan. 2021. Incorporation of Mo6+ in ferrihydrite, goethite and hematite. Clays and Clay Minerals 69: 188−204. Ganatra, R., and Q. Zhang. 2014. Few-Layer MoS2: A promising layered semiconductor. ACS Nano 8: 4074−4099. Garnier, J., J. M. Garnier, C. L. Vieira, A. Akerman, J. Chmeleff, R. I. Ruiz, and F. Poitrasson. 2017. Iron isotope fingerprints of redox and biogeochemical cycling in the soil-water-rice plant system of a paddy field. Science of The Total Environment 574: 1622−1632. Gee, G. W., and J. W. Bauder. 1986. Particle-size Analysis. pp. 383-411. In A. Klute (Ed.) Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods. 2 ed. American Society of Agronomy Inc., Soil Science Society of America Inc., Madison, Wisconsin. Geng, C., Y. Gao, D. Li, X. Jian, and Q. Hu. 2014. Contamination investigation and risk assessment of molybdenum on an industrial site in China. Journal of Geochemical Exploration 144: 273−281. Goldberg, S. 2009. Influence of soil solution salinity on molybdenum adsorption by soils. Soil Science 174: 9−13. Goldberg, S., H. S. Forster, and C. L. Godfrey. 1996. Molybdenum adsorption on oxides, clay minerals, and soils. Soil Science Society of America Journal 60: 425−432. Goldberg, S., C. T. Johnston, D. L. Suarez, and S. M. Lesch. 2008. Chapter 9 Mechanism of Molybdenum Adsorption on Soils and Soil Minerals Evaluated Using Vibrational Spectroscopy and Surface Complexation Modeling. pp. 235−266. In M. O. Barnett D. B. Kent (Eds.) Developments in Earth and Environmental Sciences. Vol. 7. Elsevier. Goldberg, T., C. Archer, D. Vance, and S. W. Poulton. 2009. Mo isotope fractionation during adsorption to Fe (oxyhydr)oxides. Geochimica Et Cosmochimica Acta 73: 6502−6516. Gupta, U. C. 1971. Influence of various organic materials on the recovery of molybdenum and copper added to a sandy clay loam soil. Plant and Soil 34: 249−253. Gupta, U. C. 1997. Molybdenum in Agriculture. Cambridge University Press, New York. Gupta, U. C., and J. Lipsett. 1981. Molybdenum in Soils, Plants, and Animals. pp. 73−115. In N. C. Brady (Ed.) Advances in agronomy. Vol. 34. Academic Press, Inc., USA. Gustafsson, J. P. 2003. Modelling molybdate and tungstate adsorption to ferrihydrite. Chemical Geology 200: 105−115. Gustafsson, J. P., S. Braun, J. R. M. Tuyishime, G. A. Adediran, R. Warrinnier, and D. Hesterberg. 2020. A probabilistic approach to phosphorus speciation of soils using P K-edge XANES spectroscopy with linear combination fitting. Soil Systems 4: 26. Gustafsson, J. P., and C. Tiberg. 2015. Molybdenum binding to soil constituents in acid soils: An XAS and modelling study. Chemical Geology 417: 279−288. Hall, G. E. M., J. E. Vaive, R. Beer, and M. Hoashi. 1996. Selective leaches revisited, with emphasis on the amorphous Fe oxyhydroxide phase extraction. Journal of Geochemical Exploration 56: 59−78. Han, F. X., and A. Banin. 1995. Selective sequential dissolution techniques for trace metals in arid‐zone soils: The carbonate dissolution step. Communications in Soil Science and Plant Analysis 26: 553−576. Han, Z. X., D. J. Wan, H. X. Tian, W. X. He, Z. Q. Wang, and Q. Liu. 2019. Pollution assessment of heavy metals in soils and plants around a molybdenum mine in central China. Polish Journal of Environmental Studies 28: 123-133. Hanahan, C. 2004. Dissolution of hydroxide minerals in the 1 M sodium acetate, pH 5, extracting solution in sequential extraction schemes. Environmental Geology 45: 864−868. Hara, Y. 2017. Comparison of the effects of seed coating with tungsten and molybdenum compounds on seedling establishment rates of rice, wheat, barley, and soybean under flooded conditions. Plant Production Science 20: 406−411. Harkness, J. S., T. H. Darrah, M. T. Moore, C. J. Whyte, P. D. Mathewson, T. Cook, and A. Vengosh. 2017. Naturally occurring versus anthropogenic sources of elevated molybdenum in groundwater: Evidence for geogenic contamination from southeast Wisconsin, United States. Environmental Science Technology 51: 12190−12199. Harrison, W. T. A. 1995. Crystal structures of paraelastic aluminum molybdate and ferric molybdate, β-Al2(MoO4)3 and β-Fe2(MoO4)3. Materials Research Bulletin 30: 1325-1331. Hass, A., and P. Fine. 2010. Sequential selective extraction procedures for the study of heavy metals in soils, sediments, and waste materialsa critical review. Critical Reviews in Environmental Science Technology 40: 365−399. Hattori, H., A. Ashida, C. Itô, and M. Yoshida. 2004. Determination of molybdenum in foods and human milk, and an estimate of average molybdenum intake in the Japanese population. Journal of Nutritional Science and Vitaminology 50: 404−409. Hossain, M. B., M. Jahiruddin, R. H. Loeppert, G. M. Panaullah, M. R. Islam, and J. M. Duxbury. 2009. The effects of iron plaque and phosphorus on yield and arsenic accumulation in rice. Plant and Soil 317: 167−176. Hoyt, P. B., and M. Nyborg. 1972. Use of diluted calcium chloride for the extraction of plant-available aluminum and manganese from acid soil. Canadian Journal of Soil Science 52: 163−167. Hu, Z. Y., Y. G. Zhu, M. Li, L. G. Zhang, Z. H. Cao, and F. A. Smith. 2007. Sulfur (S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.) seedlings. Environmental Pollution 147: 387−393. Huang, H., Y. Zhu, Z. Chen, X. Yin, and G. Sun. 2012. Arsenic mobilization and speciation during iron plaque decomposition in a paddy soil. Journal of Soils and Sediments 12: 402-410. Huang, Q., Q. Wang, Z. Luo, Y. Yu, R. Jiang, and H. Li. 2015. Effects of root iron plaque on selenite and selenate dynamics in rhizosphere and uptake by rice (Oryza sativa). Plant and Soil 388: 255−266. Huang, X.-Y., H. Liu, Y.-F. Zhu, S. R. M. Pinson, H.-X. Lin, M. L. Guerinot, F.-J. Zhao, and D. E. Salt. 2019. Natural variation in a molybdate transporter controls grain molybdenum concentration in rice. New Phytologist 221: 1983−1997. Hullebusch, E. D. v., S. Utomo, M. H. Zandvoort, and P. N. L. Lens. 2005. Comparison of three sequential extraction procedures to describe metal fractionation in anaerobic granular sludges. Talanta 65: 549−558. IBM Corp. 2013. IBM SPSS Statistics for Windows (Version 22). Armonk, New York: IBM Corporation. Imran, M., X. Sun, S. Hussain, M. S. Rana, M. H. Saleem, M. Riaz, X. Tang, I. Khan, and C. Hu. 2021. Molybdenum supply increases root system growth of winter wheat by enhancing nitric oxide accumulation and expression of NRT genes. Plant and Soil 459: 235−248. Institute of Medicine (US) Panel on Micronutrients. 2001. Molybdenum. In Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc (pp. 420−441 Iwai, T., and Y. Hashimoto. 2017. Adsorption of tungstate (WO4) on birnessite, ferrihydrite, gibbsite, goethite and montmorillonite as affected by pH and competitive phosphate (PO4) and molybdate (MoO4) oxyanions. Applied Clay Science 143: 372−377. Jackson, M. L., C. H. Lim, and L. W. Zelazny. 1986. Oxides, Hydroxides, and Aluminosilicates. pp. 101−150. In A. Klute (Ed.) Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. 2nd ed. Soil Science Society of America, Madison, Wisconsin. Jarrell, W. M., and M. D. Dawson. 1978. Sorption and availability of molybdenum in soils of western Oregon. Soil Science Society of America Journal 42: 412−415. Jiang, W., Z. Yang, T. Yu, Q. Hou, C. Zhong, G. Zheng, Z. Yang, and J. Li. 2015. Evaluation of the potential effects of soil properties on molybdenum availability in soil and its risk estimation in paddy rice. Journal of Soils and Sediments 15: 1520−1530. Jones, L. H. P. 1956. Interaction of molybdenum and iron in soils. Science 123: 1116. Jones, L. H. P. 1957. The solubility of molybdenum in simplified systems and aqueous soil suspensions. Journal of Soil Science 8: 313−327. Kabata-Pendias, A., and A. B. Mukherjee. 2007. Trace Elements from Soil to Human. Springer, Berlin, Heidelberg. Kabata-Pendias, A., and H. Pendias. 2001. Trace Elements in Soils and Plants. 3rd ed. CRC Press, USA. Kabata-Pendias, A., and B. Szteke. 2015. Trace Elements in Abiotic and Biotic Environments. CRC Press, Boca Raton. Kannan, S., and S. Ramani. 1978. Studies on molybdenum absorption and transport in bean and rice. Plant Physiology 62: 179−181. Kashiwabara, T., Y. Takahashi, and M. Tanimizu. 2009. A XAFS study on the mechanism of isotopic fractionation of molybdenum during its adsorption on ferromanganese oxides. Geochemical Journal 43: e31-e36. Kashiwabara, T., Y. Takahashi, M. Tanimizu, and A. Usui. 2011. Molecular-scale mechanisms of distribution and isotopic fractionation of molybdenum between seawater and ferromanganese oxides. Geochimica Et Cosmochimica Acta 75: 5762−5784. Khan, N., B. Seshadri, N. Bolan, C. P. Saint, M. B. Kirkham, S. Chowdhury, N. Yamaguchi, D. Y. Lee, G. Li, A. Kunhikrishnan, F. Qi, R. Karunanithi, R. Qiu, Y. G. Zhu, and C. H. Syu. 2016. Chapter One - Root Iron Plaque on Wetland Plants as a Dynamic Pool of Nutrients and Contaminants. pp. 1−96. In D. L. Sparks (Ed.) Advances in agronomy. Vol. 138. Academic Press. King, E. K., S. S. Perakis, and J. C. Pett-Ridge. 2018. Molybdenum isotope fractionation during adsorption to organic matter. Geochimica Et Cosmochimica Acta 222: 584−598. Kirby, J. K., M. J. McLaughlin, Y. Ma, and B. Ajiboye. 2012. Aging effects on molybdate lability in soils. Chemosphere 89: 876−883. Kosmulski, M. 2004. pH-dependent surface charging and points of zero charge II. Update. J Colloid Interface Sci 275: 214−224. Kosmulski, M. 2009. Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature. Advances in Colloid and Interface Science 152: 14−25. Krishnan, U., M. Kaur, K. Singh, M. Kumar, and A. Kumar. 2019. A synoptic review of MoS2: Synthesis to applications. Superlattices and Microstructures 128: 274−297. Kuiper, N., C. Rowell, and B. Shomar. 2015. High levels of molybdenum in Qatar's groundwater and potential impacts. Journal of Geochemical Exploration 150: 16−24. Kunath-Fandrei, G., T. J. Bastow, C. Jaeger, and M. E. Smith. 