Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79180
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林怡成
dc.contributor.authorGuan-Ting Chenen
dc.contributor.author陳冠廷zh_TW
dc.date.accessioned2021-07-11T15:50:44Z-
dc.date.available2023-08-01
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-26
dc.identifier.citation[1] G. V. Trentini, “Partially reflective sheet arrays,” IRE Trans. Antennas and Propag., vol.4, no.4, pp.666-671, Oct.1956.
[2] A. Feresidis and J. Vardaxoglou, “High gain planar using optimized partially reflective surfaces,” IEE Proceedings microwaves, Antennas & Propagation, vol. 148, no. 6, pp.344-350, Dec.2001.
[3] N. Guérin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, “A Metallic Fabry–Perot Directive Antenna,” IRE Trans. Antennas and Propag., vol. 54, no. 1, pp.220-224, Jan. 2006.
[4] D. R. Jackson, G. Lovat, J. Chen, D. R. Wilton, and A. A. Oliner, “The Fundamental Physics of Directive Beaming at Microwave and Optical Frequencies and the Role of Leaky Waves,” Proceedings of the IEEE, vol. 99, no. 10, pp.1780-1805, Oct. 2011.
[5] L. O. Goldstone and A. A. Oliner, “Leaky-wave antennas I: rectangular waveguides,” IRE Trans. Antennas and Propag.,vol. AP-7, pp. 307-319, October 1959.
[6] G. Lovat, P. Burghignoli, and D. R. Jackson, “Fundamental Properties and Optimization of Broadside Radiation from Uniform Leaky-Wave Antennas,” IEEE Trans. on Antennas and Propag., vol. 54, no. 5, pp.1442-1452, May. 2006.
[7] D. R. Jackson, and N. G. Alexopoulos, “Gain Enhancement Methods for Printed Circuit Antennas,” IEEE Trans. on Antennas and Propag., vol. ap-33, no. 9, pp.976-987, Sep. 1985.
[8] A. P. Feresidis, G. Goussetis, S. Wang, and J. Y. C. Vardaxoglou, “ Artificial Magnetic Conductor Surfaces and Their Application to Low-Profile High-Gain Planar Antennas,” IEEE Trans. on Antennas and Propag., vol. 53, no. 1, pp.209-215, Jan. 2005.
[9] O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Räisänen, and S. A. Tretyakov, ”Simple and Accurate Analytical Model of Planar Grids and High-Impedance Surfaces Comprising Metal Strips or Patches,” IEEE Trans. on Antennas and Propag., vol. 56, no. 6, pp.1624-1632, Jun. 2008.
[10] D. R. Jackson, P. Burghignoli, G. Lovat, F. Capolino, J. Chen, D. Wilton, A. Oliner, “The fundamental physics of directive beaming at microwave and optical frequencies and the role of leaky waves”, Proc. IEEE, vol. 99, no. 110, pp. 1780-1805, 2011.
[11] Y.-F. Lu and Y.-C. Lin, “Design and implementation of broadband partially reflective surface antenna,” IEEE AP-S Symposium, Spokane, WA, July 2011, pp.2250-2253.
[12] N. Wang, “Wideband fabry-perot resonator antenna with two complementary FSS layers”, IEEE Trans. Antennas Propag., vol. 62, no. 5, pp. 2463-2571, May 2014.
[13] Y. Ge, K. P. Esselle, T. S. Bird, “The Use of Simple Thin Partially Reflective Surfaces With Positive Reflection Phase Gradients to Design Wideband Low-Profile EBG Resonator Antennas”, IEEE Trans. Antennas Propag., vol. 60, no. 2, pp. 743-850, Feb. 2012.
[14] M. A. Al-Tarifi, D. E. Anagnostou, A. K. Amert, K. W. Whites, “Bandwidth enhancement of the resonant cavity antenna by using two dielectric superstrates”, IEEE Trans. Antennas Propag., vol. 61, no. 4, pp. 1898-1908, Apr. 2013.
[15] R. M. Hashmi, B. A. Zeb, K. P. Esselle, “Wideband high-gain EBG resonator antennas with small footprints and all-dielectric superstructures”, IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 2970-2977, June 2014.
[16] F. Wu, K. M. Luk, “Wideband high-gain open resonator antenna using a spherically modified second-order cavity”, IEEE Trans. Antennas Propag., vol. 65, no. 4, pp. 2112-2116, Apr. 2017.
[17] Y. F. Lu, and Y. C. Lin, “ A Hybrid Approach for Finite-Size Fabry-Pérot Antenna Design With Fast and Accurate Estimation on Directivity and Aperture Efficiency,” IEEE Trans. on Antennas and Propag., vol. 61, no. 11, pp.5394-5401, Nov. 2013.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79180-
dc.description.abstract本篇論文提出一種設計在毫米波頻段的寬頻空腔共振天線,其使用多層印刷電路板的架構來實現,由一層部分反射面和一層金屬接地面組成,可讓電磁波在共振腔內來回共振以製造高增益之天線特性。本論文首先探討設計部分反射面的反射係數及操作頻率的關係,進而討論將不同的週期性單元結構結合後的部分反射面的寬頻特性,並以傳統均勻部分反射面的空腔共振天線驗證其寬頻的效果。接著對其工作原理進行分析,最後再以一種偶極天線的結構進行實際饋入,完成一個空腔共振天線及天線陣列的設計。本論文所提出的漸變式的空腔共振天線,操作在26.5~29.5GHz的頻率下,其3dB增益頻寬可達11% (傳統均勻空腔共振天線約3%),天線正向輻射(broadside) 增益可達到15.7dBi,而2x2陣列天線的部分,正向輻射增益可以達到20.6dBi。zh_TW
dc.description.abstractThis thesis presents a wide-band cavity resonant antenna for the millimeter-wave applications. The antenna employs a multi-layered printed circuit board (PCB) that consists of a partially reflective surface (PRS), a feeding structure, and a ground plane. The confined electromagnetic waves are simultaneously oscillating in the resonant cavity and radiating along the leaking surface for high gain operations. First, we analyzed the relationship between the reflection coefficient of the partially reflective surface and the operating frequency. Second, we discussed the characteristics of the partially reflective surface combined with tapered unit cell of varying periods and validated the broadband effect compared to a conventional uniform cavity resonant antenna. After investigating the working principle, we implemented the realistic structure with a dipole feed and completed the resonant cavity antenna element and array design. The tapered PRS antenna presented in this paper operates in a frequency band of 26.5 to 29.5 GHz. The 3-dB gain bandwidth is about 11%. The broadside gain of the antenna reaches 15.7 dBi for the element design, and 20.6 dBi for the 2x2 array design.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:50:44Z (GMT). No. of bitstreams: 1
ntu-107-R05942084-1.pdf: 4826546 bytes, checksum: b4f13392af265a6132e1756eb06347c8 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vi
表目錄 x
第一章 緒論 1
1-1 空腔共振天線簡介 1
1-2 寬頻空腔共振天線 5
1-3 研究動機 8
1-4 設計目標 9
1-5 論文架構 9
第二章 理想寬頻空腔共振天線之設計 10
2-1 週期性結構單元分析 10
2-2 理想饋入之漸變式部分反射面型天線 18
2-3 工作原理分析 27
2-4 總結 34
第三章 實際結構之漸變式部分反射型天線 35
3-1 天線單元之設計 35
3-2 天線陣列之設計 54
3-3 總結 65
第四章 模擬與量測結果 66
4-1 天線單元之模擬與量測 66
4-2 天線陣列之模擬與量測 73
4-3 誤差分析 80
4-4 總結 83
第五章 結論 85
參考文獻 86
dc.language.isozh-TW
dc.subject空腔共振天線zh_TW
dc.subject毫米波zh_TW
dc.subject漏波天線zh_TW
dc.subject寬頻zh_TW
dc.subject部分反射面zh_TW
dc.subjectFabry Perot antennaen
dc.subjectbroadbanden
dc.subjectmillimeter waveen
dc.subjectLeaky-wave antennaen
dc.subjectcavity resonant antenna (CRA)en
dc.subjectpartially reflective surface (PRS)en
dc.title印刷式毫米波寬頻空腔共振天線與陣列之研製zh_TW
dc.titleDesign and Implementation of Printed Broadband Cavity Resonant Antenna and Arrays for Millimeter-Wave Applicationsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周錫增,馬自莊,陳士元
dc.subject.keyword毫米波,寬頻,空腔共振天線,部分反射面,漏波天線,zh_TW
dc.subject.keywordmillimeter wave, broadband,partially reflective surface (PRS),cavity resonant antenna (CRA),Fabry Perot antenna,Leaky-wave antenna,en
dc.relation.page88
dc.identifier.doi10.6342/NTU201802039
dc.rights.note有償授權
dc.date.accepted2018-07-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
dc.date.embargo-lift2023-08-01-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-R05942084-1.pdf
  未授權公開取用
4.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved