請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79227完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳媺玫 | zh_TW |
| dc.contributor.advisor | Meei-Mei Chen | en |
| dc.contributor.author | 蘇豐傑 | zh_TW |
| dc.contributor.author | Feng-Jie Su | en |
| dc.date.accessioned | 2022-11-16T17:03:02Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2022-11-15 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2022-10-27 | - |
| dc.identifier.citation | 王廷輔(2013)。比較不同生物膜形成能力之魚類來源乳酸球菌在體內持續感染期間與體外抗吞噬能力之差異。國立臺灣大學獸醫學研究所碩士論文,台北市。 取自https://hdl.handle.net/11296/qz2svy
汪鼎傑(2015)。格氏乳酸球菌在懸浮態和生物膜態之蛋白質表現分析及辨識生物膜形成相關的免疫原性蛋白。國立臺灣大學獸醫學研究所碩士論文,台北市。 取自https://hdl.handle.net/11296/jytbem 孫可蘋(2007)。表現病毒外套膜蛋白的擬球藻轉殖品系。國立臺灣大學海洋研究所碩士論文,台北市。 取自https://hdl.handle.net/11296/z3py9c 許承智(2011)。台灣水產動物分離鏈球菌株對四環黴素與紅黴素抗藥性基因之調查與分析。國立臺灣大學獸醫學研究所碩士論文,台北市。 取自https://hdl.handle.net/11296/2vjy5j 葉偉生(2012)。弧菌二價疫苗及微顆粒包覆口服疫苗應用於養殖石斑魚上之研究。國立臺灣海洋大學水產養殖學系碩士論文,基隆市。 取自https://hdl.handle.net/11296/jk8xrq Algöet, M., Bayley, A., Roberts, E., Feist, S., Wheeler, R., & Verner‐Jeffreys, D. (2009). Susceptibility of selected freshwater fish species to a UK Lactococcus garvieae isolate. Journal of Fish Diseases, 32(10), 825-834. Aliprantis, A. O., Yang, R.-B., Mark, M. R., Suggett, S., Devaux, B., Radolf, J. D., Klimpel, G. R., Godowski, P., & Zychlinsky, A. (1999). Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science, 285(5428), 736-739. Asha, A., Nayak, D., Shankar, K., & Mohan, C. (2004). Antigen expression in biofilm cells of Aeromonas hydrophila employed in oral vaccination of fish. Fish & Shellfish Immunology, 16(3), 429-436. Ashfaq, H., Soliman, H., Saleh, M., & El-Matbouli, M. (2019). CD4: a vital player in the teleost fish immune system. Veterinary research, 50(1), 1-11. Azad, I., Shankar, K., Mohan, C., & Kalita, B. (1999). Biofilm vaccine of Aeromonas hydrophila–standardization of dose and duration for oral vaccination of carps. Fish & Shellfish Immunology, 9(7), 519-528. Azad, I., Shankar, K., Mohan, C., & Kalita, B. (2000). Uptake and processing of biofilm and free-cell vaccines of Aeromonas hydrophila in Indian major carps and common carp following oral vaccination antigen localization by a monoclonal antibody. Diseases of Aquatic Organisms, 43(2), 103-108. Basson, A., Flemming, L., & Chenia, H. (2008). Evaluation of adherence, hydrophobicity, aggregation, and biofilm development of Flavobacterium johnsoniae-like isolates. Microbial ecology, 55(1), 1-14. Basu, M., Swain, B., Sahoo, B. R., Maiti, N. K., & Samanta, M. (2012). Induction of toll-like receptor (TLR) 2, and MyD88-dependent TLR-signaling in response to ligand stimulation and bacterial infections in the Indian major carp, mrigal (Cirrhinus mrigala). Molecular Biology Reports, 39(5), 6015-6028. Bayne, C. J., & Gerwick, L. (2001). The acute phase response and innate immunity of fish. Developmental & Comparative Immunology, 25(8-9), 725-743. Berne, C., Ducret, A., Hardy, G. G., & Brun, Y. V. (2015). Adhesins involved in attachment to abiotic surfaces by Gram‐negative bacteria. Microbial biofilms, 163-199. Bester, E., Wolfaardt, G., Joubert, L., Garny, K., & Saftic, S. (2005). Planktonic-cell yield of a pseudomonad biofilm. Applied and environmental microbiology, 71(12), 7792-7798. Bi, S., & Sourjik, V. (2018). Stimulus sensing and signal processing in bacterial chemotaxis. Current opinion in microbiology, 45, 22-29. Bjørgen, H., & Koppang, E. O. (2022). Anatomy of teleost fish immune structures and organs. Principles of Fish Immunology, 1-30. Booth, S. C., Workentine, M. L., Wen, J., Shaykhutdinov, R., Vogel, H. J., Ceri, H., Turner, R. J., & Weljie, A. M. (2011). Differences in metabolism between the biofilm and planktonic response to metal stress. Journal of proteome research, 10(7), 3190-3199. Bos, R., Van der Mei, H. C., & Busscher, H. J. (1999). Physico-chemistry of initial microbial adhesive interactions–its mechanisms and methods for study. FEMS microbiology reviews, 23(2), 179-230. Bowden, T., Cook, P., & Rombout, J. (2005). Development and function of the thymus in teleosts. Fish & Shellfish Immunology, 19(5), 413-427. Brady, R. A., O'May, G. A., Leid, J. G., Prior, M. L., Costerton, J. W., & Shirtliff, M. E. (2011). Resolution of Staphylococcus aureus biofilm infection using vaccination and antibiotic treatment. Infection and immunity, 79(4), 1797-1803. Byadgi, O., Chen, Y.-C., Barnes, A. C., Tsai, M.-A., Wang, P.-C., & Chen, S.