1995. Quadrupole and chemical shift interactions of 27Al in aluminium molybdate from satellite transition magic angle spinning NMR. Chemical Physics Letters 234: 431−436. Kutzler, F. W., C. R. Natoli, D. K. Misemer, S. Doniach, and K. O. Hodgson. 1980. Use of one‐electron theory for the interpretation of near edge structure in K‐shell x‐ray absorption spectra of transition metal complexes. The Journal of Chemical Physics 73: 3274−3288. La Force, M. J., and S. Fendorf. 2000. Solid-phase iron characterization during common selective sequential extractions. Soil Science Society of America Journal 64: 1608−1615. Lang, F., and M. Kaupenjohann. 2003. Immobilisation of molybdate by iron oxides: effects of organic coatings. Geoderma 113: 31-46. Lazaridis, N. K., M. Jekel, and A. I. Zouboulis. 2003. Removal of Cr(VI), Mo(VI), and V(V) ions from single metal aqueous solutions by sorption or nanofiltration. Separation Science and Technology 38: 2201−2219. Lee, C. H., H. H. Huang, C. H. Syu, T. H. Lin, and D. Y. Lee. 2014. Increase of As release and phytotoxicity to rice seedlings in As-contaminated paddy soils by Si fertilizer application. Journal of Hazardous Materials 276: 253−261. Lee, P. A., P. H. Citrin, P. Eisenberger, and B. M. Kincaid. 1981. Extended x-ray absorption fine structure-its strengths and limitations as a structural tool. Reviews of Modern Physics 53: 769−806. Liang, L., and J.-M. Zhu. 2016. An optimized sequential extraction scheme for molybdenum association in environmental samples. Acta Geochimica 35: 111−119. Lilienfein, J., W. Wilcke, M. Ayarza, L. Vilela, S. Lima, and W. Zech. 2000. Chemical fractionation of phosphorus, sulphur, and molybdenum in Brazilian savannah Oxisols under different land use. Geoderma 96: 31−46. Lin, Y. W., T. S. Liu, H. Y. Guo, Y. T. He, and Z. R. Lin. (2015). Investigation on emerging metal pollutants in the soils of farmlands around emerging industrial areas (in Chinese). Paper presented at the In Review and Prospect of Agricultural Environmental Resources Protection in Taiwan, Taichung, Taiwan. Lindsay, W. L. 1979. Molybdenum. pp. 364−372. Chemical Equilibria in Soils. John Wiley Sons, New York. Liu, D., J. D. Clark, J. D. Crutchfield, and J. L. Sims. 1996. Effect of pH of ammonium oxalate extracting solutions on prediction of plant available molybdenum in soil. Communications in Soil Science and Plant Analysis 27: 2511−2541. Liu, W. J., Y. G. Zhu, F. A. Smith, and S. E. Smith. 2004. Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture? Journal of Experimental Botany 55: 1707−1713. Lovley, D. R., and E. J. Phillips. 1986. Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal potomac river. Applied and Environmental Microbiology 52: 751−757. Lovley, D. R., and E. J. Phillips. 1987. Rapid assay for microbially reducible ferric iron in aquatic sediments. Applied and Environmental Microbiology 53: 1536−1540. Lucas, R. E., and B. D. Knezek. 1972. Climatic and Soil Conditions Promoting Micronutrient Deficiencies in Plants. pp. 265−288. In J. J. Mortvedt, P. M. Giordano, W. L. Lindsay (Eds.) Micronutrients in Agriculture. Soil Science Society of America (SSSA), Madison, WI, USA. Lutton Cwalina, K., C. R. Demarest, A. Y. Gerard, and J. R. Scully. 2019. Revisiting the effects of molybdenum and tungsten alloying on corrosion behavior of nickel-chromium alloys in aqueous corrosion. Current Opinion in Solid State and Materials Science 23: 129−141. Ma, C., J. Zhou, H. Zhu, W. Yang, J. Liu, Y. Wang, and Z. Zou. 2015. Constructing a high-efficiency MoO3/polyimide hybrid photocatalyst based on strong interfacial interaction. ACS Applied Materials Interfaces 7: 14628-14637. Maisch, M., U. Lueder, A. Kappler, and C. Schmidt. 2020. From plant to paddy—How rice root iron plaque can affect the paddy field iron cycling. Soil Systems 4: 28. Manning, B. A., and S. Goldberg. 1996. Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals. Soil Science Society of America Journal 60: 121−131. Marks, J. A., S. S. Perakis, E. K. King, and J. Pett-Ridge. 2015. Soil organic matter regulates molybdenum storage and mobility in forests. Biogeochemistry 125: 167-183. Matern, K., and T. Mansfeldt. 2015. Molybdate adsorption by birnessite. Applied Clay Science 108: 78−83. McGrath, S. P., C. Micó, R. Curdy, and F. J. Zhao. 2010a. Predicting molybdenum toxicity to higher plants: Influence of soil properties. Environmental Pollution 158: 3095−3102. McGrath, S. P., C. Micó, F. J. Zhao, J. L. Stroud, H. Zhang, and S. Fozard. 2010b. Predicting molybdenum toxicity to higher plants: Estimation of toxicity threshold values. Environmental Pollution 158: 3085−3094. McKenzie, R. 1983. The adsorption of molybdenum on oxide surfaces. Soil Research 21: 505−513. Mengel, K., and E. A. Kirkby. 2001. Principles of Plant Nutrition. 5 ed. Springer, Dordrecht, The Netherlands. Miao, T. S., W. X. Lu, J. N. Luo, and J. Y. Guo. 2019. Application of set pair analysis and uncertainty analysis in groundwater pollution assessment and prediction: a case study of a typical molybdenum mining area in central Jilin province, China. Environmental Earth Sciences 78: 323. Mikkonen, A., and J. Tummavuori. 1993. Retention of molybdenum(VI) by three Finnish mineral soils. Acta Agriculturae Scandinavica, Section B — Soil Plant Science 43: 206−212. Millikan, C. 1949. Effect on flax of a toxicity concentration of boron, iron, molybdenum, aluminium, copper, zinc, manganese, cobalt, or nickel in the nutrient solution. Proceedings of the Royal Society of Victoria 61: 25−42. Mitchell, P. C. H. 1966. Oxo-species of molybdenum-(V) and -(VI). Quarterly Reviews, Chemical Society 20: 103−118. Mohiuddin, K. M., K. Otomo, Y. Ogawa, and N. Shikazono. 2012. Seasonal and spatial distribution of trace elements in the water and sediments of the Tsurumi River in Japan. Environmental Monitoring and Assessment 184: 265−279. Moore, P. A., and W. H. Patrick. 1991. Aluminium, boron and molybdenum availability and uptake by rice in acid sulfate soils. Plant and Soil 136: 171−181. Moraghan, J. T., and H. J. Mascagni Jr. 1991. Environmental and Soil Factors Affecting Micronutrient Deficiencies and Toxicities. pp. 371−425. In J. J. Mortvedt (Ed.) Micronutrients in Agriculture. 2 ed. Soil Science Society of America, Madison, Wisconsin. Motta, M. M., and C. F. Miranda. 1989. Molybdate adsorption on kaolinite, montmorillonite, and illite: Constant capacitance modeling. Soil Science Society of America Journal 53: 380−385. Moussa, M. G., C. Hu, A. M. Elyamine, M. A. Ismael, M. S. Rana, M. Imran, M. Syaifudin, Q. Tan, C. Marty, and X. Sun. 2021. Molybdenum-induced effects on nitrogen uptake efficiency and recovery in wheat (Triticum aestivum L.) using 15N-labeled nitrogen with different N forms and rates. Journal of Plant Nutrition and Soil Science 184: 613−621. Nelson, D. W., and L. E. Sommers. 1982. Total Carbon, Organic Carbon, and Organic Matter. pp. 539−579. In A. L. Page, R. H. Miller, D. R. Keeney (Eds.) Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties. 2 ed. American Society of Agronomy, Inc., Soil Science Society of America, Inc., Madison, Wisconsin. Nelson, D. W., and L. E. Sommers. 1996. Total carbon, organic carbon, and organic matter. pp. 961-1010. In D. L. Sparks (Ed.) Methods of Soil Analysis. Part 3. Chemical Methods. Soil Science Society of America, Madison, WI, USA. Neunhäuserer, C., M. Berreck, and H. Insam. 2001. Remediation of soils contaminated with molybdenum using soil amendments and phytoremediation. Water, Air, and Soil Pollution 128: 85−96. NFA (National Food Agency). 2012. Market Basket 2010 - chemical analysis, exposure estimation and health-related assessment of nutrients and toxic compounds in Swedish food baskets. (7 - 2012). Sweden. Nordberg, G. F., B. A. Fowler, M. Nordberg, and L. T. Friberg. 2014. Handbook on the Toxicology of Metals. 3rd ed. Academic press, USA. Norton, G. J., A. J. Travis, J. M. C. Danku, D. E. Salt, M. Hossain, M. R. Islam, and A. H. Price. 2017. Biomass and elemental concentrations of 22 rice cultivars grown under alternate wetting and drying conditions at three field sites in Bangladesh. Food and Energy Security 6: 98−112. Nyamangara, J. 1998. Use of sequential extraction to evaluate zinc and copper in a soil amended with sewage sludge and inorganic metal salts. Agriculture, Ecosystems Environment 69: 135−141. Oliveira, F. K. F., M. C. Oliveira, L. Gracia, R. L. Tranquilin, C. A. Paskocimas, F. V. Motta, E. Longo, J. Andrés, and M. R. D. Bomio. 2018. Experimental and theoretical study to explain the morphology of CaMoO4 crystals. Journal of Physics and Chemistry of Solids 114: 141−152. Olsen, S. R., and L. E. Sommers. 1982. Phosphorus. pp. 403−430. In A. L. Page, R. H. Miller, D.R.Keeney (Eds.) Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties. 2 ed. American Society of Agronomy, Inc., Soil Science Society of America, Inc., Madison, Wisconsin, USA. Oorts, K., E. Smolders, S. P. McGrath, C. A. M. van Gestel, M. J. McLaughlin, and S. Carey. 2016. Derivation of ecological standards for risk assessment of molybdate in soil. Environmental Chemistry 13: 168−180. Osmari, T. A., R. Gallon, M. Schwaab, E. Barbosa-Coutinho, J. B. Severo, and J. C. Pinto. 2013. Statistical analysis of linear and non-linear regression for the estimation of adsorption isotherm parameters. Adsorption Science Technology 31: 433-457. Parsons, J. G., M. V. Aldrich, and J. L. Gardea-Torresdey. 2002. Environmental and biological applications of extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) spectroscopies. Applied Spectroscopy Reviews 37: 187-222. Penner-Hahn, J. E. 2003. X-ray Absorption Spectroscopy. pp. 159−186. In J. A. McCleverty T. J. Meyer (Eds.) Comprehensive Coordination Chemistry II. 2nd ed. Elsevier Science. Phelan, P. J., and S. V. Mattigod. 1984. Adsorption of molybdate anion (MoO42-) by sodium saturated kaolinite. Clays and Clay Minerals 32: 45−48. Rana, M. S., X. C. Sun, M. Imran, Z. Khan, M. G. Moussa, M. Abbas, P. Bhantana, M. Syaifudin, I. U. Din, M. Younas, M. A. Shah, J. Afzal, and C. X. Hu. 2020. Mo-inefficient wheat response toward molybdenum supply in terms of soil phosphorus availability. Journal of Soil Science and Plant Nutrition 20: 1560−1573. Rapposch, M. H., J. B. Anderson, and E. Kostiner. 1980. Crystal structure of ferric molybdate, Fe2(MoO4)3. Inorganic Chemistry 19: 3531−3539. Rauret, G., J. F. López-Sánchez, A. Sahuquillo, R. Rubio, C. Davidson, A. Ure, and P. Quevauviller. 1999. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring 1: 57−61. Ravel, B. 2016. Quantitative EXAFS Analysis. pp. 281-302. In J. A. van Bokhoven C. Lamberti (Eds.) X‐Ray Absorption and X‐Ray Emission Spectroscopy. John Wiley Sons. Ravel, B., and M. Newville. 2005. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation 12: 537−541. Reddy, K. J., and S. P. Gloss. 1993. Geochemical speciation as related to the mobility of F, Mo and Se in soil leachates. Applied Geochemistry 8: 159−163. Reimann, C., and P. d. Caritat. 1998. Chemical Elements in the Environment. Springer-Verlag Berlin Heidelberg, Ribera, A. E., M. D. Mora, V. Ghiselini, R. Demanet, and F. Gallardo. 2010. Phosphorus-molybdenum relationship i………
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79259-
dc.description.abstract鉬為動植物生長之必要微量元素,亦為新興污染物。由於過往從微量元素的角度不易探究鉬在土壤中的移動性及生物有效性,因此對此至今尚未完全了解。有鑑於土壤鉬污染對動、植物生長的潛在風險,本研究目的為探討影響鉬在土壤中吸持能力的主要土壤性質,以及對小麥和水稻的有效性。 吸持反應為影響營養元素與污染物在土壤中移動性及有效性的重要反應之一,因此本研究以十一種台灣土壤進行鉬酸根的吸附與脫附實驗,並以皮爾森相關性分析探討影響土壤鉬吸附量與釋出能力的主要土壤性質為何。結果顯示,鉬在土壤中的吸持能力受土壤酸鹼度、游離性鐵鋁氧化物含量以及可交換性鋁和鈣含量所影響。在酸性土壤中鉬酸根的吸持量較高,然而吸附於游離性鐵鋁氧化物上的鉬酸根較易被釋出;而在中鹼性土壤中,則可能形成鉬酸鈣沉澱使其釋出能力較低。雖然土壤鉬吸持能力與游離性鐵鋁氧化物含量呈正相關,而未與無定型鐵氧化物含量達顯著相關,然而隨時間增加,無定型鐵氧化物可能逐漸轉變為結晶性鐵氧化物,而可能進一步影響鉬在土壤中的移動性。故本研究進一步於25及75 ℃下進行水鐵礦老化試驗,並觀察水礦老化對鉬酸根吸持能力之影響。結果顯示,鉬酸根離子主要以四面體雙牙單核的內圈錯合型態吸持於水鐵礦上,並隨水鐵礦逐漸轉變為赤鐵礦的過程中,鉬酸根會首先以八面體雙牙單核的內圈錯合型態吸持於鐵氧化物上,再逐漸被固定到鐵氧化物的結構中,而使鉬酸根的移動性下降。 為探討上述土壤性質如何影響對植物鉬的有效性,本研究以平鎮系 (酸性黏質)、台南系 (酸性砂質)及太康系 (鹼性黏質)土壤進行盆栽試驗,並觀察鉬在小麥與水稻中的累積情形、物種組成,以及鉬在根圈土壤的空間分布。結果顯示,小麥的鉬累積量隨土壤pH上升而增加,顯示土壤酸鹼度為影響小麥鉬累積量的重要因子之一;而水稻對鉬的累積量則以台南系高於太康系,並與土壤溶液中鉬濃度隨土壤pH上升而增加的趨勢不吻合,顯示土壤溶液的鉬濃度未能反映對水稻的鉬有效性。由土壤連續萃取與根部鉬酸根物種的分析推測,造成台南系土壤水稻植體鉬累積較高的主要原因為土壤中無定型鐵氧化物比例較高,使得較高比例的鉬酸根以吸持於無定型鐵氧化物的物種存在於土壤中以及水稻根部,並在浸水還原的狀態下隨鐵氧化物還原溶解釋出,進而被水稻根部所吸收。此結果也顯示植物對鉬吸收所呈現的土壤鉬有效性,無法單純以土壤吸脫附反應以及土壤溶液的結果來評估,而需考慮土壤氧化還原狀態與植物特性等因子的影響。 為了評估土壤鉬污染在環境中的潛在風險,本研究建議後續可進一步研究:(1) 可交換陽離子對鉬由土壤膠體脫附的影響,以了解可交換性陽離子組成如何影響鉬在土壤中的移動性; (2) 鐵的氧化還原反應對鉬的物種形態的影響,以探討水田土壤中鉬的有效性;(3) 釐清控制鉬由土壤移動至根圈並進一步被植物吸收的主要反應與影響因子,以了解影響鉬在土壤中對植物有效性的主要機制。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-23T08:56:51Z (GMT). No. of bitstreams: 1
U0001-1001202214362300.pdf: 21052221 bytes, checksum: 6ac0ab0dc3e60ea106ed556529d1561a (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents"摘要 I Abstract III Table of Contents VI List of Figures XI List of Tables XVI 1. Introduction 1 2. Objectives 9 3. Literature review 11 3.1 Occurrence of molybdenum in the natural environment 11 3.1.1 Molybdenum in soils and waters 11 3.1.2 Molybdenum in plants 12 3.2 Chemical speciation of molybdenum in the natural environment 20 3.2.1 Aqueous phase 20 3.2.2 Solid phase 22 3.3 Factors affecting molybdenum mobility and availability in soils 37 3.3.1 pH 37 3.3.2 Fe and Al oxides 38 3.3.3 Organic matter 39 3.3.4 Clay minerals 40 3.3.5 Calcite 41 3.3.6 Coexisting anions 41 3.3.7 Redox and hydraulic condition 42 3.3.8 Aging 43 3.4 Determination of molybdenum speciation and binding configurations 45 3.4.1 Thermodynamic calculations 45 3.4.2 Sequential extractions 49 3.4.3 X–ray absorption spectroscopy (XAS) 54 4. Materials and methods 57 4.1 Sorption and speciation of molybdate in soils: Implications for Mo mobility and availability 57 4.1.1 Soil preparation and characterization 57 4.1.2 Mo sorption and desorption experiments 60 4.1.3 Data Analysis 62 4.1.4 X-ray absorption spectroscopy analysis 63 4.1.5 Calculation of the activity diagram 65 4.1.6 Molybdate sorption on Fe and Al oxides 65 4.2 Effects of pH and aging on the sorption of molybdate by ferrihydrite 68 4.2.1 Preparation of 2-line ferrihydrite 68 4.2.2 Sorption and aging under room temperature (25 ℃) 68 4.2.3 Adsorption and aging under high temperature (75 ℃) 70 4.2.4 Ion chromatography 71 4.2.5 X-ray absorption spectroscopy analysis 71 4.2.6 X-ray diffraction (XRD) analysis 74 4.3 Molybdenum speciation in soils and its availability to rice and wheat plants 75 4.3.1 Soil characterization 75 4.3.2 Pot experiments 76 4.3.3 Plant analysis 78 4.3.4 Sequential Extraction of Mo in soil 79 4.3.5 X-ray absorption spectroscopy analysis 80 4.3.6 Soil thin section preparation and micro X-ray fluorescence (μ-XRF) analysis 83 5. Results and Discussion 85 5.1 Sorption and speciation of molybdate in soils: Implications for Mo mobility and availability 85 5.1.1 Soil properties 85 5.1.2 Sorption of molybdate in soils 88 5.1.3 Desorption of molybdate from soils 100 5.1.4 Chemical speciation of molybdate in soils after sorption 105 5.1.5 Sorption and desorption of molybdate on Al and Fe oxides 118 5.1.6 Conclusions 125 5.2 Effects of pH and aging on the sorption of molybdate by ferrihydrite 126 5.2.1 Molybdate sorption and structural transformation of ferrihydrite at pH 4, 6, and 10 as a function of aging time at 25 ℃ 127 5.2.2 Temporal transformation of ferrihydrite and sorbed molybdate at 75 ℃ 144 5.2.3 Transformation of FSMs as a function of aging time at 75 °C 151 5.2.4 Conclusions 160 5.3 Molybdenum speciation in soils and its availability to rice and wheat plants 161 5.3.1 Soil properties 162 5.3.2 Potential Molybdate toxicity to rice and wheat seedlings 164 5.3.3 Accumulation of Mo in wheat and rice plants grown until grain harvest 175 5.3.4 The release of Mo into soil solutions under submerged condition 182 5.3.5 Speciation and fractionation of molybdenum in rice soils 187 5.3.6 Distribution and speciation of Mo and other elements near rice roots 198 5.3.7 Conclusions 209 6. Conclusions 210 7. References 212 "
dc.language.isoen
dc.title土壤和水鐵礦對鉬酸根離子的吸持反應以及對小麥和水稻之鉬有效性的作用zh_TW
dc.titleThe retention of molybdate by soils and ferrihydrite and its effects on the availability of molybdenum to wheat and riceen
dc.date.schoolyear110-1
dc.description.degree博士
dc.contributor.author-orcid0000-0001-8656-8702
dc.contributor.oralexamcommittee李達源(Shih-Hong Chio),鄒裕民(Zi-Yi Chuang),許正一,莊愷瑋,劉雨庭
dc.subject.keyword土壤鉬有效性,X光吸收光譜,序列萃取,物種分析,吸附反應,脫附反應,無定型鐵氧化物,zh_TW
dc.subject.keywordSoil molybdenum availability,X-ray absorption spectroscopy (XAS),sequential extraction,chemical speciation,adsorption,desorption,amorphous iron oxide,en
dc.relation.page231
dc.identifier.doi10.6342/NTU202200034
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-01-13
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
U0001-1001202214362300.pdf20.56 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved