請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79246完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 胡凱康(Kae-Kang Hwu) | |
| dc.contributor.author | Meng-Ting Hsieh | en |
| dc.contributor.author | 謝孟婷 | zh_TW |
| dc.date.accessioned | 2022-11-23T08:56:36Z | - |
| dc.date.available | 2022-02-21 | |
| dc.date.available | 2022-11-23T08:56:36Z | - |
| dc.date.copyright | 2022-02-21 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-01-19 | |
| dc.identifier.citation | 王群山。2010。控制水稻穀粒長、穀粒寬、抽穗期、株高與穗長之數量性狀基因座的遺傳定位。臺灣大學農藝學研究所學位論文。 石瀞予。2018。探討控制水稻抽穗日數基因與播種期之交感。臺灣大學農藝學研究所學位論文。 吳心平。2008。秈稉稻雜交BC1F1族群之不平衡分離。臺灣大學農藝學研究所學位論文。 林再發。1980。臺中秈十號之育成。臺中區農業改良場研究彙報 (03): 01–06。 陳正昇、陳榮坤、金漢煊、林彥蓉。2010。以分子輔助選種導入hd1, Hd6和ehd1抽穗期基因至水稻越光品種。作物、環境與生物資訊 7: 1–20。 莊商路、林國清、吳文政。1990。水稻新品種台稉2號之育成。臺南區農業改良場研究彙報 (25): 1–20。 曾馨儀。2010。秈稉稻雜交BC1F1與F2族群之不平衡分離。臺灣大學農藝學研究所學位論文。 劉地寬。2020。甜瓜白粉病抗性數量性狀基因座定位。臺灣大學農藝學研究所學位論文。 Abe, A., S. Kosugi, K. Yoshida, S. Natsume, H. Takagi, H. Kanzaki, H. Matsumura, K. Yoshida, C. Mitsuoka, M. Tamiru, H. Innan, L. Cano, S. Kamoun, and R. Terauchi. 2012. Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotech 30(2): 174–178. Alheit, K.V., J.C. Reif, H.P. Maurer, V. Hahn, E.A. Weissmann, T. Miedaner, and T. Wurschum. 2011. Detection of segregation distortion loci in triticale (x Triticosecale Wittmack) based on a high-density DArT marker consensus genetic linkage map. BMC Genomics 12. Alonso, J.M., A.N. Stepanova, T.J. Leisse, C.J. Kim, H. Chen, P. Shinn, D.K. Stevenson, J. Zimmerman, P. Barajas, R. Cheuk, C. Gadrinab, C. Heller, A. Jeske, E. Koesema, C.C. Meyers, H. Parker, L. Prednis, Y. Ansari, N. Choy, H. Deen, M. Geralt, N. Hazari, E. Hom, M. Karnes, C. Mulholland, R. Ndubaku, I. Schmidt, P. Guzman, L. Aguilar-Henonin, M. Schmid, D. Weigel, D.E. Carter, T. Marchand, E. Risseeuw, D. Brogden, A. Zeko, W.L. Crosby, C.C. Berry, and J.R. Ecker. 2003. Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana. Science 301(5633): 653–657. Berger, F., Y. Hamamura, M. Ingouff, and T. Higashiyama. 2008. Double fertilization – caught in the act. Trends Plant Sci. 13(8): 437–443. Bloom, J.C. 2012. Genomic localization of the maize cross-incompatibility gene, Gametophyte factor 1 (ga1). Maydica 56(4). Cheng, R., A. Kleinhofs, and Y. Ukai. 1998. Method for mapping a partial lethal-factor locus on a molecular-marker linkage map of a backcross and doubled-haploid population. Theor Appl Genet 97: 293–298. Cheng, R., A. Saito, Y. Takano, and Y. Ukai. 1996. Estimation of the position and effect of a lethal factor locus on a molecular marker linkage map. Theor Appl Genet 93: 494–502. Corbett-Detig, R., P. Medina, H. Frérot, C. Blassiau, and V. Castric. 2019. Bulk pollen sequencing reveals rapid evolution of segregation distortion in the male germline of Arabidopsis hybrids. Evolution Letters 3(1): 93–103. Coury, D.A., C. Zhang, A. Ko, M.I. Skaggs, C.A. Christensen, G.N. Drews, K.A. Feldmann, and R. Yadegari. 2007. Segregation distortion in Arabidopsis gametophytic factor 1 (gfa1) mutants is caused by a deficiency of an essential RNA splicing factor. Sex Plant Reprod 20(2): 87–97. Dai, B., H. Guo, C. Huang, M.M. Ahmed, and Z. Lin. 2017. Identification and characterization of segregation distortion loci on cotton chromosome 18. Front. Plant Sci. 7: 2037. Doyle, J.J., and J.L. Doyle. 1990. Isolation of plant DNA from fresh tissue. Focus 12(13): 39–40. Faris, J.D., B. Laddomada, and B.S. Gill. 1998. Molecular mapping of segregation distortion loci in Aegilops tauschii. Genetics 149: 319–27. Feldmann, K.A., D.A. Coury, and M.L. Christianson. 1997. Exceptional segregation of a selectable marker (KanR) in Arabidopsis identifies genes important for gametophytic growth and development. Genetics 147(3): 1411–1422. Fishman, L., A.J. Kelly, E. Morgan, and J.H. Willis. 2001. A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. Genetics 159: 1701–1716. Fishman, L., and J.H. Willis. 2005. A novel meiotic drive locus almost completely distorts segregation in Mimulus (monkeyflower) hybrids. Genetics 169: 347–353. Food and Agriculture Organization of the United Nations. FAOSTAT statistical database. [Rome] : FAO, c1997-. Furuta, T., M. Ashikari, K.K. Jena, K. Doi, and S. Reuscher. 2017. Adapting Genotyping-by-Sequencing for Rice F2 Populations. G3 (Bethesda) 7(3): 881–893. Gershenson, S. 1928. A new sex-ratio abnormality in Drosophila obscura. Genetics 13(6): 488–507. Goloenko, I.M., O.G. Davydenko, and A.M. Shimkevich. 2002. Segregation distortion of marker nuclear genes in alloplasmic and isoplasmic lines of barley. Russ. J. Genet. 38: 791–795. Guo, Y., Y. Wu, J.A. Anderson, J.Q. Moss, and L. Zhu. 2015. Disomic inheritance and segregation distortion of SSR markers in two populations of Cynodon dactylon (L.) Pers. var. dactylon. PLOS ONE 10(8): e0136332. Harushima, Y., N. Kurata, M. Yano, Y. Nagamura, T. Sasaki, Y. Minobe, and M. Nakagahra. 1996. Detection of segregation distortions in an indica-japonica rice cross using a high-resolution molecular map. Theor Appl Genet 92: 145–150. Herrero, M., and H.G. Dickinson. 1979. Pollen-pistil incompatibility in Petunia hybrida: changes in the pistil following compatible and incompatible intraspecific crosses. Journal of Cell Science 36(1): 1–18. Howard, D.J. 1999. Conspecific sperm and pollen precedence and speciation. Annu. Rev. Ecol. Evol. Syst. 30: 109–132. Howden, R., S.K. Park, J.M. Moore, J. Orme, U. Grossniklaus, and D. Twell. 1998. Selection of T-DNA-tagged male and female gametophytic mutants by segregation distortion in Arabidopsis. Genetics 149: 621–31. Huang, X., Q. Feng, Q. Qian, Q. Zhao, L. Wang, A. Wang, J. Guan, D. Fan, Q. Weng, T. Huang, G. Dong, T. Sang, and B. Han. 2009. High-throughput genotyping by whole-genome resequencing. Genome Res 19(6): 1068–1076. HwangBo, K., S.H. Son, J.S. Lee, S.R. Min, S.M. Ko, J.R. Liu, D. Choi, and W.J. Jeong. 2010. Rapid and simple method for DNA extraction from plant and algal species suitable for PCR amplification using a chelating resin Chelex 100. Plant Biotechnol Rep 4(1): 49–52. Jiang, W.Z., S.H. Chu, R.H. Piao, J.H. Chin, Y.M. Jin, J. Lee, Y.L. Qiao, L. Han, Z.Z. Piao, and H.J. Koh. 2008. Fine mapping and candidate gene analysis of hwh1 and hwh2, a set of complementary genes controlling hybrid breakdown in rice. Theor. Appl. Genet. 116: 1117–1127. Jobes, D.V., D.L. Hurley, and L.B. Thien. 1995. Plant DNA Isolation: A method to efficiently remove polyphenolics, polysaccharides, and RNA. Taxon 44(3): 379–386. Khush, G.S. 1997. Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35(1–2): 25–34. Kim, B., S.M. Jang, S.-H. Chu, Y. Bordiya, M.B. Akter, J. Lee, J.H. Chin, and H.-J. Koh. 2014. Analysis of segregation distortion and its relationship to hybrid barriers in rice. Rice 7(1): 3. Kim, Y.-J., M.-H. Kim, W.-J. Hong, S. Moon, E.-J. Kim, J. Silva, J. Lee, S. Lee, S.T. Kim, S.K. Park, and K.-H. Jung. 2021. GORI, encoding the WD40 domain protein, is required for pollen tube germination and elongation in rice. The Plant Journal 105(6): 1645–1664. Kumar, S., B.S. Gill, and J.D. Faris. 2007. Identification and characterization of segregation distortion loci along chromosome 5B in tetraploid wheat. Mol Genet Genomics 278: 187–96. Langmead, B., and S.L. Salzberg. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9(4): 357–359. Li, G., J. Jin, Y. Zhou, X. Bai, D. Mao, C. Tan, G. Wang, and Y. Ouyang. 2019. Genome-wide dissection of segregation distortion using multiple inter-subspecific crosses in rice. Sci. China Life Sci. 62(4): 507–516. Li, G., X. Li, Y. Wang, J. Mi, F. Xing, D. Zhang, Q. Dong, X. Li, J. Xiao, Q. Zhang, and Y. Ouyang. 2017. Three representative inter and intra-subspecific crosses reveal the genetic architecture of reproductive isolation in rice. The Plant Journal 92(3): 349–362. Lu, H., J. Romero-Severson, and R. Bernardo. 2002. Chromosomal regions associated with segregation distortion in maize. Theor. Appl. Genet. 105: 622–628. Matsubara, K., Khin-Thidar, and Y. Sano. 2003. A gene block causing cross-incompatibility hidden in wild and cultivated rice. Genetics 165: 343–352. Matsui, T., and H. Kagata. 2003. Characteristics of floral organs related to reliable self‐pollination in rice (Oryza sativa L.). Ann Bot 91(4): 473–477. Matsushita, S., T. Iseki, Y. Fukuta, E. Araki, S. Kobayashi, M. Osaki, and M. Yamagishi. 2003. Characterization of segregation distortion on chromosome 3 induced in wide hybridization between indica and japonica type rice varieties. Euphytica 134: 27–32. McKenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, and M.A. DePristo. 2010. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20(9): 1297–1303. Michelmore, R.W., I. Paran, and R.V. Kesseli. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. PNAS 88(21): 9828–9832. Moyle, L.C., and E.B. Graham. 2006. Genome-wide associations between hybrid sterility QTL and marker transmission ratio distortion. Mol. Biol. Evol. 23: 973–980. Obenchain, V., M. Lawrence, V. Carey, S. Gogarten, P. Shannon, and M. Morgan. 2014. VariantAnnotation : a Bioconductor package for exploration and annotation of genetic variants. Bioinformatics 30(14): 2076–2078. Pfahler, P.L. 1967. Fertilization ability of maize pollen grains. II. pollen genotype, female sporophyte and pollen storage interactions. Genetics 57(3): 513–521. Poland, J.A., P.J. Brown, M.E. Sorrells, and J.-L. Jannink. 2012. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7(2): e32253. Qin, X., W. Li, Y. Liu, M. Tan, M. Ganal, and R.T. Chetelat. 2018. A farnesyl pyrophosphate synthase gene expressed in pollen functions in S-RNase-independent unilateral incompatibility. The Plant Journal 93(3): 417–430. Quillet, M.C., N. Madjidian, Y. Griveau, H. Serieys, M. Tersac, M. Lorieux, and A. Berville. 1995. Mapping genetic factors controlling pollen viability in an interspecific cross in Helianthus sect. Helianthus. Theor Appl Genet 91: 1195–1202. Reflinur, B. Kim, S.M. Jang, S.-H. Chu, Y. Bordiya, M.B. Akter, J. Lee, J.H. Chin, and H.-J. Koh. 2014. Analysis of segregation distortion and its relationship to hybrid barriers in rice. Rice 7. Sessions, A., E. Burke, G. Presting, G. Aux, J. McElver, D. Patton, B. Dietrich, P. Ho, J. Bacwaden, C. Ko, J.D. Clarke, D. Cotton, D. Bullis, J. Snell, T. Miguel, D. Hutchison, B. Kimmerly, T. Mitzel, F. Katagiri, J. Glazebrook, M. Law, and S.A. Goff. 2002. A high-throughput Arabidopsis reverse genetics system. The Plant Cell 14(12): 2985–2994. Singh, A., V.K. Singh, S.P. Singh, R.T.P. Pandian, R.K. Ellur, D. Singh, P.K. Bhowmick, S. Gopala Krishnan, M. Nagarajan, K.K. Vinod, U.D. Singh, K.V. Prabhu, T.R. Sharma, T. Mohapatra, and A.K. Singh. 2012. Molecular breeding for the development of multiple disease resistance in Basmati rice. AoB PLANTS 2012(pls029). Smith, I.L., K. Halpin, D. Warrilow, and G.A. Smith. 2001. Development of a fluorogenic RT-PCR assay (TaqMan) for the detection of Hendra virus. Journal of Virological Methods 98(1): 33–40. Sussman, M.R., R.M. Amasino, J.C. Young, P.J. Krysan, and S. Austin-Phillips. 2000. The Arabidopsis knockout facility at the University of Wisconsin–Madison1. Plant Physiology 124(4): 1465–1467. Swanson, R.J., A.T. Hammond, A.L. Carlson, H. Gong, and T.K. Donovan. 2016. Pollen performance traits reveal prezygotic nonrandom mating and interference competition in Arabidopsis thaliana. American Journal of Botany 103(3): 498–513. Tester, M., and P. Langridge. 2010. Breeding technologies to increase crop production in a changing world. Science 327(5967): 818–822. Visscher, P.M., C.S. Haley, and R. Thompson. 1996. Marker-assisted introgression in backcross breeding programs. Genetics 144(4): 1923–1932. Wang, C., C. Zhu, H. Zhai, and J. Wan. 2005. Mapping segregation distortion loci and quantitative trait loci for spikelet sterility in rice (Oryza sativa L.). Genetics Research 86(2): 97–106. Wu, Y.P., P.Y. Ko, W.C. Lee, F.J. Wei, S.C. Kuo, S.W. Ho, A.L. Hour, Y.I. Hsing, and Y.R. Lin. 2010. Comparative analyses of linkage maps and segregation distortion of two F2 populations derived from japonica crossed with indica rice. Hereditas 147: 225–236. Xia, F., and Y. Ouyang. 2020. Recurrent breakdown and rebalance of segregation distortion in the genomes: battle for the transmission advantage. aBIOTECH 1(4): 246–254. Xie, Y., J. Tang, X. Xie, X. Li, J. Huang, Y. Fei, J. Han, S. Chen, H. Tang, X. Zhao, D. Tao, P. Xu, Y.-G. Liu, and L. Chen. 2019. An asymmetric allelic interaction drives allele transmission bias in interspecific rice hybrids. Nat Commun 10(1): 2501. Xu, S. 2008. Quantitative trait locus mapping can benefit from segregation distortion. Genetics 180(4): 2201–2208. Xu, X., L. Li, X. Dong, W. Jin, A.E. Melchinger, and S. Chen. 2013. Gametophytic and zygotic selection leads to segregation distortion through in vivo induction of a maternal haploid in maize. J. Exp. Bot. 64(4): 1083–1096. Xu, Y., L. Zhu, J. Xiao, N. Huang, and S.R. McCouch. 1997. Chromosomal regions associated with segregation distortion of molecular markers in F2 , backcross, doubled haploid, and recombinant inbred populations in rice ( Oryza sativa L.). MGG 253: 535–545. Yamagishi, M., Y. Takeuchi, I. Tanaka, I. Kono, K. Murai, and M. Yano. 2010. Segregation distortion in F2 and doubled haploid populations of temperate japonica rice. J. Genet. 89: 237–241. Yanagihara, S., S.R. McCouch, K. Ishikawa, Y. Ogi, K. Maruyama, and H. Ikehashi. 1995. Molecular analysis of the inheritance of the S-5 locus, conferring wide compatibility in Indica/Japonica hybrids of rice (O. sativa L.). Theoret. Appl. Genetics 90(2): 182–188. Yang, J., X. Zhao, K. Cheng, H. Du, Y. Ouyang, J. Chen, S. Qiu, J. Huang, Y. Jiang, L. Jiang, J. Ding, J. Wang, C. Xu, X. Li, and Q. Zhang. 2012. A killer-protector system regulates both hybrid sterility and segregation distortion in rice. Science 337(6100): 1336–1340. Yao, W. 2013. BSgenome.Osativa.MSU.MSU7: Oryza sativa full genome (MSU7). You, F.M., N. Huo, Y.Q. Gu, M. Luo, Y. Ma, D. Hane, G.R. Lazo, J. Dvorak, and O.D. Anderson. 2008. BatchPrimer3: A high throughput web application for PCR and sequencing primer design. BMC Bioinformatics 9(1): 253. Yu, X., Z. Zhao, X. Zheng, J. Zhou, W. Kong, P. Wang, W. Bai, H. Zheng, H. Zhang, J. Li, J. Liu, Q. Wang, L. Zhang, K. Liu, Y. Yu, X. Guo, J. Wang, Q. Lin, F. Wu, Y. Ren, S. Zhu, X. Zhang, Z. Cheng, C. Lei, S. Liu, X. Liu, Y. Tian, L. Jiang, S. Ge, C. Wu, D. Tao, H. Wang, and J. Wan. 2018. A selfish genetic element confers non-Mendelian inheritance in rice. Science 360(6393): 1130–1132. Zhao, J., D. Han, K. Shi, L. Wang, J. Gao, and R. Yang. 2018. Influence of epistatic segregation distortion loci on genetic marker linkages in Japanese flounder. Genomics 110(1): 59–66. Zuo, J.-F., Y. Niu, P. Cheng, J.-Y. Feng, S.-F. Han, Y.-H. Zhang, G. Shu, Y. Wang, and Y.-M. Zhang. 2019. Effect of marker segregation distortion on high density linkage map construction and QTL mapping in Soybean (Glycine max L.). Heredity 123(5): 579–592. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79246 | - |
| dc.description.abstract | "過去在水稻秈稉雜交F2族群第三條與第六條染色體中觀察到不平衡分離的現象,推測各存在至少一個不平衡分離基因座 (segregation distortion locus, SDL),並利用正反回交族群確認為雄配子體效應,又透過花粉染色實驗發現沒有花粉不稔的現象,推測其效應為雄配子體競爭 (male gamete competition),命名為Mgc3與Mgc6。本研究使用水稻秈稉雜交重組自交系 (recombinant inbred lines, RILs) F8:9世代基因型資料初步定位Mgc3與Mgc6及選拔家系建立回交族群,利用分子標誌逐步縮小預期區間,最終將Mgc3與Mgc6精細定位於第三條染色體13,260,366-13,774,613 bp與第六條染色體30,399,261-30,957,282 bp處,分別長514,247 bp與558,021 bp。透過混合花粉對偶基因分離比檢測排除染色體驅動的可能,推論Mgc3與Mgc6效應為花粉競爭,並對效應進行探討。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T08:56:36Z (GMT). No. of bitstreams: 1 U0001-1801202211423600.pdf: 2509081 bytes, checksum: e3b647bb8efbb7d277d855a8e5b83983 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 目錄 誌謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 vii 第一章 前言 1 第二章 前人研究 4 2-1、 不平衡分離 4 2-2、 花粉競爭 5 2-3、 不平衡分離與族群結構 6 2-4、 定位不平衡分離基因座 7 2-5、 水稻秈稉雜交族群 10 第三章 材料與方法 12 3-1、 遺傳材料與精細定位 12 3-2、 DNA萃取與定量 15 3-3、 定序資料 16 3-4、 異質結合個體花粉對偶基因頻度測定 18 3-5、 分子標誌設計與基因型鑑定 18 3-6、 族群模擬 20 第四章 結果 22 4-1、 試驗族群推進 22 4-2、 Mgc3精細定位 23 4-3、 Mgc6精細定位 27 4-4、 兩SDL同為異質結合家系 30 4-5、 混合花粉對偶基因分離比 32 4-6、 Mgc3與Mgc6的效應 34 第五章 討論 35 5-1、 Mgc3與Mgc6的精細定位 35 5-2、 Mgc3與Mgc6的效應與交互作用 37 參考文獻 40 附錄一、預期區間內的候選基因 48 附錄二、分子標誌序列Custom Assay ID 52 圖目錄 圖一、 試驗族群建立流程圖 14 圖二、 家系譜系表 22 圖三、 Mgc3精細定位過程 26 圖四、 Mgc6精細定位過程 29 圖五、 026-4-01-004-11花粉與對照樣品以S3_ 13928023檢驗結果 33 表目錄 表一、 回交家系與回交種子檢驗 23 表二、 Mgc3自交後裔檢定結果 25 表三、 Mgc6自交後裔檢定結果 28 表四、 Mgc3與Mgc6基因型同為ij家系分離比 31 表五、 族群擬結果 34 | |
| dc.language.iso | zh-TW | |
| dc.title | 精細定位水稻秈稉雜交雄配子體競爭Mgc3與Mgc6基因 | zh_TW |
| dc.title | Fine mapping male gamete competition Mgc3 and Mgc6 gene in rice (Oryza sativa L.) | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳凱儀(Wen-Yau Liang),黃永芬(Wei-Chung Hsu) | |
| dc.subject.keyword | 不平衡分離,精細定位,雄配子體競爭,花粉競爭,族群模擬, | zh_TW |
| dc.subject.keyword | segregation distortion,fine mapping,male gamete competition,pollen competition,simulation, | en |
| dc.relation.page | 55 | |
| dc.identifier.doi | 10.6342/NTU202200087 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-01-19 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1801202211423600.pdf | 2.45 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