-C. (2016). Transcriptome analysis of grey mullet (Mugil cephalus) after challenge with Lactococcus garvieae. Fish & Shellfish Immunology, 58, 593-603. Bylund, J., Burgess, L. A., Cescutti, P., Ernst, R. K., & Speert, D. P. (2006, Feb 3). Exopolysaccharides from Burkholderia cenocepacia inhibit neutrophil chemotaxis and scavenge reactive oxygen species. J Biol Chem, 281(5), 2526-2532. Cai, W., & Arias, C. R. (2017). Biofilm formation on aquaculture substrates by selected bacterial fish pathogens. Journal of Aquatic Animal Health, 29(2), 95-104. Carniello, V., Peterson, B. W., van der Mei, H. C., & Busscher, H. J. (2018). Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth. Advances in colloid and interface science, 261, 1-14. Caruso, C., Rizzo, C., Mangano, S., Poli, A., Di Donato, P., Finore, I., Nicolaus, B., Di Marco, G., Michaud, L., & Lo Giudice, A. (2018). Production and biotechnological potential of extracellular polymeric substances from sponge-associated Antarctic bacteria. Applied and environmental microbiology, 84(4), e01624-01617. Chang, S.-H., Lin, H.-T. V., Wu, G.-J., & Tsai, G. J. (2015). pH Effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan. Carbohydrate polymers, 134, 74-81. Chen, C.-B., & Wallis, R. (2004). Two mechanisms for mannose-binding protein modulation of the activity of its associated serine proteases. Journal of Biological Chemistry, 279(25), 26058-26065. Costa, O. Y., Raaijmakers, J. M., & Kuramae, E. E. (2018). Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Frontiers in microbiology, 9, 1636. Cusumano, Z. T., Watson Jr, M. E., & Caparon, M. G. (2014). Streptococcus pyogenes arginine and citrulline catabolism promotes infection and modulates innate immunity. Infection and immunity, 82(1), 233-242. Delamarre, L., Pack, M., Chang, H., Mellman, I., & Trombetta, E. S. (2005). Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science, 307(5715), 1630-1634. Domenech, M., Ramos-Sevillano, E., García, E., Moscoso, M., & Yuste, J. (2013). Biofilm formation avoids complement immunity and phagocytosis of Streptococcus pneumoniae. Infection and immunity, 81(7), 2606-2615. Dotta, G., de Andrade, J. I. A., Gonçalves, E. L. T., Brum, A., Mattos, J. J., Maraschin, M., & Martins, M. L. (2014). Leukocyte phagocytosis and lysozyme activity in Nile tilapia fed supplemented diet with natural extracts of propolis and Aloe barbadensis. Fish & Shellfish Immunology, 39(2), 280-284. Dubey, S., Avadhani, K., Mutalik, S., Sivadasan, S. M., Maiti, B., Girisha, S. K., Venugopal, M. N., Mutoloki, S., Evensen, Ø., & Karunasagar, I. (2016). Edwardsiella tarda OmpA encapsulated in chitosan nanoparticles shows superior protection over inactivated Whole-cell vaccine in orally vaccinated fringed-lipped peninsula carp (Labeo fimbriatus). Vaccines, 4(4), 40. Díaz-Salazar, C., Calero, P., Espinosa-Portero, R., Jiménez-Fernández, A., Wirebrand, L., Velasco-Domínguez, M. G., López-Sánchez, A., Shingler, V., & Govantes, F. (2017). The stringent response promotes biofilm dispersal in Pseudomonas putida. Scientific reports, 7(1), 1-13. El-Benna, J., Dang, P. M.-C., & Gougerot-Pocidalo, M.-A. (2008). Priming of the neutrophil NADPH oxidase activation: role of p47phox phosphorylation and NOX2 mobilization to the plasma membrane. Seminars in immunopathology, Flemming, H.-C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8(9), 623-633. Fänge, R., & Nilsson, S. (1985). The fish spleen: structure and function. Experientia, 41(2), 152-158. Forchielli, M. L., & Walker, W. A. (2005). The role of gut-associated lymphoid tissues and mucosal defence. British Journal of Nutrition, 93(S1), S41-S48. Garnett, J., & Matthews, S. (2012). Interactions in bacterial biofilm development: a structural perspective. Current Protein and Peptide Science, 13(8), 739-755. Geng, X., Dong, X.-H., Tan, B.-P., Yang, Q.-H., Chi, S.-Y., Liu, H.-Y., & Liu, X.-Q. (2011). Effects of dietary chitosan and Bacillus subtilis on the growth performance, non-specific immunity and disease resistance of cobia, Rachycentron canadum. Fish & Shellfish Immunology, 31(3), 400-406. Gopalakannan, A., & Arul, V. (2006). Immunomodulatory effects of dietary intake of chitin, chitosan and levamisole on the immune system of Cyprinus carpio and control of Aeromonas hydrophila infection in ponds. Aquaculture, 255(1-4), 179-187. Gordon, S., & Martinez, F. O. (2010). Alternative activation of macrophages: mechanism and functions. Immunity, 32(5), 593-604. Grayfer, L., Kerimoglu, B., Yaparla, A., Hodgkinson, J. W., Xie, J., & Belosevic, M. (2018). Mechanisms of fish macrophage antimicrobial immunity. Frontiers in immunology, 9, 1105. Hajela, K., Kojima, M., Ambrus, G., Wong, K. N., Moffatt, B. E., Ferluga, J., Hajela, S., Gál, P., & Sim, R. B. (2002). The biological functions of MBL-associated serine proteases (MASPs). Immunobiology, 205(4-5), 467-475. Hall-Stoodley, L., & Stoodley, P. (2002). Developmental regulation of microbial biofilms. Current opinion in biotechnology, 13(3), 228-233. Hanke, M. L., Angle, A., & Kielian, T. (2012). MyD88-dependent signaling influences fibrosis and alternative macrophage activation during Staphylococcus aureus biofilm infection. PLoS One, 7(8), e42476. Hansen, J. D., Landis, E. D., & Phillips, R. B. (2005). Discovery of a unique Ig heavy-chain isotype (IgT) in rainbow trout: Implications for a distinctive B cell developmental pathway in teleost fish. Proceedings of the National Academy of Sciences, 102(19), 6919-6924. Heckman, T. I., & Soto, E. (2021). Streptococcus iniae biofilm formation enhances environmental persistence and resistance to antimicrobials and disinfectants. Aquaculture, 540, 736739. Hodgkinson, J. W., Grayfer, L., & Belosevic, M. (2015). Biology of bony fish macrophages. Biology, 4(4), 881-906. Holland, M. C. H., & Lambris, J. D. (2002). The complement system in teleosts. Fish & Shellfish Immunology, 12(5), 399-420. Huising, M. O., Guichelaar, T., Hoek, C., Verburg-van Kemenade, B. L., Flik, G., Savelkoul, H. F., & Rombout, J. H. (2003). Increased efficacy of immersion vaccination in fish with hyperosmotic pretreatment. Vaccine, 21(27-30), 4178-4193. Isiaku, A., Sabri, M., Ina-Salwany, M., Hassan, M., Tanko, P., & Bello, M. (2017). Biofilm is associated with chronic streptococcal meningoencephalitis in fish. Microbial pathogenesis, 102, 59-68. Kahieshesfandiari, M., Sabri, M., Ina-Salwany, M., Hassan, M., Noraini, O., Ajadi, A., & Isiaku, A. (2019). Streptococcosis in Oreochromis sp.: is feed-based biofilm vaccine of Streptococcus agalactiae effective? Aquaculture International, 27(3), 817-832. Kaur, B., Kumar, B. N., Tyagi, A., Holeyappa, S. A., & Singh, N. K. (2021). Identification of novel vaccine candidates in the Whole-cell Aeromonas hydrophila biofilm vaccine through reverse vaccinology approach. Fish & Shellfish Immunology, 114, 132-141. Kitiyodom, S., Yata, T., Yostawornkul, J., Kaewmalun, S., Nittayasut, N., Suktham, K., Surassmo, S., Namdee, K., Rodkhum, C., & Pirarat, N. (2019). Enhanced efficacy of immersion vaccination in tilapia against columnaris disease by chitosan-coated “pathogen-like” mucoadhesive nanovaccines. Fish & Shellfish Immunology, 95, 213-219. Kline, K. A., Fälker, S., Dahlberg, S., Normark, S., & Henriques-Normark, B. (2009). Bacterial adhesins in host-microbe interactions. Cell host & microbe, 5(6), 580-592. Kong, W. G., Mu, Q. J., Dong, Z. R., Luo, Y. Z., Ai, T. S., & Xu, Z. (2022). Mucosal immune responses and protective efficacy in yellow catfish after immersion vaccination with bivalent inactivated Aeromonas veronii and Edwardsiella ictaluri vaccine. Water Biology and Security, 1(2), 100032. Kostakioti, M., Hadjifrangiskou, M., & Hultgren, S. J. (2013). Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harbor perspectives in medicine, 3(4), a010306. Kushner, I. (1982). The phenomenon of the acute phase response. Annals of the New York Academy of Sciences, 389(1), 39-48. Lü, A. J., Hu, X. C., Wang, Y., Zhu, A. H., Shen, L. L., Tian, J., Feng, Z. Z., & Feng, Z. J. (2015). Skin immune response in the zebrafish, Danio rerio (Hamilton), to Aeromonas hydrophila infection: a transcriptional profiling approach. Journal of Fish Diseases, 38(2), 137-150. Lazado, C. C., & Caipang, C. M. A. (2014). Mucosal immunity and probiotics in fish. Fish & Shellfish Immunology, 39(1), 78-89. Le, K. Y., Park, M. D., & Otto, M. (2018). Immune evasion mechanisms of Staphylococcus epidermidis biofilm infection. Frontiers in microbiology, 9, 359. Levipan, H. A., Quezada, J., & Avendaño-Herrera, R. (2018). Stress tolerance-related genetic traits of fish pathogen Flavobacterium psychrophilum in a mature biofilm. Frontiers in microbiology, 18. Li, J., Ma, S., & Woo, N. Y. (2015). Vaccination of Silver Sea Bream (Sparus sarba) against Vibrio alginolyticus: Protective evaluation of different vaccinating modalities. International journal of molecular sciences, 17(1), 40. Li, J., Peters, R., Lapatra, S., Vazzana, M., & Sunyer, J. (2004). Anaphylatoxin-like molecules generated during complement activation induce a dramatic enhancement of particle uptake in rainbow trout phagocytes. Developmental & Comparative Immunology, 28(10), 1005-1021. Loera-Muro, A., Guerrero-Barrera, A., Tremblay DN, Y., Hathroubi, S., & Angulo, C. (2021). Bacterial biofilm-derived antigens: a new strategy for vaccine development against infectious diseases. Expert Review of Vaccines, 20(4), 385-396. Macfarlane, S. (2008). Microbial biofilm communities in the gastrointestinal tract. Journal of clinical gastroenterology, 42, S142-S143. Maekawa, S., Byadgi, O., Chen, Y.-C., Aoki, T., Takeyama, H., Yoshida, T., Hikima, J.-I., Sakai, M., Wang, P.-C., & Chen, S.-C. (2017). Transcriptome analysis of immune response against Vibrio harveyi infection in orange-spotted grouper (Epinephelus coioides). Fish & Shellfish Immunology, 70, 628-637. Martinez, F. O., & Gordon, S. (2014). The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000prime reports, 6. Martins, M. L., Vieira, F. N., Jerônimo, G. T., Mourino, J. L., Dotta, G., Speck, G. M., Bezerra, A. J., Pedrotti, F. S., Buglione-Neto, C. C., & Pereira, G. (2009). Leukocyte response and phagocytic activity in Nile tilapia experimentally infected with Enterococcus sp. Fish Physiology and Biochemistry, 35(1), 219-222. Martínez‐García, S., Rodríguez‐Martínez, S., Cancino‐Diaz, M. E., & Cancino‐Diaz, J. C. (2018). Extracellular proteases of Staphylococcus epidermidis: roles as virulence factors and their participation in biofilm. Apmis, 126(3), 177-185. Meng, X., Wang, J., Wan, W., Xu, M., & Wang, T. (2017). Influence of low molecular weight chitooligosaccharides on growth performance and non-specific immune response in Nile tilapia Oreochromis niloticus. Aquaculture International, 25(3), 1265-1277. Meyburgh, C., Bragg, R., & Boucher, C. (2017). Lactococcus garvieae: an emerging bacterial pathogen of fish. Diseases of Aquatic Organisms, 123(1), 67-79. Mitchell, H. (1995). Choosing a furunculosis vaccine: points to consider. Bulletin-Aquaculture Association of Canada, 30-37. Monir, M. S., Yusoff, S. b. M., Mohamad, A., Ngoo, M. S. b. M. H., & Ina-Salwany, M. Y. (2020). Haemato-immunological responses and effectiveness of feed-based bivalent vaccine against Streptococcus iniae and Aeromonas hydrophila infections in hybrid red tilapia (Oreochromis mossambicus× O. niloticus). BMC veterinary research, 16(1), 1-14. Montanaro, L., Poggi, A., Visai, L., Ravaioli, S., Campoccia, D., Speziale, P., & Arciola, C. R. (2011). Extracellular DNA in biofilms. The International journal of artificial organs, 34(9), 824-831. Mosser, D. M., & Edwards, J. P. (2008). Exploring the full spectrum of macrophage activation. Nature reviews immunology, 8(12), 958-969. Muñoz, I., Sepulcre, M. P., Meseguer, J., & Mulero, V. (2013). Molecular cloning, phylogenetic analysis and functional characterization of soluble Toll-like receptor 5 in gilthead seabream, Sparus aurata. Fish & Shellfish Immunology, 35(1), 36-45. Muhammad, M., Zhang, T., Gong, S., Bai, J., Ju, J., Zhao, B., & Liu, D. (2020). Streptococcus iniae: A growing threat and causative agent of disease outbreak in farmed Chinese sturgeon (Acipenser sinensis). Pakistan Journal of Zoology, 52(5), 1931. Muhammad, M. H., Idris, A. L., Fan, X., Guo, Y., Yu, Y., Jin, X., Qiu, J., Guan, X., & Huang, T. (2020). Beyond risk: bacterial biofilms and their regulating approaches. Frontiers in microbiology, 11, 928. Mulcahy, H., Charron-Mazenod, L., & Lewenza, S. (2008, Nov). Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog, 4(11), e1000213. Muller-Eberhard, H. J. (1986). The membrane attack complex of complement. Annual review of immunology, 4(1), 503-528. Murofushi, Y., Villena, J., Morie, K., Kanmani, P., Tohno, M., Shimazu, T., Aso, H., Suda, Y., Hashiguchi, K., Saito, T., & Kitazawa, H. (2015, Mar). The toll-like receptor family protein RP105/MD1 complex is involved in the immunoregulatory effect of exopolysaccharides from Lactobacillus plantarum N14. Mol Immunol, 64(1), 63-75. Mutz, K.-O., Heilkenbrinker, A., Lönne, M., Walter, J.-G., & Stahl, F. (2013). Transcriptome analysis using next-generation sequencing. Current opinion in biotechnology, 24(1), 22-30. Nakanishi, T., Fischer, U., Dijkstra, J., Hasegawa, S., Somamoto, T., Okamoto, N., & Ototake, M. (2002). Cytotoxic T cell function in fish. Developmental & Comparative Immunology, 26(2), 131-139. Nayak, D., Asha, A., Shankar, K., & Mohan, C. (2004). Evaluation of biofilm of Aeromonas hydrophila for oral vaccination of Clarias batrachus—a carnivore model. Fish & Shellfish Immunology, 16(5), 613-619. Nguyen, K. T., Seth, A. K., Hong, S. J., Geringer, M. R., Xie, P., Leung, K. P., Mustoe, T. A., & Galiano, R. D. (2013). Deficient cytokine expression and neutrophil oxidative burst contribute to impaired cutaneous wound healing in diabetic, biofilm‐containing chronic wounds. Wound Repair and Regeneration, 21(6), 833-841. Nonaka, M. (1994). Molecular analysis of the lamprey complement system. Fish & Shellfish Immunology, 4(6), 437-446. Oushani, A. K., Soltani, M., Sheikhzadeh, N., Mehrgan, M. S., & Islami, H. R. (2020). Effects of dietary chitosan and nano-chitosan loaded clinoptilolite on growth and immune responses of rainbow trout (Oncorhynchus mykiss). Fish & Shellfish Immunology, 98, 210-217. Palmer, J., Flint, S., & Brooks, J. (2007). Bacterial cell attachment, the beginning of a biofilm. Journal of Industrial Microbiology and Biotechnology, 34(9), 577-588. Palti, Y. (2011). Toll-like receptors in bony fish: from genomics to function. Developmental & Comparative Immunology, 35(12), 1263-1272. Papenfort, K., & Bassler, B. L. (2016). Quorum sensing signal–response systems in Gram-negative bacteria. Nature Reviews Microbiology, 14(9), 576-588. Plant, K. P., & LaPatra, S. E. (2011). Advances in fish vaccine delivery. Developmental & Comparative Immunology, 35(12), 1256-1262. Plumb, J. A., & Hanson, L. A. (2010). Health maintenance and principal microbial diseases of cultured fishes. John Wiley & Sons. Prabhakara, R., Harro, J. M., Leid, J. G., Harris, M., & Shirtliff, M. E. (2011, Apr). Murine immune response to a chronic Staphylococcus aureus biofilm infection. Infect Immun, 79(4), 1789-1796. Raffatellu, M., Chessa, D., Wilson, R. P., Dusold, R., Rubino, S., & Baumler, A. J. (2005, Jun). The Vi capsular antigen of Salmonella enterica serotype Typhi reduces Toll-like receptor-dependent interleukin-8 expression in the intestinal mucosa. Infect Immun, 73(6), 3367-3374. Ram, M. K., Kumar, B. N., Poojary, S. R., Abhiman, P., Patil, P., Ramesh, K., & Shankar, K. (2019). Evaluation of biofilm of Vibrio anguillarum for oral vaccination of Asian seabass, Lates calcarifer (BLOCH, 1790). Fish & Shellfish Immunology, 94, 746-751. Rao, S., Byadgi, O., Pulpipat, T., Wang, P. C., & Chen, S. C. (2020). Efficacy of a formalin‐inactivated Lactococcus garvieae vaccine in farmed grey mullet (Mugil cephalus). Journal of Fish Diseases, 43(12), 1579-1589. Rao, S. B., & Sharma, C. P. (1997). Use of chitosan as a biomaterial: studies on its safety and hemostatic potential. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials, 34(1), 21-28. Resch, A., Rosenstein, R., Nerz, C., & Götz, F. (2005). Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. Applied and environmental microbiology, 71(5), 2663-2676. Rummel, C. D., Jahnke, A., Gorokhova, E., Kühnel, D., & Schmitt-Jansen, M. (2017). Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environmental science & technology letters, 4(7), 258-267. Samanta, M., Swain, B., Basu, M., Panda, P., Mohapatra, G. B., Sahoo, B. R., & Maiti, N. K. (2012). Molecular characterization of toll-like receptor 2 (TLR2), analysis of its inductive expression and associated down-stream signaling molecules following ligands exposure and bacterial infection in the Indian major carp, rohu (Labeo rohita). Fish & Shellfish Immunology, 32(3), 411-425. Shankar, K. M. (2022). Bacterial Biofilm for Oral Vaccination in Aquaculture. In Fish immune system and vaccines (pp. 159-165). Springer. Singh, P. K., Bartalomej, S., Hartmann, R., Jeckel, H., Vidakovic, L., Nadell, C. D., & Drescher, K. (2017). Vibrio cholerae combines individual and collective sensing to trigger biofilm dispersal. Current Biology, 27(21), 3359-3366. e3357. Siripornadulsil, S., Dabrowski, K., & Sayre, R. (2007). Microalgal vaccines. Transgenic microalgae as green cell factories, 122-128. Sneeringer, S., Bowman, M., & Clancy, M. (2019). The US and EU animal pharmaceutical industries in the age of antibiotic resistance. Steel, D. M., & Whitehead, A. S. (1994). The major acute phase reactants: C-reactive protein, serum amyloid P component and serum amyloid A protein. Immunology today, 15(2), 81-88. Stroh, P., Gunther, F., Meyle, E., Prior, B., Wagner, C., & Hansch, G. M. (2011, Mar). Host defence against Staphylococcus aureus biofilms by polymorphonuclear neutrophils: oxygen radical production but not phagocytosis depends on opsonisation with immunoglobulin G. Immunobiology, 216(3), 351-357. Su, F.-J., & Chen, M.-M. (2021). Protective efficacy of novel oral biofilm vaccines against Lactococcus garvieae infection in mullet, Mugil cephalus. Vaccines, 9(8), 844. Su, F.-J., & Chen, M.-M. (2022). Protective Efficacy of Novel Oral Biofilm Vaccines against Photobacterium damselae subsp. damselae Infection in Giant Grouper, Epinephelus lanceolatus. Vaccines, 10(2), 207. Su, F.-J., Periyasamy, T., & Chen, M.-M. (2022). Comparative Transcriptomic Immune Responses of Mullet (Mugil cephalus) Infected by Planktonic and Biofilm Lactococcus Garvieae. Frontiers in Cellular and Infection Microbiology, 652. Sutherland, I. W. (2001). The biofilm matrix–an immobilized but dynamic microbial environment. Trends in microbiology, 9(5), 222-227. Svensson, M., Stockinger, B., & Wick, M. J. (1997). Bone marrow-derived dendritic cells can process bacteria for MHC-I and MHC-II presentation to T cells. The Journal of Immunology, 158(9), 4229-4236. Takeda, K., & Akira, S. (2005). Toll-like receptors in innate immunity. International immunology, 17(1), 1-14. Takeuchi, H., Yamamoto, H., Niwa, T., Hino, T., & Kawashima, Y. (1996). Enteral absorption of insulin in rats from mucoadhesive chitosan-coated liposomes. Pharmaceutical research, 13(6), 896-901. Thaarup, I. C., Iversen, A. K. S., Lichtenberg, M., Bjarnsholt, T., & Jakobsen, T. H. (2022). Biofilm Survival Strategies in Chronic Wounds. Microorganisms, 10(4), 775. Thurlow, L. R., Hanke, M. L., Fritz, T., Angle, A., Aldrich, A., Williams, S. H., Engebretsen, I. L., Bayles, K. W., Horswill, A. R., & Kielian, T. (2011, Jun 01). Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J Immunol, 186(11), 6585-6596. Tote, K., Berghe, D. V., Maes, L., & Cos, P. (2008). A new colorimetric microtitre model for the detection of Staphylococcus aureus biofilms. Letters in applied microbiology, 46(2), 249-254. Toyofuku, M., Inaba, T., Kiyokawa, T., Obana, N., Yawata, Y., & Nomura, N. (2016). Environmental factors that shape biofilm formation. Bioscience, biotechnology, and biochemistry, 80(1), 7-12. Travassos, L. H., Girardin, S. E., Philpott, D. J., Blanot, D., Nahori, M. A., Werts, C., & Boneca, I. G. (2004). Toll‐like receptor 2‐dependent bacterial sensing does not occur via peptidoglycan recognition. EMBO reports, 5(10), 1000-1006. Turton, K. B., Ingram, R. J., & Valvano, M. A. (2021). Macrophage dysfunction in cystic fibrosis: Nature or nurture? Journal of Leukocyte Biology, 109(3), 573-582. Underhill, D. M., Ozinsky, A., Smith, K. D., & Aderem, A. (1999). Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proceedings of the National Academy of Sciences, 96(25), 14459-14463. Viji, V. T., Deepa, K., Velmurugan, S., Donio, M. B. S., Jenifer, J. A., Babu, M. M., & Citarasu, T. (2013). Vaccination strategies to protect goldfish Carassius auratus against Aeromonas hydrophila infection. Diseases of Aquatic Organisms, 104(1), 45-57. Vinay, T., Girisha, S., D'souza, R., Jung, M.-H., Choudhury, T., & Patil, S. (2016). Bacterial biofilms as oral vaccine candidates in aquaculture. Indian Journal of Comparative Microbiology, Immunology and Infectious Diseases, 37(2), 57-62. Vinitnantharat, S., Gravningen, K., & Greger, E. (1999). Fish vaccines. Advances in veterinary medicine, 41, 539-550. Vu, B., Chen, M., Crawford, R. J., & Ivanova, E. P. (2009). Bacterial extracellular polysaccharides involved in biofilm formation. Molecules, 14(7), 2535-2554. Watnick, P., & Kolter, R. (2000). Biofilm, city of microbes. Journal of bacteriology, 182(10), 2675-2679. Watters, C., Fleming, D., Bishop, D., & Rumbaugh, K. (2016). Host responses to biofilm. Progress in molecular biology and translational science, 142, 193-239. Wei, Y. C., Pan, T. S., Chang, M. X., Huang, B., Xu, Z., Luo, T. R., & Nie, P. (2011). Cloning and expression of Toll-like receptors 1 and 2 from a teleost fish, the orange-spotted grouper Epinephelus coioides. Veterinary Immunology and Immunopathology, 141(3-4), 173-182. Wen, Z. T., & Burne, R. A. (2002). Functional genomics approach to identifying genes required for biofilm development by Streptococcus mutans. Applied and environmental microbiology, 68(3), 1196-1203. Wu, Y., Rashidpour, A., Almajano, M. P., & Metón, I. (2020). Chitosan-based drug delivery system: Applications in fish biotechnology. Polymers, 12(5), 1177. Xu, T.-j., Sun, Y.-n., Cheng, Y.-z., Shi, G., & Wang, R.-x. (2011). Genomic sequences comparison and differential expression of miiuy croaker MHC class I gene, after infection by Vibrio anguillarum. Developmental & Comparative Immunology, 35(4), 483-489. Xu, Z., Liang, Y., Lin, S., Chen, D., Li, B., Li, L., & Deng, Y. (2016). Crystal violet and XTT assays on Staphylococcus aureus biofilm quantification. Current microbiology, 73(4), 474-482. Yu, Y., Wang, Q., Huang, Z., Ding, L., & Xu, Z. (2020). Immunoglobulins, mucosal immunity and vaccination in teleost fish. Frontiers in immunology, 11, 567941. Zapata, A. (1979). Ultrastructural study of the teleost fish kidney. Developmental & Comparative Immunology, 3, 55-65. Zhang, J., Kong, X., Zhou, C., Li, L., Nie, G., & Li, X. (2014). Toll-like receptor recognition of bacteria in fish: ligand specificity and signal pathways. Fish & Shellfish Immunology, 41(2), 380-388. Zhou, Z., Lin, Z., Pang, X., Shan, P., & Wang, J. (2018). MicroRNA regulation of Toll-like receptor signaling pathways in teleost fish. Fish & Shellfish Immunology, 75, 32-40. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79227 | - |
| dc.description.abstract | 格氏乳酸球菌為常見的水產動物病原菌,常造成感染魚隻大量死亡,存活的魚隻容易帶有病原以慢性感染的形式在夏季時反覆發病。經由哺乳動物研究得知當細菌在宿主體內形成生物膜後,容易使宿主免疫反應發生改變形成慢性感染,但關於生物膜在魚類所造成的免疫反應的改變與阻止生物膜生成的方法目前還缺乏探討,因此本研究主要分成兩部份(一)生物膜在魚隻體內所造成的免疫反應之變化,(二)開發生物膜疫苗對抗細菌生物膜的生成。
生物膜在魚隻體內所造成的免疫反應之變化方面,本實驗利用RNA定序比較格氏乳酸球菌浮游型態與生物膜型態感染烏魚後,其脾臟轉錄因子之間的差異,免疫相關基因的表現於感染生物膜後:類鐸受體2、介白素-1β、腫瘤壞死因子-α、補體蛋白7和主要組織相容性複體-II相關基因表現量下降,浮游態組基因表現量上升,並且在後續的不同時間點(6、12、24和48小時)分析上,更進一步發現浮游態組在48小時後的免疫反應與生物膜組的相同,此實驗也確認了當浮游態格氏乳酸球菌進入烏魚體內48小時可能會形成生物膜,並且導致宿主的免疫反應無法有效的清除細菌,因此後續我們需要開發疫苗進而防止生物膜的生成。 在生物膜疫苗建立的研究上,本實驗開發出高效率的生物膜增培技術,主要利用幾丁聚醣顆粒為基質並藉由懸浮培養方式,使格氏乳酸球菌在幾丁聚醣顆粒上形成生物膜,之後我們利用掃描式電子顯微鏡觀察與DMMB染色法定量確認生物膜的生成,並以福馬林不活化製成疫苗,經投餵不同劑量生物膜疫苗,測試抗體的生成、溶菌酶及吞噬能力分析,結果顯示連續口服1010 CFU/g的劑量14天為最佳的口服劑量與投餵時間。 在口服生物膜疫苗的免疫效果分析中,烏魚分別口服生物膜疫苗、全菌疫苗、幾丁聚醣顆粒與PBS連續投餵14天,並分析抗體的生成、吞噬能力、白蛋白/球蛋白、免疫相關基因及魚隻相對保護效果,結果顯示,生物膜疫苗組的吞噬能力為84%,顯著高於對照組,且該組的抗體產量顯著高於控制組且能持續32天以上,投予生物膜疫苗組別脾臟免疫相關基因(類鐸受體2、介白素-1β、腫瘤壞死因子-α)的mRNA相對表現量與控制組相比具有顯著上升,在攻毒實驗中,連續口服生物膜疫苗14天後的相對存活率為 74%,全細胞疫苗組為 42%,幾丁聚醣顆粒組為26%。此外免疫後 32 天的攻毒試驗結果,生物膜疫苗組的相對存活率為 77%,全細胞疫苗組為 18%,幾丁聚醣顆粒組為 0%。 因此,本實驗所開發的幾丁聚醣顆粒懸浮培養生物膜的方法與口服生物膜疫苗飼料皆可以做為後續大量生產口服疫苗的方式與預防生物膜生成,使水產養殖產業對於疾病預防能獲得控制並提升疫苗給予的便利性。 | zh_TW |
| dc.description.abstract | Lactococcus garvieae, an important pathogen affecting fish, is associated with high mortality rates and infection recurrence in summer. Biofilms are also known to cause chronic infection and disease recurrence. However, the effects of biofilms on fish immune response and factors that control biofilm formation remain unclear. Therefore, in this study, we aimed to (1) evaluate the changes induced by biofilms in fish immune response and (2) develop novel biofilm vaccines against bacterial biofilm formation.
RNA sequencing (RNA-Seq) was used to compare the spleen transcriptome of planktonic- and biofilm-infected mullets. Additionally, genes encoding toll-like receptor 2(TLR2), interleukin-1β(IL-1β), tumour necrosis factor -α(TNF-α), complement 7 (C7), and major histocompatibility complex class I (MHC I) were downregulated in response to a biofilm infection. Subsequent analyses at different time points (6、12、24 and 48 hr) revealed that the immune response in the planktonic group was the same as that in the biofilm group after 48 hours. Furthermore, biofilm formation was observed in mullets infected by planktonic L. garvieae that could not be effectively eliminated by the host's immune response. Therefore, vaccines that prevent biofilm formation are required. In this study, we developed a high efficiency biofilm culture technology in which L. garvieae could form biofilms on chitosan particles in suspension culture. Biofilm formation was confirmed by scanning electron microscopy and quantify dimethylmethylene blue (DMMB) staining. An analysis of antibody generation and lysozyme and phagocytic activities after administration of formalin-inactivation different biofilm vaccine doses demonstrated that the most effective dose and administration time were a continuous oral dose of 1010 CFU/mL for 14 days. To confirm the effectiveness of the oral biofilm vaccine, experiments were conducted using biofilm vaccine, Whole-cell vaccine, chitosan particles, and phosphate- buffered saline (PBS). The production of antibodies, phagocytic ability, albumin/globulin ratio, immune-related genes, and relative survival rate were analysed. The phagocytic capacity of the biofilm vaccine group was 84%, which was significantly higher than that of the control group. Moreover, antibody production in this group was significantly higher than that in the control group and lasted for more than 32 days. The relative expression of spleen immune-related genes (TLR2, IL-1β, TNF-α) in the biofilm vaccine group was significantly higher than that in the control group. In the challenge experiment, the relative percent survival (RPS) rates 1 days post-vaccination were 74%, 42%, and 26% in the biofilm, Whole-cell, and chitosan particle vaccine groups, respectively. Additionally, the RPS rates 32 days post-vaccination were 77%, 18%, and 0% in the biofilm, Whole-cell, and chitosan particle vaccine groups, respectively. Therefore, our methods of producing biofilm on chitosan particles in suspension culture and administering oral biofilm vaccine may be utilized for mass production of oral vaccines and prevention of biofilm formation. This would aid the aquaculture industry in disease control and prevention as well as operational improvement and enhancement. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2022-11-16T17:03:02Z
No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2022-11-16T17:03:02Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 摘要 III 英文摘要 V 目錄 VII 圖目錄 X 表目錄 XI 第一章 緒論 1 第二章 文獻回顧 3 第一節 細菌所造成急性與慢性感染病徵及免疫相關研究 3 2.1.1. 急性感染期(Acute phase response ,APR) 3 2.1.2. 慢性感染時期(Chronic phase response) 3 第二節 細菌生物膜的介紹 4 2.2.1. 生物膜形成 4 2.2.2. 生物膜的生長與組成 5 2.2.3. 生物膜胞外產物對宿主的影響 8 2.2.4. 魚類有關生物膜感染的研究 9 第三節 魚類的免疫器官與免疫反應發生 11 2.3.1. 非特異性免疫 12 2.3.2. 特異性免疫 14 第四節 魚類疫苗投予方式及免疫效力 15 2.4.1. 魚類疫苗的投予方式及抗原傳遞路徑 15 2.4.2. 魚類口服疫苗的種類與效用 17 第三章 材料方法 20 第一節、 生物膜生成能力分析與培養 21 3.3.1. 生物膜與浮游態細菌定量 21 3.3.2. 生物膜生成能力的分析 22 3.3.3. 生物膜態細菌與浮游態細菌生長週期 23 3.3.4. 掃描式電子顯微鏡(Scanning Electron Microscope,SEM)觀察細菌型態 24 第二節、 生物膜態細菌與浮游態細菌感染魚之後免疫基因的變化 26 3.2.1. 實驗魚隻飼養 27 3.2.2. 比較生物膜與浮游態感染烏魚後脾臟轉錄因子 27 3.2.3. 比較生物膜與浮游態不同時間點確認免疫基因的變化 28 第三節、 口服疫苗開發 30 3.3.1. 幾丁聚醣(Chtosan particle)製作 31 3.3.2. 培養Lactococcus garvieae生物膜幾丁聚醣劑量的最佳濃度 31 3.3.3. 確認幾丁聚醣上Lactococcus garvieae生物膜生長曲線 32 3.3.4. SEM觀察生物膜疫苗型態與基因確認 33 3.3.5. 不同口服疫苗劑量餵食試驗 34 第四節、 不同口服疫苗保護效率 40 3.4.1. 不同口服疫苗投餵後免疫效果短期試驗 41 3.4.2. 不同口服疫苗餵食長期試驗 46 第四章 結果 49 第一節、 生物膜的培養與型態調查 49 4.1.1. 生物膜生成能力篩選 49 4.1.2. 生物膜與浮游態細菌定量與生長曲線 49 4.1.3. 掃描式電子顯微鏡生物膜與浮游態型態觀察 50 第二節、 生物膜與浮游態細菌感染魚之後免疫相關基因表現量的變化 50 4.2.1. 生物膜與浮游態細菌感染烏魚後脾臟轉錄因子組裝測序結果 50 4.2.2. 生物膜與浮游態細菌感染烏魚後脾臟轉錄因子GO分析結果 51 4.2.3. 生物膜與浮游態細菌感染烏魚後脾臟免疫相關基因的表現 51 4.2.4. qRT-PCR驗證 52 4.2.5. 生物膜與浮游態細菌感染後不同時間點的免疫因子變化 52 第三節、 口服疫苗的開發 53 4.3.1. 不同濃度幾丁聚醣於生物膜生成產量 53 4.3.2. 幾丁聚醣上Lactococcus garvieae生物膜生成時間 53 4.3.3. 比較幾丁聚醣懸浮培養與傳統靜置培養生物膜生成量 53 4.3.4. 生物膜口服疫苗於烏魚體內的傳遞 54 4.3.5. 在不同餵食劑量後先天免疫反應的變化 54 4.3.6. 餵食不同劑量後血清抗體的力價與生成時間 55 第四節、 不同口服疫苗餵食短期保護效力 56 4.4.1. 先天免疫反應變化 56 4.4.2. 抗體的生成 56 4.4.3. 免疫基因的變化 57 4.4.4. 攻毒試驗 57 第五節、 不同口服疫苗的抗體持續時間分析 58 4.5.1. 抗體保護時長 58 4.5.2. 攻毒試驗 59 第五章 討論 60 第一節、 生物膜的培養與型態調查 60 5.1.1. 生物膜生成能力篩選 60 5.1.2. 生物膜與浮游態細菌生長曲線 60 5.1.3. 掃描式電子顯微鏡生物膜與浮游態型態觀察 61 第二節、 生物膜與浮游態細菌感染烏魚後的免疫基因變化 61 5.2.1. 生物膜感染後對補體系統的改變 62 5.2.2. 生物膜感染後對巨噬細胞的改變 63 5.2.3. 生物膜感染後TLR2的改變 64 5.2.4. 生物膜感染後對T cell receptor的改變 64 第三節、 口服生物膜疫苗開發 66 5.3.1. 新型態口服生物膜疫苗的培養與條件測試 66 5.3.2. 利用幾丁聚醣懸浮培養生物膜與靜置培養形態與差異 67 5.3.3. 生物膜疫苗抗原於烏魚體內的傳遞 67 5.3.4. 在不同餵食劑量後先天免疫反應的變化 68 5.3.5. 餵食不同劑量後血清抗體的力價與生成時間 69 第四節、 不同口服疫苗之間的短期保護效力 69 5.4.1. 先天免疫反應變化 69 5.4.2. 抗體的生成 70 5.4.3. 免疫基因的變化 71 5.4.4. 攻毒試驗 71 第五節、 不同口服疫苗的抗體持續時間分析 72 5.5.1. 抗體保護時長 72 5.5.2. 攻毒試驗 72 第六章 結論 74 第七章 參考文獻 106 | - |
| dc.language.iso | zh_TW | - |
| dc.title | 口服生物膜疫苗的研發-以烏魚格氏乳酸球菌為模板 | zh_TW |
| dc.title | Development of Oral Biofilm Vaccines - Using the Lactococcus garvieae as a Model in Mullet (Mugil cephalus) | en |
| dc.title.alternative | Development of Oral Biofilm Vaccines - Using the Lactococcus garvieae as a Model in Mullet (Mugil cephalus) | - |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 葉光勝;周崇熙;涂堅;陳石柱 | zh_TW |
| dc.contributor.oralexamcommittee | Kuang-Sheng Yeh;Chung-Hsi Chou;Chien Tu;Shih-Chu Chen | en |
| dc.subject.keyword | 格氏乳酸球菌,生物膜,浮游態,幾丁聚醣,生物膜疫苗, | zh_TW |
| dc.subject.keyword | Lactococcus garvieae,Biofilm,Planktonic,Chitosan particle,Biofilm vaccine, | en |
| dc.relation.page | 120 | - |
| dc.identifier.doi | 10.6342/NTU202210010 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-10-28 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 獸醫學系 | - |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0904221027159003.pdf | 5.4 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
