Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7919
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor任秀慧(Rita S.W. Yam)
dc.contributor.authorChih-Hsuan Fanen
dc.contributor.author范芷瑄zh_TW
dc.date.accessioned2021-05-19T17:58:40Z-
dc.date.available2021-07-09
dc.date.available2021-05-19T17:58:40Z-
dc.date.copyright2016-08-23
dc.date.issued2016
dc.date.submitted2016-08-03
dc.identifier.citationAdewumi, A.A., Idowu, O.E. & Bamisile, S.T. (2014) Food and feeding habits of Clarias gariepinus (Burchell 1822) in egbe reservoir, Ekiti state, Nigeria. Animal Research International, 11, 2041-2047.
Agasild, H., Zingel, P., Tuvikene, L., Tuvikene, A., Timm, H., Feldmann, T., Salujõe, J., Toming, K., Jones, R.I. & Nõges, T. (2014) Biogenic methane contributes to the food web of a large, shallow lake. Freshwater Biology, 59, 272-285.
Ask, J., Karlsson, J., Persson, L., Ask, P., Byström, P. & Jansson, M. (2009) Whole‐lake estimates of carbon flux through algae and bacteria in benthic and pelagic habitats of clear‐water lakes. Ecology, 90, 1923-1932.
Balachandran, C., Dinakaran, S., Alkananda, B., Boominathan, M. & Ramachandra, T. (2012) Monitoring aquatic macroinvertebrates as indicators for assessing the health of lakes in Bangalore, Karnataka. International Journal of Advanced Life Sciences, 5, 19-33.
Barth, C.C., Anderson, W.G., Peake, S.J. & Nelson, P. (2013) Seasonal variation in the diet of juvenile lake sturgeon, Acipenser fulvescens, Rafinesque, 1817, in the Winnipeg River, Manitoba, Canada. Journal of Applied Ichthyology, 29, 721-729.
Bertolo, A., Carignan, R., Magnan, P., Pinel‐Alloul, B., Planas, D. & Garcia, E. (2005) Decoupling of pelagic and littoral food webs in oligotrophic Canadian Shield lakes. Oikos, 111, 534-546.
Binning, S., Chapman, L. & Cosandey‐Godin, A. (2009) Specialized morphology for a generalist diet: evidence for Liem's Paradox in a cichlid fish. Journal of Fish Biology, 75, 1683-1699.
Blanco, S., Romo, S., Villena, M.J. & Martinez, S. (2003) Fish communities and food web interactions in some shallow Mediterranean lakes. Hydrobiologia, 506, 473-480.
Bobori, D.C., Salvarina, I. & Michaloudi, E. (2013) Fish dietary patterns in the eutrophic Lake Volvi (East Mediterranean). Journal of Biological Research-Thessaloniki, 19, 139-149.
Branco, C.W.C., Rocha, M.-I.A., Pinto, G.F.S., Gomara, G.A. & De Filippo, R. (2002) Limnological features of Funil Reservoir (R.J., Brazil) and indicator properties of rotifers and cladocerans of the zooplankton community. Lakes and Reservoirs Research and Management, 7, 87-92.
Brandl, Z. (2005) Freshwater copepods and rotifers: predators and their prey. Hydrobiologia, 546, 475-489.
Cabana, G. & Rasmussen, J.B. (1994) Modeling food-chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature, 372, 255-257.
Cabana, G. & Rasmussen, J.B. (1996) Comparison of aquatic food chains using nitrogen isotopes. Proceedings of the National Academy of Sciences of the United States of America, 93, 10844-10847.
Cabrera, S., López, M. & Tartarotti, B. (1997) Phytoplankton and zooplankton response to ultraviolet radiation in a high-altitude Andean lake: short-versus long-term effects. Journal of Plankton Research, 19, 1565-1582.
Cai, Y., Gong, Z. & Qin, B. (2012) Benthic macroinvertebrate community structure in Lake Taihu, China: effects of trophic status, wind-induced disturbance and habitat complexity. Journal of Great Lakes Research, 38, 39-48.
Campbell, L.M., Schindler, D.W., Muir, D.C., Donald, D.B. & Kidd, K.A. (2000) Organochlorine transfer in the food web of subalpine Bow Lake, Banff National Park. Canadian Journal of Fisheries and Aquatic Sciences, 57, 1258-1269.
Carrillo, P., Medina-Sánchez, J.M. & Villar-Argaiz, M. (2002) The interaction of phytoplankton and bacteria in a high mountain lake: importance of the spectral composition of solar radiation. Limnology and Oceanography, 47, 1294-1306.
Catalan, J., Curtis, C. & Kernan, M. (2009) Remote European mountain lake ecosystems: regionalisation and ecological status. Freshwater Biology, 54, 2419-2432.
Chapman, L.J., Mackay, W.C. & Wilkinson, C.W. (1989) Feeding flexibility in northern pike (Esox lucius): fish versus invertebrate prey. Canadian Journal of Fisheries and Aquatic Sciences, 46, 666-669.
Chen, H.C., Lai, B.C., Fellers, G.M., Wang, W.L. & Kam, Y.C. (2008) Diet and foraging of Rana sauteri and Bufo bankorensis tadpoles in subtropical Taiwanese streams. Zoological Studies, 47, 685-696.
Chen, S.H., Wu, J.T., Yang, T.N., Chuang, P.P., Huang, S.Y. & Wang, Y.S. (2009) Late Holocene paleoenvironmental changes in subtropical Taiwan inferred from pollen and diatoms in lake sediments. Journal of Paleolimnology, 41, 315-327.
Chen, S.H. & Wu, J.T. (1999) Paleolimnological environment indicated by the diatom and pollen assemblages in an alpine lake in Taiwan. Journal of Paleolimnology, 22, 149-158.
Cheng, W.Y. (2010) Using water quality variables to establish light attenuation model in subtropical subalpine lakes-Case study in the Yuan-Yang Lake and Emerald Peak Lake. Master Thesis, National United University, ROC. (in Chinese).
Clarke, K.R. (1993) Non‐parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18, 117-143.
Cole, J.J., Pace, M.L., Carpenter, S.R. & Kitchell, J.F. (2000) Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. Limnology and Oceanography, 45, 1718-1730.
Cordova, S.E., Giffin, J. & Kirk, K.L. (2001) Food limitation of planktonic rotifers: field experiments in two mountain ponds. Freshwater Biology, 46, 1519-1527.
Craig, H. (1957) Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochimica Et Cosmochimica Acta, 12, 133-149.
Dake, J.M.K. & Harleman, D.R. (1969) Thermal stratification in lakes - analytical and laboratory studies. Water Resources Research, 5, 484-495.
Dawidowicz, P. & Gliwicz, Z.M. (1983) Food of brook charr in extreme oligotrophic conditions of an alpine lake. Environmental Biology of Fishes, 8, 55-60.
De Sostoa, A. & Lobon‐Cervia, J. (1989) Observations on feeding relationships between fish predators and fish assemblages in a Mediterranean stream. Regulated Rivers: Research & Management, 4, 157-163.
Deines, P., Grey, J., Richnow, H.-H. & Eller, G. (2007) Linking larval chironomids to methane: seasonal variation of the microbial methane cycle and chironomid δ13C. Aquatic Microbial Ecology, 46, 273-282.
Deniro, M.J. & Epstein, S. (1978) Influence of diet on distribution of carbon isotopes in animals. Geochimica Et Cosmochimica Acta, 42, 495-506.
Deniro, M.J. & Epstein, S. (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica Et Cosmochimica Acta, 45, 341-351.
Ding, B., Curole, J., Husemann, M. & Danley, P.D. (2015) Habitat complexity predicts the community diversity of rock-dwelling cichlid fish in Lake Malawi, East Africa. Hydrobiologia, 748, 133-143.
Doi, H. (2009) Spatial patterns of autochthonous and allochthonous resources in aquatic food webs. Population Ecology, 51, 57-64.
Doi, H., Takemon, Y., Ohta, T., Ishida, Y. & Kikuchi, E. (2007) Effects of reach-scale canopy cover on trophic pathways of caddisfly larvae in a Japanese mountain stream. Marine and Freshwater Research, 58, 811-817.
Dominguez, J. & Pena, J. (2000) Spatio-temporal variation in the diet of northern pike (Esox lucius) in a colonised area (Esla Basin, NW Spain). Limnetica, 19, 1-20.
Doulka, E., Kehayias, G., Chalkia, E. & Leonardos, I.D. (2013) Feeding strategies of Atherina boyeri (Risso 1810) in a freshwater ecosystem. Journal of Applied Ichthyology, 29, 200-207.
Edwards, K.F., Thomas, M.K., Klausmeier, C.A. & Litchman, E. (2016) Phytoplankton growth and the interaction of light and temperature: A synthesis at the species and community level. Limnology and Oceanography, 61, 1232–1244.
Fetahi, T., Mengistou, S. & Schagerl, M. (2011) Zooplankton community structure and ecology of the tropical-highland Lake Hayq, Ethiopia. Limnologica, 41, 389-397.
France, R.L. (1995) Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. Limnology and Oceanography, 40, 1310-1313.
Francis, T.B., Schindler, D.E., Fox, J.M. & Seminet-Reneau, E. (2007) Effects of urbanization on the dynamics of organic sediments in temperate lakes. Ecosystems, 10, 1057-1068.
García-Berthou, E. (2001) Size-and depth-dependent variation in habitat and diet of the common carp (Cyprinus carpio). Aquatic Sciences, 63, 466-476.
Gearing, J., Gearing, P., Rudnick, D., Requejo, A. & Hutchins, M. (1984) Isotopic variability of organic carbon in a phytoplankton-based, temperate estuary. Geochimica Et Cosmochimica Acta, 48, 1089-1098.
Genkai-Kato, M. & Carpenter, S.R. (2005) Eutrophication due to phosphorus recycling in relation to lake morphometry, temperature, and macrophytes. Ecology, 86, 210-219.
Grey, J., Jones, R.I. & Sleep, D. (2001) Seasonal changes in the importance of the source of organic matter to the diet of zooplankton in Loch Ness, as indicated by stable isotope analysis. Limnology and Oceanography, 46, 505-513.
Gu, B.H., Schell, D.M. & Alexander, V. (1994) Stable carbon and nitrogen isotopic analysis of the plankton food web in a subarctic lake. Canadian Journal of Fisheries and Aquatic Sciences, 51, 1338-1344.
Hayden, B., Harrod, C. & Kahilainen, K.K. (2014) Dual fuels: intra‐annual variation in the relative importance of benthic and pelagic resources to maintenance, growth and reproduction in a generalist salmonid fish. Journal of Animal Ecology, 83, 1501-1512.
Hecky, R. & Hesslein, R. (1995) Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. Journal of the North American Benthological Society, 631-653.
Hessen, D. & Tranvik, L. (2013) Aquatic humic substances: ecology and biogeochemistry, Springer Science & Business Media.
Hesslein, R.H., Hallard, K.A. & Ramlal, P. (1993) Replacement of sulfur, carbon, and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by δ34S, δ13C, and δ15N. Canadian Journal of Fisheries and Aquatic Sciences, 50, 2071-2076.
Hill, W.R., Mulholland, P.J. & Marzolf, E.R. (2001) Stream ecosystem responses to forest leaf emergence in spring. Ecology, 82, 2306-2319.
Hill, W.R., Ryon, M.G. & Schilling, E.M. (1995) Light limitation in a stream ecosystem: responses by primary producers and consumers. Ecology, 76, 1297-1309.
Hjelm, J., Svanbäck, R., Byström, P., Persson, L. & Wahlström, E. (2001) Diet‐dependent body morphology and ontogenetic reaction norms in Eurasian perch. Oikos, 95, 311-323.
Hou, W.S., Chang, Y.H., Wang, H.W. & Tan, Y.C. (2010) Using the behavior of seven amphibian species for the design of banks of irrigation and drainage systems in Taiwan. Irrigation and Drainage, 59, 493-505.
Houston, D. & Shine, R. (1993) Sexual dimorphism and niche divergence: feeding habits of the Arafura filesnake. Journal of Animal Ecology, 62, 737-748.
Hyslop, E.J. (1980) Stomach contents analysis - a review of methods and their application. Journal of Fish Biology, 17, 411-429.
Inger, R., Jackson, A., Parnell, A. & Bearhop, S. (2010) SIAR v4 (Stable Isotope Analysis in R): an ecologist’s guide.
Isermann, D.A., Thompson, A.L. & Talmage, P.J. (2010) Comparisons of sex-specific growth and weight-length relationships in Minnesota black crappie populations. North American Journal of Fisheries Management, 30, 354-360.
Jansson, M., Bergström, A.-K., Blomqvist, P. & Drakare, S. (2000) Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes. Ecology, 81, 3250-3255.
Jardine, T.D., Hunt, R.J., Faggotter, S.J., Valdez, D., Burford, M.A. & Bunn, S.E. (2013) Carbon from periphyton supports fish biomass in waterholes of a wet-dry tropical river. River Research and Applications, 29, 560-573.
Jones, R.I. & Grey, J. (2011) Biogenic methane in freshwater food webs. Freshwater Biology, 56, 213-229.
Jones, R.I., Grey, J., Sleep, D. & Quarmby, C. (1998) An assessment, using stable isotopes, of the importance of allochthonous organic carbon sources to the pelagic food web in Loch Ness. Proceedings of the Royal Society of London B: Biological Sciences, 265, 105-110.
Junk, G. & Svec, H.J. (1958) The absolute abundance of the nitrogen isotopes in the atmosphere and compressed gas from various sources. Geochimica Et Cosmochimica Acta, 14, 234-243.
Karlsson, J., Jonsson, A., Meili, M. & Jansson, M. (2003) Control of zooplankton dependence on allochthonous organic carbon in humic and clear-water lakes in northern Sweden. Limnology and Oceanography, 48, 269-276.
Kehayias, G., Ramfos, A., Ntzialas, P., Ioannou, S., Bisouki, P., Kyrtzoglou, E., Gianni, A. & Zacharias, I. (2013) Zooplankton diversity and distribution in a deep and anoxic Mediterranean coastal lake. Mediterranean Marine Science, 14, 179-192.
Kelleway, J., Mazumder, D., Wilson, G.G., Saintilan, N., Knowles, L., Iles, J. & Kobayashi, T. (2010) Trophic structure of benthic resources and consumers varies across a regulated floodplain wetland. Marine and Freshwater Research, 61, 430-440.
Kling, G.W., Fry, B. & Obrien, W.J. (1992) Stable isotopes and planktonic trophic structure in arctic lakes. Ecology, 73, 561-566.
Kopàcöek, J., Stuchlåk, , E., Strasökrab, V. & Psöenàk, P. (2000) Factors governing nutrient status of mountain lakes in the Tatra Mountains. Freshwater Biology, 43, 369-383.
Kritzberg, E.S., Cole, J.J., Pace, M.M. & Granéli, W. (2005) Does autochthonous primary production drive variability in bacterial metabolism and growth efficiency in lakes dominated by terrestrial C inputs? Aquatic Microbial Ecology, 38, 103-111.
Lamberti, G.A. & Steinman, A.D. (1997) A comparison of primary production in stream ecosystems. Journal of the North American Benthological Society, 16, 95-104.
Lau, D.C., Leung, K.M. & Dudgeon, D. (2009) Are autochthonous foods more important than allochthonous resources to benthic consumers in tropical headwater streams? Journal of the North American Benthological Society, 28, 426-439.
Laufer, G., Arim, M., Loureiro, M., Piñeiro-Guerra, J.M., Clavijo-Baquet, S. & Fagúndez, C. (2009) Diet of four annual killifishes: an intra and interspecific comparison. Neotropical Ichthyology, 7, 77-86.
Lewis Jr, W.M. (1983) A revised classification of lakes based on mixing. Canadian Journal of Fisheries and Aquatic Sciences, 40, 1779-1787.
Liao, C.-C., Chou, C.-H. & Wu, J.-T. (2003) Regeneration patterns of yellow cypress on down logs in mixed coniferous-broadleaf forest of Yuanyang Lake Nature Preserve, Taiwan. Botanical Bulletin of Academia Sinica, 44, 229-238.
Marshall, M.D., Maceina, M.J. & Holley, M.P. (2009) Age and growth variability between sexes of three catfish species in Lake Wilson, Alabama. North American Journal of Fisheries Management, 29, 1283-1286.
Matthews, B. & Mazumder, A. (2006) Habitat specialization and the exploitation of allochthonous carbon by zooplankton. Ecology, 87, 2800-2812.
Matuszak, A., Voigt, C.C., Storch, I., Bauer, H.G. & Quillfeldt, P. (2011) Depth-specific and spatiotemporal variation of δ13C and δ15N in Charophytes of Lake Constance: implications for food web studies. Rapid Communications in Mass Spectrometry, 25, 2089-2094.
Mccutchan, J.H., Lewis, W.M., Kendall, C. & Mcgrath, C.C. (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos, 102, 378-390.
Medeiros, E.S. & Arthington, A.H. (2011) Allochthonous and autochthonous carbon sources for fish in floodplain lagoons of an Australian dryland river. Environmental Biology of Fishes, 90, 1-17.
Medina-Sánchez, J.M., Villar-Argaiz, M., Sánchez-Castillo, P., Luis, C. P. & Carrillo, P. (1999) Structure changes in a planktonic food web: biotic and abiotic controls. Journal of Limnology, 58, 213-222.
Meerhoff, M., Iglesias, C., De Mello, F.T., Clemente, J.M., Jensen, E., Lauridsen, T.L. & Jeppesen, E. (2007) Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biology, 52, 1009-1021.
Minagawa, M. & Wada, E. (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochimica Et Cosmochimica Acta, 48, 1135-1140.
Moran, M.A. & Hodson, R.E. (1990) Bacterial production on humic and nonhumic components of dissolved organic carbon. Limnology and Oceanography, 35, 1744-1756.
Mormul, R.P., Thomaz, S.M., Takeda, A.M. & Behrend, R.D. (2011) Structural complexity and distance from source habitat determine invertebrate abundance and diversity. Biotropica, 43, 738-745.
Mullin, M.M., Rau, G.H. & Eppley, R.W. (1984) Stable nitrogen isotopes in zooplankton: some geographic and temporal variations in the North Pacific. Limnology and Oceanography, 29, 1267-1273.
Norris, K.E. (2015) Growth, fecundity, and diet of oriental weatherloach Misgurnus anguillicaudatus in the Chicago area waterways.
Nydick, K.R., Lafrancois, B.M. & Baron, J.S. (2004) NO3 uptake in shallow, oligotrophic, mountain lakes: the influence of elevated NO3 concentrations. Journal of the North American Benthological Society, 23, 397-415.
Oleary, M.H., Madhavan, S. & Paneth, P. (1992) Physical and chemical basis of carbon isotope fractionation in plants. Plant Cell and Environment, 15, 1099-1104.
Ortega-Mayagoitia, E., Ciros-Pérez, J. & Sánchez-Martínez, M. (2011) A story of famine in the pelagic realm: temporal and spatial patterns of food limitation in rotifers from an oligotrophic tropical lake. Journal of Plankton Research, 33, 1574-1585.
Pace, M.L., Cole, J.J., Carpenter, S.R., Kitchell, J.F., Hodgson, J.R., Van De Bogert, M.C., Bade, D.L., Kritzberg, E.S. & Bastviken, D. (2004) Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature, 427, 240-243.
Parnell, A.C., Inger, R., Bearhop, S. & Jackson, A.L. (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS One, 5, e9672.
Patrick, C.J. (2014) Macroinvertebrate communities of ecotones between the boundaries of streams, wetlands, and lakes. Fundamental and Applied Limnology, 185, 223-233.
Perbiche-Neves, G., Portinho, J.L., Romero Ferreira, R.A. & Nogueira, M.G. (2016) Increases in microcrustaceans (Cladocera and Copepoda) associated with phytoplankton peaks in tropical reservoirs. Tropical Ecology, 57, 523-532.
Peterson, B.J. & Fry, B. (1987) Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics, 18, 293-320.
Pimm, S.L., Lawton, J.H. & Cohen, J.E. (1991) Food web patterns and their consequences. Nature, 350, 669-674.
Post, D.M. (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology, 83, 703-718.
Pothoven, S.A. & Fahnenstiel, G.L. (2015) Spatial and temporal trends in zooplankton assemblages along a nearshore to offshore transect in southeastern Lake Michigan from 2007 to 2012. Journal of Great Lakes Research, 41, 95-103.
Pulido-Villena, E., Reche, I. & Morales-Baquero, R. (2005) Food web reliance on allochthonous carbon in two high mountain lakes with contrasting catchments: a stable isotope approach. Canadian Journal of Fisheries and Aquatic Sciences, 62, 2640-2648.
Rautio, M. & Vincent, W.F. (2006) Benthic and pelagic food resources for zooplankton in shallow high-latitude lakes and ponds. Freshwater Biology, 51, 1038-1052.
Rees, R., Chang, S.C., Wang, C.P. & Matzner, E. (2006) Release of nutrients dissolved organic carbon during decomposition of Chamaecyparis obtusa var. formosana leaves in a mountain forest in Taiwan. Journal of Plant Nutrition and Soil Science, 169, 792-798.
Robinson, B.W., Wilson, D.S., Margosian, A.S. & Lotito, P.T. (1993) Ecological and morphological differentiation of pumpkinseed sunfish in lakes without bluegill sunfish. Evolutionary Ecology, 7, 451-464.
Rognerud, S., Grimalt, J., Rosseland, B., Fernandez, P., Hofer, R., Lackner, R., Lauritzen, B., Lien, L., Massabuau, J. & Ribes, A. (2002) Mercury and organochlorine contamination in brown trout (Salmo trutta) and arctic charr (Salvelinus alpinus) from high mountain lakes in Europe and the Svalbard archipelago. Water, Air and Soil Pollution: Focus, 2, 209-232.
Rounick, J.S. & Winterbourn, M.J. (1986) Stable carbon isotopes and carbon flow in ecosystems. Bioscience, 36, 171-177.
Rueckert, G. & Giani, A. (2008) Biological interactions in the plankton community of a tropical eutrophic reservoir: is the phytoplankton controlled by zooplankton? Journal of Plankton Research, 30, 1157-1168.
Safer, M. (2014) Carassius auratus auratus (Common Goldfish).
Sanseverino, A.M., Bastviken, D., Sundh, I., Pickova, J. & Enrich-Prast, A. (2012) Methane carbon supports aquatic food webs to the fish level. PLoS One, 7, e42723.
Schindler, D. (1978) Factors regulating phytoplankton production and standing crop in the world's freshwaters. Limnology and Oceanography, 23, 478-486.
Schoener, T.W. (1970) Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology, 51, 408-418.
Shade, A., Chiu, C.-Y. & Mcmahon, K.D. (2010) Seasonal and episodic lake mixing stimulate differential planktonic bacterial dynamics. Microbial Ecology, 59, 546-554.
Shostell, J.M. & Williams, B.S. (2007) Habitat complexity as a determinate of benthic macroinvertebrate community structure in cypress tree reservoirs. Hydrobiologia, 575, 389-399.
St Pierre, J.I. & Kovalenko, K.E. (2014) Effect of habitat complexity attributes on species richness. Ecosphere, 5, 1-10.
Stein, R., Kitchell, J. & Knežzevic, B. (1975) Selective predation by carp (Cyprinus carpio L.) on benthic molluscs in Skadar Lake, Yugoslavia. Journal of Fish Biology, 7, 391-399.
Stoner, A.W. & Livingston, R.J. (1984) Ontogenetic patterns in diet and feeding morphology in sympatric sparid fishes from seagrass meadows. Copeia, 1984, 174-187.
Taniguchi, H., Nakano, S. & Tokeshi, M. (2003) Influences of habitat complexity on the diversity and abundance of epiphytic invertebrates on plants. Freshwater Biology, 48, 718-728.
Tews, J., Brose, U., Grimm, V., Tielborger, K., Wichmann, M.C., Schwager, M. & Jeltsch, F. (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography, 31, 79-92.
Thimdee, W., Deein, G., Sangrungruang, C. & Matsunaga, K. (2004) Analysis of primary food sources and trophic relationships of aquatic animals in a mangrove-fringed estuary, Khung Krabaen Bay (Thailand) using dual stable isotope techniques. Wetlands Ecology and Management, 12, 135-144.
Thomaz, S.M., Dibble, E.D., Evangelista, L.R., Higuti, J. & Bini, L.M. (2008) Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshwater Biology, 53, 358-367.
Tiberti, R., Von Hardenberg, A. & Bogliani, G. (2014) Ecological impact of introduced fish in high altitude lakes: a case of study from the European Alps. Hydrobiologia, 724, 1-19.
Tranvik, L.J. (1988) Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microbial Ecology, 16, 311-322.
Vadeboncoeur, Y., Peterson, G., Vander Zanden, M.J. & Kalff, J. (2008) Benthic algal production across lake size gradients: interactions among morphometry, nutrients, and light. Ecology, 89, 2542-2552.
Vander Zanden, M.J., Cabana, G. & Rasmussen, J.B. (1997) Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature dietary data. Canadian Journal of Fisheries and Aquatic Sciences, 54, 1142-1158.
Vander Zanden, M.J. & Rasmussen, J.B. (2001) Variation in delta N-15 and delta C-13 trophic fractionation: Implications for aquatic food web studies. Limnology and Oceanography, 46, 2061-2066.
Varga, I. (2003) Structure and changes of macroinvertebrate community colonizing decomposing rhizome litter of common reed at Lake Fertő/Neusiedler See (Hungary). Hydrobiologia, 506, 413-420.
Villar‐Argaiz, M., Medina‐Sánchez, J.M., Cruz‐Pizarro, L. & Carrillo, P. (2001) Inter‐and intra‐annual variability in the phytoplankton community of a high mountain lake: the influence of external (atmospheric) and internal (recycled) sources of phosphorus. Freshwater Biology, 46, 1017-1034.
Vives, I., Grimalt, J.O., Ventura, M. & Catalan, J. (2005) Distribution of polycyclic aromatic hydrocarbons in the food web of a high mountain lake, Pyrenees, Catalonia, Spain. Environmental Toxicology and Chemistry, 24, 1344-1352.
Von Westernhagen, N., Hamilton, D.P. & Pilditch, C.A. (2010) Temporal and spatial variations in phytoplankton productivity in surface waters of a warm-temperate, monomictic lake in New Zealand. Hydrobiologia, 652, 57-70.
Wallace, R.K. (1981) An assessment of diet-overlap indexes. Transactions of the American Fisheries Society, 110, 72-76.
Wang, L.C., Behling, H., Chen, Y.M., Huang, M.S., Chen, C.T.A., Lou, J.Y., Chang, Y.P. & Li, H.C. (2014) Holocene monsoonal climate changes tracked by multiproxy approach from a lacustrine sediment core of the subalpine Retreat Lake in Taiwan. Quaternary International, 333, 69-76.
Wang, L.C., Behling, H., Lee, T.Q., Li, H.C., Huh, C.A., Shiau, L.J., Chen, S.H. & Wu, J.T. (2013) Increased precipitation during the Little Ice Age in northern Taiwan inferred from diatoms and geochemistry in a sediment core from a subalpine lake. Journal of Paleolimnology, 49, 619-631.
Wang, S., Qian, X., Han, B.-P., Luo, L.C. & Hamilton, D.P. (2012) Effects of local climate and hydrological conditions on the thermal regime of a reservoir at Tropic of Cancer, in southern China. Water Research, 46, 2591-2604.
Weidel, B., Carpenter, S., Cole, J., Hodgson, J., Kitchell, J., Pace, M. & Solomon, C. (2008) Carbon sources supporting fish growth in a north temperate lake. Aquatic Sciences, 70, 446-458.
Wetzel, R.G. (2001) Limnology: lake and river ecosystems, Gulf Professional Publishing.
Winemiller, K.O., Hoeinghaus, D.J., Pease, A.A., Esselman, P.C., Honeycutt, R.L., Gbanaador, D., Carrera, E. & Payne, J. (2011) Stable isotope analysis reveals food web structure and watershed impacts along the fluvial gradient of a Mesoamerican coastal river. River Research and Applications, 27, 791-803.
Wu, J.T., Chang, S.C., Wang, Y.S., Wang, Y.F. & Hsu, M.K. (2001) Characteristics of the acidic environment of the Yuanyang Lake (Taiwan). Botanical Bulletin of Academia Sinica, 42, 17-22.
Wu, J.T., Chou, C.H., Shieh, Y.J., Chiu, C.Y., Yang, C.M. & Hwang, Y.H. (2000) Diversity of plants and the ecosystem of Lake Yuanyang. Taiwan Forestry Research Institute Extension Series, 126, 61-69 (in Chinese).
Wu, J.T., Chuang, P.P., Wu, L.Z. & Chen, C.T.A. (1997) Diatoms as indicators of environmental changes: A case study in Great Ghost Lake. Proceedings of the National Science Council Republic of China Part B Life Sciences, 21, 112-119.
Wysujack, K. & Mehner, T. (2005) Can feeding of European catfish prevent cyprinids from reaching a size refuge? Ecology of Freshwater Fish, 14, 87-95.
Xie, S., Cui, Y. & Li, Z. (2001) Dietary‐morphological relationships of fishes in Liangzi Lake, China. Journal of Fish Biology, 58, 1714-1729.
Yada, O. & Furukawa, A. (1999) Relationship between external and internal morphological changes and feeding habits in the fry stage of Japanese catfish Silurus asotus. U.S.-Japan Cooperative Program in Natural Resources Technical Report, 28, 157-162.
Yam, R.S. & Dudgeon, D. (2005) Stable isotope investigation of food use by Caridina spp. (Decapoda: Atyidae) in Hong Kong streams. Journal of the North American Benthological Society, 24, 68-81.
Yang, T.N., Lee, T.Q., Meyers, P.A., Fan, C.W., Chen, R.F., Wei, K.Y., Chen, Y.G. & Wu, J.T. (2011) The effect of typhoon induced rainfall on settling fluxes of particles and organic carbon in Yuanyang Lake, subtropical Taiwan. Journal of Asian Earth Sciences, 40, 1171-1179.
Yeh, H., Chen, S., Chang, W. & Kao, W. (1995) Paleolimnology of Yuen-Yang Lake according to isotopic composition of organic carbon. Journal of Geological Society of China, 38, 125-139.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7919-
dc.description.abstract高山湖泊是位在高海拔的自然的靜止水體,具有獨特的生態系結構,亦是對環境變化相當敏感的生態系。前人有關於高山湖泊生態系的研究主要集中在溫帶地區,在亞熱帶亞洲地區的高山湖泊生態系卻很少被探討,由於亞熱帶地區的高山湖泊生態系統常受到季節性的環境擾動影響,如夏季的強降雨事件而造成的水文擾動或是夏季強烈的太陽輻射所導致的能量源的變化,可能會影響其中食物網能量源變化。
本研究探討位在亞熱帶台灣北部的翠峰湖及鴛鴦湖,這兩個研究樣點海拔高度及氣候條件相近,然而,這兩個研究樣點的沿岸植被有明顯差異,翠峰湖是相對較為開闊的自源生態系統且只有稀疏的沿岸植被;但是鴛鴦湖則是部分水面受到陸域植物遮蔽且較為封閉的異源生態系統。在本研究期間,翠峰湖食物網中生物的穩定碳同位素數值整體來看是高於鴛鴦湖,同時,我們的結果也發現雖然鴛鴦湖周圍植生茂密,然而落葉並非最重要提供鴛鴦湖整個生態系的能量源,穩定同位素混合模型(SIAR)的結果證實,在異源的鴛鴦湖,細菌是食物網中最主要的能量源。然而,翠峰湖是一個典型的自源生態系統,其主要提供整個食物網的能量源是自源性的浮游藻類以及附生藻類。另外,我們的研究結果顯示鴛鴦湖食物網結構其複雜度高於翠峰湖,主要原因是鴛鴦湖周圍植生茂盛而湖中有繁茂的水生植物床與豐富的藻類物種,大大提升鴛鴦湖的棲地複雜度,為浮游動物及水生無脊椎動物等營造合適躲藏的棲地。至於在兩個高山湖泊食物網結構之季節變異,主因為隨著夏季到來而提高的水溫以及太陽輻射所導致自源能量源的光合作用率提升,進而增加整個生態系統的初級生產力。我們的研究結果顯示,異源性鴛鴦湖的水生生物主要的基礎能量源是細菌,而自源性的能量源(如: 浮游藻類及附生藻類)是自源性翠峰湖中水生生物的主要基礎能量源。
zh_TW
dc.description.abstractMountain lakes are natural and remoted lentic water bodies with unique ecosystem structure housing high level of biological endemism. They are sensitive to environmental changes though most studies of the mountain lake ecosystems have been focused on the temperate region. Yet, only limited investigation has been undertaken in such ecologically important habitats in tropical/subtropical Asia. As the subtropical mountain lake ecosystems are strongly influenced by seasonal environmental perturbations, such as periodic and stochastic hydrological disturbances due to heavy rainfall events, and the intense solar radiation during summer. It could be the major factor characterizing the energy basis for the lake food webs.
In this study, the trophic structure and food utilization patterns of primary consumers, secondary consumers, and top predators in two subtropical mountain lakes in Taiwan, including Lake Tsuifeng (TFL) and Lake Yuanyang (YYL) were investigated using stable carbon and nitrogen isotope analyses. The two study lakes exhibited marked difference in riparian vegetation pattern, TFL was relatively unshaded with only sparsely distributed riparian vegetation whereas YYL was a densely shaded system with continuously distributed riparian forest. This resulted in distinct difference in the availability of different food sources to the food webs. During the study period, the variation of water temperature and precipitation pattern was similar between the two study lakes with most heavy rainfall events in summer. Our results showed that the food web components were more δ13C-enriched in TFL than in YYL. Despite the high availability of the two most dominant allochthonous food sources including fine particulate organic matter (FPOM) and leaf litter in the densely shaded YYL, they were least utilized by aquatic consumers. Instead, results of the stable isotope mixing model (SIAR) indicated that the δ13C-depleted bacteria represented the major energy basis in the allochthonous YYL. In contrast, TFL was a typical autochthonous ecosystem dependent on autochthonous food sources (periphyton and phytoplankton) which accounted for the major primary production supporting the food web. In addition, the increased complexity of food web structures in YYL as compared to TFL could be primarily due to higher habitat complexity in YYL where dense macrophyte bed and accumulation of leaf litter mass on the lake bottom. Moreover, the observed seasonal shift of food web structures in the two study lakes could be due to the enhanced primary production due to higher light intensity and water temperature in summer. Our study confirmed that the most important basal food sources for aquatic organisms in allochthonous YYL was bacteria, whereas autochthonous basal food sources (e.g. phytoplankton and periphyton) had the higher contribution to aquatic organisms in autochthonous TFL during the study periods.
en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:58:40Z (GMT). No. of bitstreams: 1
ntu-105-R03622008-1.pdf: 4674286 bytes, checksum: 3798575902f2fdd865acb86c2ff62db4 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員審定書 i
謝誌 ii
摘要 iii
Abstract v
Contents viii
List of figures x
List of tables xii
List of plates xiii
1. Introduction 1
2. Materials and Methods 8
2.1. Study sites 8
2.2. Environmental characteristics 10
2.3. Collections and preparations of biological samples 11
2.3.1. Potential food sources 12
2.3.2. Potential consumers 13
2.4. Gut content analyses 15
2.5. Stable carbon and nitrogen isotope analyses 16
2.6. Data analyses 19
2.6.1. Zooplankton and fish abundance and biodiversity 19
2.6.2. Gut content analysis of fish and amphibians 19
2.6.3. Stable isotopic mixing model (SIAR) and food web structures 20
3. Results 23
3.1. Environmental characteristics in the study sites 23
3.2. Potential food sources 26
3.3. Primary consumers 29
3.4. Secondary consumers and predators 34
3.4.1. Benthic macroinvertebrates 34
3.4.2. Fishes and amphibians 36
3.5. Food web structures 42
3.6. Food-resource partitioning of fish 44
3.6.1. Sex-specific feeding behavior of fish (top predator) 44
3.6.2. Fish body size and feeding habits 46
4. Discussion 47
4.1. Primary energy source contributed to subtropical mountain lake ecosystems 47
4.2. Seasonal variation of availability and characteristic of energy sources 52
4.3. Contribution of basal energy sources to primary consumers 53
4.4. Contribution of basal energy sources to secondary consumers 55
4.5. Importance of zooplankton in mountain lake food webs 56
4.5.1. Effect of inter-site variation to the assemblage of zooplankton 56
4.5.2. Effect of seasonal variation to the assemblage of zooplankton 57
4.6. Importance of fish in mountain lake food webs 59
4.7. Food web structure in mountain lake ecosystems 61
4.7.1. Effect of inter-site variation to food web complexity and food chain length 61
4.7.2. Effect of seasonal variation to food web complexity and food chain length 63
5. Conclusion 66
References 68
dc.language.isoen
dc.title亞熱帶高山湖泊食物網結構的季節變化zh_TW
dc.titleSeasonal variation of food web structure in subtropical mountain lakesen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee高文媛(Wen-Yuan Kao),王慧瑜(Hui-Yu Wang)
dc.subject.keyword亞熱帶高山湖泊,營養傳輸,異源性,自源性,穩定碳氮同位素分析,zh_TW
dc.subject.keywordsubalpine lakes,trophic transfer,autochthonous,allochthonous,stable C and N isotope analysis,SIAR,en
dc.relation.page116
dc.identifier.doi10.6342/NTU201601578
dc.rights.note同意授權(全球公開)
dc.date.accepted2016-08-03
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf4.56 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved