請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79232完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭茂坤(Mao-Kuen Kuo) | |
| dc.contributor.author | Yen-Ju Lin | en |
| dc.contributor.author | 林延儒 | zh_TW |
| dc.contributor.author | f98543039 | |
| dc.date.accessioned | 2022-11-23T08:56:14Z | - |
| dc.date.available | 2022-02-16 | |
| dc.date.available | 2022-11-23T08:56:14Z | - |
| dc.date.copyright | 2022-02-16 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-02-14 | |
| dc.identifier.citation | [1] W. Shockley, and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells,” Journal of Applied Physics 32, 510 – 519 (1961). [2] A. Luque, and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Physical Review Letters 78, 26 (1997). [3] I. Ramiro, A. Martí, E. Antolín, and A. Luque, “Review of experimental results related to the operation of intermediate band solar cells,” IEEE Journal of Photovoltaics 4, 736 – 748 (2014). [4] P. Harrison, Quantum Wells, Wires and Dots: theoretical and computational physics, New York: John Wiley Sons (2000). [5] J. Singh, Electronic and Optoelectronic Properties of Semiconductor Structures, Cambridge: Cambridge University Press (2003). [6] E. Antolín, A. Martí, C. D. Farmer, P. G. Linares, E. Hernández, A. M. Sánchez, T. Ben, S. I. Molina, C. R. Stanley, and A. Luque, “Reducing carrier escape in the InAs/GaAs quantum dot intermediate band solar cell,” Journal of Applied Physics 108, 064513 (2010). [7] A. Luque, A. Martí, C. Stanley, N. López, L. Cuadra, D. Zhou, J. L. Pearson, and A. McKee, “General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence,” Journal of Applied Physics 96, 903 (2004). [8] H. Y. Liu, I. R. Sellers, M. Gutiérrez, K. M. Groom, W. M. Soong, M. Hopkinson, J. P. R. David, R. Beanland, T. J. Badcock, D. J. Mowbray, and M. S. Skolnick, “Influences of the spacer layer growth temperature on multilayer InAs/GaAs quantum dot structures,” Journal of Applied Physics 96, 1988 (2004). [9] J. M. Ulloa, I. W. D. Drouzas, P. M. Koenraad, D. J. Mowbray, M. J. Steer, H. Y. Liu, and M. Hopkinson, “Suppression of InAs/GaAs quantum dot decomposition by the incorporation of a GaAsSb capping layer,” Applied Physics Letters 90, 213105 (2007). [10] W. Shan, W. Walukiewicz, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, “Band anticrossing in GaInNAs alloys,” Physical Review Letters 82, 1221 (1999). [11] M. Welna, R. Kudrawiec, Y. Nabetani, and W. Walukiewicz, “Band anticrossing in ZnOSe highly mismatched alloy,” Applied Physics Express 7, 071202 (2014). [12] R. Kudrawiec, A. V. Luce, M. Gladysiewicz, M. Ting, Y. J. Kuang, C. W. Tu, O. D. Dubon, K. M. Yu, and W. Walukiewicz, “Electronic Band Structure of GaNxPyAs1−x−y Highly Mismatched Alloys: Suitability for Intermediate-Band Solar Cells,” Physical Review Applied 1, 034007 (2014). [13] S. Nacer, and A. Aissat, “Simulation and optimization of current and lattice matching double-junction GaNAsP/Si solar cells,” Superlattices and Microstructures 89, 242 (2016). [14] K. Yamane, M. Goto, K. Takahashi, K. Sato, H. Sekiguchi, H. Okada, and A. Wakahara, “Growth of a lattice-matched GaAsPN p-i-n junction on a Si substrate for monolithic III-V/Si tandem solar cells,” Applied Physics Express 10, 075504 (2017). [15] T. Sertel, Y. Ozen, S. S. Cetin, M. K. Ozturk, and S. Ozcelik, “Structural, optical and electrical characterization of dilute nitride GaP1-x-yAsyNx structures grown on Si and GaP substrates,” Journal of Materials Science: Materials in Electronics 29, 1936 (2018) [16] S. Gupta, W. T. Navaraj, L. Lorenzelli, and R. Dahiya, “Ultra-thin chips for high-performance flexible electronics,” npj Flexible Electronics 2, 8 (2018). [17] S. Tomić, “Intermediate-band solar cells: Influence of band formation on dynamical processes in InAs/GaAs quantum dot arrays,” Physical Review B 82, 195321 (2010). [18] U. E. H. Laheld, F. B. Pederson, and P. C. Hemmer, “Excitons in type-II quantum dots: Finite offsets,” Physical Review B 52, 2697 (1995). [19] R. B. Laghumavarapu, A. Moscho, A. Khoshakhlagh, M. El-Emawy, L. F. Lester, and D. L. Huffaker, “GaSb/GaAs type II quantum dot solar cells for enhanced infrared spectral response,” Applied Physics Letters 90, 173125 (2007). [20] X. Li, J. W. M. Chon, R. A. Evans, and M. Gu, “Two-photon energy transfer enhanced three-dimensional optical memory in quantum-dot and azo-dye doped polymers” Applied Physics Letters, 92, 063309 (2008). [21] H. Y. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, F. Suarez, J. S. Ng, M. Hopkinson, and J. P. R. David, “Room-temperature 1.6 μm light emission from InAs/GaAs quantum dots with a thin GaAsSb cap layer,” Journal Applied Physics 99, 046104 (2006). [22] Y. D. Jang, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, J. Park, D. Lee, H. Y. Liu, M. J. Steer, and M. Hopkinson, “Carrier lifetimes in type-II InAs quantum dots capped with a GaAsSb strain reducing layer,” Applied Physics Letters 92, 251905 (2008).. H. Wu, L. Chang, P. Y. Lin, C. H. Chiang, J. F. Chen, and T. W. Chi, “Structural and optical properties of buried InAs/GaAs quantum dots on GaAsSb buffer layer,” Journal of Physics D: Applied Physics 42, 185106 (2009). [23] Y. H. Wu, L. Chang, P. Y. Lin, C. H. Chiang, J. F. Chen, and T. W. Chi, “Structural and optical properties of buried InAs/GaAs quantum dots on GaAsSb buffer layer,” Journal of Physics D: Applied Physics 42, 185106 (2009). [24] K. Y. Ban, S. P. Bremner, G. Liu, S. N. Dahal, P. C. Dippo, A. G. Norman, and C. B. Honsberg, “Use of a GaAsSb buffer layer for the formation of small, uniform, and dense InAs quantum dots,” Applied Physics Letters 96, 183101 (2010). [25] P. Klenovský, V. Křápek, D. Munzar, and J. Humlíček, “Electronic structure of InAs quantum dots with GaAsSb strain reducing layer: Localization of holes and its effect on the optical properties,” Applied Physics Letters 97, 203107 (2010). [26] W. S. Liu, H. M. Wu, F. H. Tsao, T. L. Hsu, and J. I. Chyi, “Improving the characteristics of intermediate-band solar cell devices using a vertically aligned InAs/GaAsSb quantum dot structure,” Solar Energy Materials Solar Cells 105, 237 (2012). [27] H. Fujita, K. Yamamoto, J. Ohta, Y. Eguchi, and K. Yamaguchi, “In-plane quantum-dot superlattices of InAs on GaAsSb/GaAs (001) for intermediate band solar-cells,” 37th IEEE Photovoltaic Specialists Conference (PVSC),2011 IEEE 2011 June, 002612, Seattle, Washington (2011). [28] Y. Eguchi, M. Shiokawa, K. Sakamoto, and K. Yamaguchi, “Intermediate band solar cells using in-plane ultrahigh-density InAs/GaAsSb quantum-dot sheets,” 38th IEEE Photovoltaic Specialists Conference (PVSC), 000045, Austin, Texas (2012). [29] M. Wełna, K. Zelazna, A. Létoublon, C. Cornet, and R. Kudrawiec, “Stability of the intermediate band energy position upon temperature changes in GaNP and GaNPAs,” Solar Energy Materials and Solar Cells 196, 131 (2019). [30] N. López, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, “Engineering the electronic band structure for multiband solar cells,” Physical Review Letters 106, 028701 (2011). [31] H. Jussila, P. Kivisaari, J. Lemettinen, T. Tanaka, and M. Sopanen, “Two-photon absorption in GaAs1−x−yPyNx intermediate-band solar cells,” Physical Review Applied 3, 054007 (2015). [32] K. Zelazna, R. Kudrawiec, A. Luce, K. –M. Yu, Y. J. Kuang, C. W. Tu, and W. Walukiewicz, “Photoreflectance studies of optical transitions in GaNPAs intermediate band solar cell absorbers,” Solar Energy Materials and Solar Cells 188, 99 (2018). [33] K. M. Yu, W. Walukiewicz, J. W. Ager III, D. Bour, R. Farshchi, O. D. Dubon, S. X. Li, I. D. Sharp,and E. E. Halle, “Multiband GaNAsP Quaternary Alloys,” Applied Physics Letters 88, 092110 (2006). [34] K. Zelazna, M. Gladysiewicz, M. P. Polak, S. Almosni, A. Létoublon, C. Cornet, O. Durand, W. Walukiewicz, and R. Kudrawiec, “Nitrogen-Related Intermediate Band in P-Rich GaNxPyAs1−x−y Alloys,” Scientific Reports 7, 15703 (2017). [35] J. H. Petermann, D. Zielke, J. Schmidt, F. Haase, E. G. Rojas, and R. Brendel, “19%-efficient and 43-m-thick crystalline Si solar cell from layer transfer using porous silicon,” Progress in Photovoltaics: Research and Applications 20, 1 (2011). [36] S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, and Y. Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Letters 13, 4393 (2013). [37] J. L. Cruz-Campa, G. N. Nielson, P. J. Resnick, C. A. Sanchez, P. J. Clews, M. Okandan, T. Friedmann, and V. P. Gupta, “Ultrathin flexible crystalline silicon: microsystem-enabled photovoltaics,” IEEE Journal of Photovoltaics 1, 3(2011). [38] P. R. Pudasaini, M. Sharma, F. Ruiz-Zepeda, and A. A. Ayon, “Ultrathin, flexible, hybrid solar cells in sub-ten micrometers single crystal silicon membrane,” Proceeding of the IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, USA, 0953, 8-13 June 2014. [39] D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum dot heterostructures, West Sussex: John Wiley Sons (1999). [40] R. F. C. Farrow, Molecular Beam Epitaxy: Applications to Key Materials, New Jersey: Noyes Publications (1995). [41] H. O. Pierson, Handbook of Chemical Vapor Deposition: Principles, Technology and Applications, 2nd Ed, New York: Noyes Publications (1999). [42] C. Pryor, J. Kim, L. W. Wang, A. J. Williamson, and A. Zunger, “Comparison of two methods for describing the strain profiles in quantum dots,” Journal of Applied Physics 83, 2548 (1998). [43] M. E. Bachlechner, A. Omeltchenko, A. Nakano, R. K. Kalia, P. Vashishta, I. Ebbsjö, A. Madhukar, and P.Shintani, “Mulitimillion-atom molecular dynamics simulation of atomic level stresses in Si(111)/Si3N4(0001) nanopixels,” Applied Physics Letters 72, 1969 (1998). [44] Y. Kikuchi, H. Sugii, and K. Shintani, “Strain profiles in pyramidal quantum dots by mean of atomistic simulation,” Journal of Applied Physics 89, 1191 (2001). [45] A. Schliwa, M. Winkelnkemper, and D. Bimberg, “Impact of size, shape, and composition on piezoelectric effects and electronic properties of In(Ga)As/ GaAs quantum dots,” Physical Review B 76, 205324 (2007). [46] T. Benabbas, P. Francois, Y. Androussi, and A. Lefebvre, “Stress relaxation in highly strained InAs/GaAs structures as studies by finite element analysis and transmission electron microscopy,” Journal of Applied Physics 80, 2763 (1996). [47] T. Benabbas, Y. Androussi, and A. Lefebvre, “A finite-element study of strain field in vertically aligned InAs islands in GaAs,” Journal of Applied Physics 86, 1945 (1999). [48] G. Muralidharan, “Strains in InAs quantum dots embedded in GaAs: A finite element study,” Japanese Journal of Applied Physics 39, 658 (2000). [49] G. R. Liu, and S. S. Q. Jerry, “A finite element study of stress and strain fields of InAs quantum dots embedded in GaAs,” Semiconductor science and technology 17, 630 (2002). [50] M. K. Kuo, T. R. Lin, K. Hong, B. T. Liao, H. T. Lee, and C. H. Yu, “Two-step strain analysis of self-assembled InAs/GaAs quantum dots,” Semiconductor science and technology 21, 626 (2006). [51] M. K. Kuo, T. R. Lin, B. T. Liao, and C. H. Yu, “Strain effects on optical properties of pyramidal InAs/GaAs quantum dots,” Physica E: Low-dimensional Systems and Nanostructure 26, 199 (2005). [52] 洪國彬,烏采結構氮化銦鎵量子點光電性質之研究,國立臺灣大學應用力學研究所博士論文,台北市(2010)。 [53] 張瀚允,銻砷化鎵應力緩衝層對砷化銦鎵量子點結構光電特性之研究,國立臺灣大學應用力學研究所碩士論文,台北市(2012)。 [54] 古運承,砷化銦量子盤/線耦合砷化鋁鎵/砷化鎵量子井應用於中間帶太陽能電池,國立臺灣大學應用力學研究所碩士論文,台北市(2016)。 [55] J. C. Slater, “A simplification of Hartree-Fock method,” Physical Review 81, 385 (1951). [56] P. W. Langhoff, M. Karplus, and R. P. Hurst, “Approximations to Hartree-Fock Perturbation Theory,” The Journal of Chemical Physics 44, 505 (1966). [57] C. Kittel, Introduction on Solid State Physics, New York: John Wiley (1995). [58] S. Lee, L. Jönsson, J. W. Wilkins, G. W. Bryant, and G. Klimeck, “Electron-hole corrections in semiconductor quantum dots with tight-binding wave functions,” Physical Review B 63, 195318 (2001). [59] N. Baer, S. Schulz, S. Schumachar, P. Gartner, G. Czycholl, and F. Jahnke, “Optical properties of self-organized wurtzite InN/GaN quantum dots: A combined atomistic tight-binding and full configuration interaction calculation,” Applied Physics Letters 87, 231114 (2005). [60] M. Lorke, J. Seebeck, P. Gartner, F. Jahnke, and S. Schulz, “Excitation-induced energy shifts in the optical gain spectra of InN quantum dots,” Applied Physics Letter 95, 081108 (2009). [61] M. Cardona, N. E. Christensen, and G. Fasol, “Relativistic band structure and spin-orbit splitting of zinc-blende-type semiconductors,” Physical Review B 38, 1806 (1988). [62] S. Tomić, E. P. O’Reilly, P. J. Klar, H. Grüning, W. Heimbrodt, W. M. Chen, and I. A. Buyanova, “Influence of conduction-band nonparabolicity on electron confinement and effective mass in GaNxAs1−x/GaAs quantum wells,” Physical Review B 69, 245305 (2004). [63] K. B. Hong, and M. K. Kuo, “Influence of wetting layers on the electric potentials and optical properties of InGaN quantum dots,” Semiconductor Science and Technology 25, 115015 (2010). [64] J. Singh, Quantum mechanics - fundamentals and applications to technology, New York: John Wiley Sons (1997). [65] G. Liu and S. L. Chung, “Modeling of Sb-based type-II quantum cascade lasers,” Physical Review B 65, 165220 (2002). [66] S. L. Chuang, Physics of optoelectronic devices, New Jersey: John Wiley Sons (1995). [67] I. Vurgaftman, J. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” Journal of Applied Physics 89, 5815 (2001). [68] S. Tomić, T. Sogabe, and Y. Okada, “In-plane coupling effect on absorption coefficients of InAs/GaAs quantum dots arrays for intermediate band solar cell,” Progress in Photovoltaics: Research and Applications 23, 546 (2015) [69] J. Andrzejewski, G. Sek, E. OReilly, A. Fiore, and J. Misiewicz, “Eight-band k∙ p calculations of the composition contrast effect on the linear polarization properties of columnar quantum dots,” Journal of Applied Physics 107, 073509 (2010). [70] J. Y. Duboz, “Energy levels and intersubband transition in InGaAsN/AlGaAs quantum wells,” Physical Review B 75, 045327 (2007). [71] J. Nelson, The Physics of solar cells, London: Imperial college press (2003). [72] X. Li, N. P. Hylton, V. Giannini, K. H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Multi-dimensional modeling of solar cells with electromagnetic and carrier transport calculations,” Progress in Photovoltaics: Research and Applications 21, 109 (2013). [73] K. Yoshida, Y. Okada, and N. Sano, “Device simulation of intermediate band solar cells: Effects of doping and concentration,” Journal of Applied Physics 112, 084510 (2012) [74] W. H. Chang, Y. A. Liao, W. T. Hsu, M. C. Lee, P. C. Chiu, and J. I. Chyi, “Carrier dynamics of type II InAs/GaAs quantum dots covered by a thin GaAs1-xSbx layer,” Applied Physics Letters 93, 033107 (2008). [75] S. P. Bremner, L. Nataraj, S. G. Cloutier, C. Weiland, A. Pancholi, and R. Opila, “Use of Sb spray for improved performance of InAs/GaAs quantum dots for novel photovoltaic structures,” Solar Energy Materials Solar Cells 95, 1665 (2011). [76] W. S. Liu, T. F. Chu, and T. H. Huang, “Energy band structure tailoring of vertically aligned InAs/GaAsSb quantum dot structure for intermediate-band solar cell application by thermal annealing process,” Optics Express 22, 30963 (2014). [77] W. T. Hsu, Y. A. Liao, F. C. Hsu, P. C. Chiu, J. I. Chyi, and W. H. Chang, “Effects of GaAsSb capping layer thickness on the optical properties of InAs quantum dots,” Applied Physics Letters 99, 073108 (2011). [78] P. J. Simmonds, R. B. Laghumavarapu, M. Sun, A. Lin, C. J. Reyner, B. Liang, and D. L. Huffaker, “Structural and optical properties of InAs/AlAsSb quantum dots with GaAs(Sb) cladding layers,” Applied Physics Letters 100, 243108 (2012). [79] S. Tomić, “Effect of Sb induced type II alignment on dynamical processes in InAs/GaAs/GaAsSb quantum dots: Implication to solar cell design,” Applied Physics Letters 103, 072112 (2013). [80] J. Vysločil, P. Gladkov, O. Petříček, A. Hospodková, and J. Pangrác, “Growth and properties of AIIIBV QD structures for intermediate band solar cell,” Journal of Crystal Growth 414, 172 (2015). [81] A. Luque, P. G. Linares, A. Mellor, V. Andreev, and A. Martí, “Some advantages of intermediate band solar cells based on type II quantum dots,” Applied Physics Letters 103, 123901 (2013). [82] S. de Gironcoli, S. Baroni, and R. Resta, “Piezoelectric properties of III-V semiconductor from first-principles linear-response theory,” Physical review Letters 62, 2853 (1989). [83] H. Landolt, R. Börnstein, K. H. Hellwege, J. Goodenough, M. Schulz, and H. Weiss, Landolt- Börnstein: Numerical Data and Functional Relationships in Science and Technology: Crystal and solid state physics, Semiconductors 17, Springer (1984). [84] A. Mellor, A. Luque, I. Tobías, and A. Martí, “The influence of quantum dot size on the sub-bandgap intraband photocurrent in intermediate band solar cells,” Applied Physics Letters 101, 133909 (2012). [85] T. Nozawa, and Y. Arakawa, “Matrix elements of intraband transitions in quantum dot intermediate band solar cells: the influence of quantum dot presence on the extended-state electron wave-functions,” Semiconductor Science Technology 29, 045014 (2014). [86] I. Vurgaftman, and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” Journal of Applied Physics 94, 3675 (2003). [87] J. Wu, W. Shan, and W. Walukiewicz, “Band anticrossing in highly mismatched III-V semiconductor alloys,” Semiconductor Science and Technology 17, 860 (2002). [88] http://www.ioffe.ru/SVA/NSM/Semicond/GaP/bandstr.html#Masses [89] https://www.iue.tuwien.ac.at/phd/palankovski/node40.html [90] http://www.ioffe.ru/SVA/NSM/Semicond/GaP/electric.html [91] http://www.ioffe.ru/SVA/NSM/Semicond/GaN/ebasic.html | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79232 | - |
| dc.description.abstract | 中間帶太陽能電池被認為是能夠提升太陽能電池轉換效率的一種設計。本研究以線性彈性力學理論、k p漢彌爾頓配合有限元素法分析以銻砷化鎵(GaAsSb)作為間隔層之偶合砷化銦(InAs)量子點結構。本研究分析量子點結構中各材料之摩爾分率與厚度對光學性質的影響,進而評估結構應用於中間帶太陽能電池之最佳參數。當GaAsSb間隔層中Sb摩爾分率增加至0.24將使能帶結構轉換成第二型態,而所形成中間帶之寬度,主要受到間隔層厚度之影響,Sb摩爾分率改變只稍微影響中間帶之能量。而在偶合型量子點結構中加入1 nm厚之AlAs層與1 nm厚之GaAs層將有助於將中間帶至導電帶吸收光譜推向近紅外光區域,同時在分析利用InAs偶合型量子點作為中間帶太陽能之轉換效率時,中間帶之寬度及價電帶與導電帶之間的能隙大小為重要因素,而採用飄移擴散模型並忽略復合效應的狀況下,當集中因子為1000時,GaAs太陽能電池轉換效率為32.9%,而由8.5 nm組成之Sb摩爾分率為0.1的GaAsSb間隔層偶合型量子點結構做為中間帶太陽能電池轉換效率則有34.1%。 高度不匹配化合物也是能應用於中間帶太陽能電池的一種材料,本研究選擇磷砷氮化鎵(GaNAsP)作為分析的材料。本研究使用能帶反交叉模型推導出適用於塊體GaNAsP之吸收光譜,並利用可與GaP達成晶格匹配的條件來設計中間帶太陽能電池,結果發現由於與當作中間帶之E− c能帶有關之兩段吸收間強度相差太大,其作為中間帶太陽能電池的轉換效率僅有11.4%,相較於無中間帶的磷化鎵(GaP)電池只增加0.8%。 本研究設計與矽達成晶格匹配條件的GaNAsP/Si疊層太陽能電池。我們採用飄移擴散模型並忽略復合效應與次電池間的中間層,以此評估太陽能電池轉換效率極大化。本研究分析了GaNAsP的摩爾分率組合與不同的厚度組合,研究成果顯示,疊層太陽能電池轉換效率優於單純由矽所形成的太陽能電池。4.5 m厚的疊層太陽能電池可提供12.5 %的轉換效率,等同於10.7 m厚的矽電池轉換效率。11.5 m厚的疊層太陽能電池可提供20.2 %的轉換效率,而同樣厚度的矽電池僅能提供12.7 %的轉換效率。同時,當疊層太陽能電池總厚度在12 m以下時,矽電池厚度比例在45%至70%時,疊層太陽能電池會有最高的轉換效率,而該比例則取決於疊層太陽能電池的總厚度。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T08:56:14Z (GMT). No. of bitstreams: 1 U0001-1102202214310900.pdf: 8565208 bytes, checksum: 3e86be47d041205b39deefcb1cec1093 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 摘要 i Abstract iii 目錄 v 表目錄 xi 圖目錄 xiii 第一章 緒論 1 1.1前言 1 1.2研究動機 2 1.3文獻回顧 5 1.4研究內容 11 第二章 理論模型 13 2.1機電場理論 13 2.2 能帶結構與光學效應 19 2.3能帶反交叉模型 28 2.4太陽能電池分析模型 29 第三章 砷化銦/銻砷化鎵偶合量子點應用於中間帶太能電池 34 3.1銻砷化鎵間隔層中銻的摩爾分率對於能帶結構之影響 37 3.2銻砷化鎵間隔層對於所形成的中間帶寬度之影響 42 3.3砷化鋁層厚度之影響 46 3.4砷化鎵層厚度之影響 48 3.5中間帶太陽能電池的轉換效率 50 第四章 磷砷氮化鎵稀氮化合物應用於太陽能電池 58 4.1 與磷化鎵晶格匹配之磷砷氮化鎵稀氮化合物 58 4.2磷砷氮化鎵稀氮化合物/矽疊層太陽能電池 70 第五章 結論與未來展望 97 參考文獻 103 附錄 111 附錄A 太陽能電池轉換效率分析模型的建立方式 111 附錄B 磷砷氮化鎵稀氮化合物量子點與量子井 115 | |
| dc.language.iso | zh-TW | |
| dc.title | 具銻砷化鎵間隔層之偶合砷化銦量子點與晶格匹配之磷砷氮化鎵應用於中間帶太陽能電池及薄膜太陽能電池 | zh_TW |
| dc.title | Coupling InAs Quantum Dot with GaAsSb as Spacer and Lattice-matched GaNAsP Applied to Intermediate Band Solar Cell and Thin Film Solar Cell | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0002-8848-7778 | |
| dc.contributor.oralexamcommittee | 林建中(Shwu-Fann Liou),賴聰賢(Li-Fu Chen),楊承山,林資榕,馮瑞陽 | |
| dc.subject.keyword | 有限元素法,偶合型量子點,銻砷化鎵,磷砷氮化鎵稀氮化合物,中間帶太陽能電池,疊層太陽能電池,超薄太陽能電池, | zh_TW |
| dc.subject.keyword | finite element method,coupling quantum dot,GaAsSb,GaNAsP,intermediate band solar cell,tandem cell,ultra thin solar cell, | en |
| dc.relation.page | 130 | |
| dc.identifier.doi | 10.6342/NTU202200565 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-02-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1102202214310900.pdf | 8.36 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
