請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7917完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭士康 | zh_TW |
| dc.contributor.advisor | Shyh-Kang Jeng | en |
| dc.contributor.author | 楊惠雯 | zh_TW |
| dc.contributor.author | Hui-Wen Yang | en |
| dc.date.accessioned | 2021-05-19T17:58:34Z | - |
| dc.date.available | 2024-05-23 | - |
| dc.date.copyright | 2020-06-10 | - |
| dc.date.issued | 2020 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] Y.-H. Wang, H.-W. V. Young, and M.-T. Lo, "The inner structure of empirical mode decomposition," Physica A: Statistical Mechanics and its Applications, vol. 462, no. 300, pp. 1003-1017, 2016.
[2] N. Huang, Z. Shen, S. Long, M. Wu, and H. Shih, "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis," Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, vol. 454, pp. 903-995, 1998, doi: 10.1098/rspa.1998.0193. [3] I. Daubechies, J. Lu, and H. T. Wu, "Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool," Applied and Computational Harmonic Analysis, vol. 30, no. 2, pp. 243-261, 2011, doi: 10.1016/j.acha.2010.08.002. [4] J. Gilles, "Empirical wavelet transform," IEEE Transactions on Signal Processing, vol. 61, no. 16, pp. 3999-4010, 2013, doi: 10.1109/TSP.2013.2265222. [5] C. Zhuang and P. Liao, "An Improved Empirical Wavelet Transform for Noisy and Non-Stationary Signal Processing," IEEE Access, vol. 8, pp. 24484-24494, 2020, doi: 10.1109/ACCESS.2020.2968851. [6] K. Dragomiretskiy and D. Zosso, "Variational Mode Decomposition," IEEE TRANSACTIONS ON SIGNAL PROCESSING, vol. 62, no. 3, 2014, doi: 10.1109/TSP.2013.2288675. [7] L. Zão, R. Coelho, and P. Flandrin, "Speech Enhancement with EMD and Hurst-Based Mode Selection," vol. 22, no. 5, pp. 899-911, 2014. [8] W. Shen, Y. Yu, L. Ling, J. Ren, and Q. Zhu, "Speech Noise Reduction by EMD-LMS," pp. 485-488, 2020, doi: 10.1109/iccsnt47585.2019.8962419. [9] J. Y. Huang, K. L. Wen, X. J. Li, J. J. Xie, C. T. Chen, and S. C. Su, "Coseismic deformation time history calculated from acceleration records using an EMD-derived baseline correction scheme: A new approach validated for the 2011 Tohoku earthquake," Bulletin of the Seismological Society of America, vol. 103, no. 2 B, pp. 1321-1335, 2013, doi: 10.1785/0120120278. [10] P. Nguyen and J. M. Kim, "Adaptive ECG denoising using genetic algorithm-based thresholding and ensemble empirical mode decomposition," Information Sciences, vol. 373, pp. 499-511, 2016, doi: 10.1016/j.ins.2016.09.033. [11] E. Alickovic, J. Kevric, and A. Subasi, "Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction," Biomedical Signal Processing and Control, vol. 39, pp. 94-102, 2018, doi: 10.1016/j.bspc.2017.07.022. [12] M. B. Hossain, S. K. Bashar, A. J. Walkey, D. D. McManus, and K. H. Chon, "An Accurate QRS Complex and P Wave Detection in ECG Signals Using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Approach," IEEE Access, vol. 7, pp. 128869-128880, 2019, doi: 10.1109/ACCESS.2019.2939943. [13] H. Li, Y. Hu, F. Li, and G. Meng, "Succinct and fast empirical mode decomposition," Mechanical Systems and Signal Processing, vol. 85, pp. 879-895, 2017, doi: 10.1016/j.ymssp.2016.09.031. [14] J. Zheng, J. Cheng, and Y. Yang, "Generalized empirical mode decomposition and its applications to rolling element bearing fault diagnosis," Mechanical Systems and Signal Processing, vol. 40, pp. 136-153, 2013. [15] F. Xu, X. Song, K. L. Tsui, F. Yang, and Z. Huang, "Bearing Performance Degradation Assessment Based on Ensemble Empirical Mode Decomposition and Affinity Propagation Clustering," IEEE Access, vol. 7, pp. 54623-54637, 2019, doi: 10.1109/ACCESS.2019.2913186. [16] A. E. Prosvirin, M. M. M. Islam, and J.-M. Kim, "An Improved Algorithm for Selecting IMF Components in Ensemble Empirical Mode Decomposition for Domain of Rub-Impact Fault Diagnosis," IEEE Access, vol. 7, pp. 121728-121741, 2019, doi: 10.1109/access.2019.2938367. [17] Z. Wu and N. E. Huang, "Ensemble empirical mode decomposition: a noise-assisted data analysis method," Advances in Adaptive Data Analysis, vol. 1, no. 1, pp. 1-41, 2009. [18] J.-R. Yeh, J.-S. Shieh, and N. E. Huang, "Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method," Advances in Adaptive Data Analysis, vol. 2, no. 2, pp. 135-156, 2010, doi: 10.1142/S1793536910000422. [19] M. E. Torres, M. A. Colominas, G. Schlotthauer, and P. Flandrin, "A complete ensemble empirical mode decomposition with adaptive noise," ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, pp. 4144-4147, 2011, doi: 10.1109/ICASSP.2011.5947265. [20] R. Deering and J. F. Kaiser, "The use of a masking signal to improve empirical mode decomposition," in Proceedings.(ICASSP'05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005., 2005, vol. 4: IEEE, pp. iv/485-iv/488 Vol. 4. [21] Y. H. Wang, K. Hu, and M. T. Lo, "Uniform phase empirical mode decomposition: An optimal hybridization of masking signal and ensemble approaches," IEEE Access, vol. 6, pp. 34819-34833, 2018, doi: 10.1109/ACCESS.2018.2847634. [22] J. Zheng, H. Pan, T. Liu, and Q. Liu, "Extreme-point weighted mode decomposition," Signal Processing, vol. 142, pp. 366-374, 2018, doi: 10.1016/j.sigpro.2017.08.002. [23] H. Li, L. Yang, and D. Huang, "The study of the intermittency test filtering character of Hilbert-Huang transform," Mathematics and Computers in Simulation, vol. 70, pp. 22-32, 2005, doi: 10.1016/j.matcom.2005.03.020. [24] X. Hu, S. Peng, and W. L. Hwang, "EMD revisited: A new understanding of the envelope and resolving the mode-mixing problem in AM-FM signals," IEEE Transactions on Signal Processing, vol. 60, no. 3, pp. 1075-1086, 2012, doi: 10.1109/TSP.2011.2179650. [25] C. Wang, Q. Kemao, and F. Da, "Regenerated Phase-Shifted Sinusoid-Assisted Empirical Mode Decomposition," vol. 23, no. 4, pp. 556-560, 2016. [26] G. Rilling and P. Flandrin, "One or two frequencies? The empirical mode decomposition answers," IEEE Transactions on Signal Processing, vol. 56, no. 1, pp. 85-95, 2008. [27] Z. Wang and D. Zhang, "Progressive switching median filter for the removal of impulse noise from highly corrupted images," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 46, no. 1, pp. 78-80, 1999, doi: 10.1109/82.749102. [28] J. Chen, Y. Zhan, and H. Cao, "Adaptive Sequentially Weighted Median Filter for Image Highly Corrupted by Impulse Noise," IEEE Access, vol. 7, no. i, pp. 158545-158556, 2019, doi: 10.1109/ACCESS.2019.2950348. [29] H. Hwang and R. A. Haddad, "Adaptive Median Fitlers: New Algorithms and Results," IEEE Transactions on Image Processing, vol. 4, no. 4, pp. 499-502, 1995. [30] H. Qiu, J. Lee, J. Lin, and G. Yu, "Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics," Journal of Sound and Vibration, vol. 289, no. 4-5, pp. 1066-1090, 2006. [31] Z. Nenadic and J. W. Burdick, "Spike detection using the continuous wavelet transform," Ieee Tbme, vol. 52, no. 1, pp. 74-87, 2005. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/15651566. [32] R. C. Nongpiur, "Impulse Noise Removal in Speech Using Wavelets," 2008, 3 ed., pp. 1593-1596. [33] N. E. Huang, Z. Shen, and S. R. Long, "A new view of nonlinear water waves: the Hilbert spectrum 1," Annu. Rev. Fluid Mech, vol. 31, pp. 417-57, 1999. [34] M. Unser, "Splines: A perfect fit for signal processing," 2000, doi: 10.1109/79.799930. [35] F. Ehrentreich and L. Summchen, "Spike removal and denoising of Raman spectra by wavelet transform methods," Analytical Chemistry, vol. 73, no. 17, pp. 4364-4373, 2001. [36] S. R. Kim and A. Efron, "Adaptive robust impulse noise filtering," IEEE Transactions on Signal Processing, vol. 43, no. 8, pp. 1855-1866, 1995. [37] Y.-H. Wang, C.-H. Yeh, H.-W. V. Young, K. Hu, and M.-T. Lo, "On the computational complexity of the empirical mode decomposition algorithm," Physica A: Statistical Mechanics and its Applications, vol. 400, pp. 159-167, 2014. [38] H. W. Yang et al., "A Minimum arclength method for removing spikes in empirical mode decomposition," IEEE Access, vol. 7, pp. 13284-13294, 2019, doi: 10.1109/ACCESS.2019.2892622. [39] J. H. Ahn, D. H. Kwak, and B. H. Koh, "Fault detection of a roller-bearing system through the EMD of a wavelet denoised signal," Sensors (Switzerland), vol. 14, no. 8, pp. 15022-15038, 2014. [40] J. Lee, H. Qiu, G. Yu, J. Lin, and R. T. Services, "IMS Bearing Data," ed, 2007. [41] L. Parrino, R. Ferri, O. Bruni, and M. G. Terzano, "Cyclic alternating pattern (CAP): The marker of sleep instability," Sleep Medicine Reviews, vol. 16, no. 1, pp. 27-45, 2012, doi: 10.1016/j.smrv.2011.02.003. [42] M. G. Terzano et al., "Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (CAP) in human sleep," Sleep Medicine, vol. 2, pp. 537-553, 2001, doi: 10.1016/S1389-9457(01)00149-6. [43] A. L. Goldberger et al., "PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals," Circulation, vol. 101, no. 23, pp. e215-e220, 2000. [44] H. Zulkifly, G. Y. Lip, and D. A. Lane, "Epidemiology of atrial fibrillation," International journal of clinical practice, vol. 72, no. 3, p. e13070, 2018. [45] T. M. Munger, "Atrial fibrillation," Journal of Biomedical Research, vol. 28, no. 1, pp. 1-17, 2014, doi: 10.7555/jbr.28.20130191. [46] P. Kirchhof et al., "2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS," European Heart Journal, vol. 37, no. 38, pp. 2893-2962, 2016, doi: 10.1093/eurheartj/ehw210. [47] C.-H. Tseng et al., "Cloud-Based Artificial Intelligence System for Large-Scale Arrhythmia Screening," Computer, vol. 52, no. 11, pp. 40-51, 2019, doi: 10.1109/mc.2019.2933195. [48] I. Savelieva and A. J. Camm, "Clinical relevance of silent atrial fibrillation: prevalence, prognosis, quality of life, and management," Journal of Interventional Cardiac Electrophysiology, vol. 4, no. 2, pp. 369-382, 2000. [49] H. Kottkamp, "Human atrial fibrillation substrate: towards a specific fibrotic atrial cardiomyopathy," European heart journal, vol. 34, no. 35, pp. 2731-2738, 2013. [50] Z. I. Attia et al., "An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction," The Lancet, vol. 394, no. 10201, pp. 861-867, 2019, doi: 10.1016/s0140-6736(19)31721-0. [51] P. Laguna, R. Jané, and P. Caminal, "Automatic detection of wave boundaries in multilead ECG signals: Validation with the CSE database," Computers and biomedical research, vol. 27, no. 1, pp. 45-60, 1994. [52] W.-H. Hsieh et al., "A novel noninvasive surface ECG analysis using interlead QRS dispersion in arrhythmogenic right ventricular cardiomyopathy," PloS one, vol. 12, no. 8, 2017. [53] H. Hanninen et al., "ST-T integral and T-wave amplitude in detection of exercise-induced myocardial ischemia evaluated with body surface potential mapping," Journal of electrocardiology, vol. 36, no. 2, pp. 89-98, 2003. [54] A. D. Krahn, J. Manfreda, R. B. Tate, F. A. Mathewson, and T. E. Cuddy, "The natural history of atrial fibrillation: incidence, risk factors, and prognosis in the Manitoba Follow-Up Study," The American journal of medicine, vol. 98, no. 5, pp. 476-484, 1995. [55] H. Watanabe et al., "ST-segment abnormalities and premature complexes are predictors of new-onset atrial fibrillation: the Niigata preventive medicine study," American heart journal, vol. 152, no. 4, pp. 731-735, 2006. [56] L. J. Mengelkoch, D. Martin, and J. Lawler, "A review of the principles of pulse oximetry and accuracy of pulse oximeter estimates during exercise," Physical Therapy, vol. 74, no. 1, pp. 40-49, 1994, doi: 10.1093/ptj/74.1.40. [57] B. Sangeeta and S. Laxmi, "A real time analysis of PPG signal for measurement of SpO2 and pulse rate," International Journal of Computer Applications, vol. 36, no. 11, pp. 45-50, 2011. [58] P. Madhan Mohan, A. Annie Nisha, V. Nagarajan, and E. Smiley Jeya Jothi, "Measurement of arterial oxygen saturation (SpO2) using PPG optical sensor," International Conference on Communication and Signal Processing, ICCSP 2016, pp. 1136-1140, 2016, doi: 10.1109/ICCSP.2016.7754330. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7917 | - |
| dc.description.abstract | 經驗模態分解是一個被廣為使用的時頻分析工具,然而,訊號中的雜訊干擾,例如突波,可能同時造成模態混合和模態分裂的問題,使得一個物理上有意義的成份被拆解成二個以上的本質模態函數。在此論文中,我們引用近期發展出的經驗模態分解的數學理論,提供突波問題造成模態混合和模態分裂的理論解釋,並且基於此理論基礎,提出了解決突波問題的架構——最小弧長條件。為了更穩健地將突波分離至原先不存在的本質模態函數中,我們加入了以弦波輔助的遮罩方法,而形成了「遮罩—最小弧長—經驗模態分解」。在論文中提供了此方法的數學理論和數值模擬,並且應用至真實世界的訊號,包括電流中的突波干擾、軸承震動訊號、睡眠腦波中的週期性交替模式和核心體溫的生理時鐘。更有甚者,我們將此方法應用在標準十二導心電圖上以分離P波的波形,並且證明由此P波波形所提取的特徵,可以用來偵測受測者是否有潛在的心房顫動。最後,我們將此方法延伸至單位階梯函數上,並且提出一個廣適性的演算法,來處理第N階導數為突波的訊號。 | zh_TW |
| dc.description.abstract | Empirical mode decomposition (EMD) is an extensively utilized tool in time-frequency analysis. However, disturbances such as impulse noise can result in both mode-mixing and mode-splitting effect, in which one physically meaningful component is split in two or more intrinsic mode functions (IMFs). In this work, we provide a mathematical explanation for the cause of mode-mixing and mode-splitting by spikes in EMD, and propose a novel method, the minimum arclength EMD (MA-EMD), to robustly decompose time series data with spikes. To further isolate the spike in a previously non-existed IMF, the masking-aided MA-EMD (MAMA-EMD) is provided. The mathematical foundations and limitations for these two methods are provided. The MAMA-EMD is utilized to deal with four real-world data including electrical current, vibration signals, cyclic alternating pattern in sleep EEG (Electroencephalography), and circadian of core body temperature. In addition, this work developed a tool for P-wave isolation in electrocardiogram (ECG) by the MAMA-EMD method, and showed that the P-wave related features can be used to identify potential atrial fibrillation patients. Finally, we extend our application to the Heaviside step function and propose a general algorithm for signals whose Nth order derivative is a spike function. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:58:34Z (GMT). No. of bitstreams: 1 ntu-109-D03942010-1.pdf: 4491009 bytes, checksum: c61b26d3af55014d846b5b0bfb008262 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 謝辭 I
中文摘要 II ABSTRACT III CONTENTS IV LIST OF FIGURES VII LIST OF TABLES X CHAPTER 1. INTRODUCTION 1 1.1 STATEMENT OF PURPOSE 1 1.2 CONTRIBUTION 2 1.3 RELATED WORKS 3 1.3.1 EMD and time-frequency decomposition 3 1.3.2 Modifications of EMD 5 1.4 SPIKE PROBLEMS 7 1.4.1 Spike problems in signal processing 7 1.4.2 Spike problems in EMD 7 1.5 OVERVIEW 9 CHAPTER 2. BACKGROUND 11 2.1 EMD 11 2.2 IMPULSE RESPONSE OF EMD 11 2.3 MODE-MIXING AND MODE-SPLITTING 14 2.4 MASKING EMD 15 2.5 THE SPIKE DETECTION 16 CHAPTER 3. EFFECT ANALYSIS OF SPIKE IN EMD AND MA-EMD 18 3.1 EFFECT ANALYSIS OF SPIKE PROBLEM IN EMD 18 3.2 MSI: MEASUREMENT OF MODE-SPLITTING 20 3.3 NE: NEWLY GENERATED EXTREMA 21 3.4 SK-EMD: SKIPPING THE EXTREMA ON SPIKES 21 3.5 MA-EMD 22 3.5.1 Minimum arclength criterion 22 3.5.2 Mathematical foundation 24 3.5.3 Simulation verification 25 3.5.4 Comparative accuracy analysis 31 3.6 COMPARISON BETWEEN SKIP AND MA-EMD 34 CHAPTER 4. MASKING-AIDED MINIMUM ARCLENGTH EMD 36 4.1 INTRODUCTION 36 4.2 DETERMINATION OF MASKING SIGNAL 37 4.3 SIMULATION VERIFICATION 39 4.3.1 Single Sinusoid 39 4.3.2 DUFFING WAVE 42 4.4 LIMITATIONS 44 4.5 EXAMPLES 45 4.5.1. Electrical current 45 4.5.2 Rotor test rig 48 4.5.3. Cyclic alternation pattern subtype classification in sleep electroencephalography 51 CHAPTER 5. APPLICATION OF MAMA-EMD ON P-WAVE EXTRACTION FOR DETECTION OF POTENTIAL ATRIAL FIBRILLATION PATIENTS 56 5.1 SIGNIFICANCE FOR AF DETECTION 56 5.2 RECENT WORKS RELATED TO AF DETECTION UNDER SINUS RHYTHM 56 5.3 METHOD FOR P-WAVE ANALYSES 57 5.3.1 Subject selection 57 5.3.2 ECG Signal processing 59 5.3.3 Feature extraction 63 5.3.4 Statistical analysis 66 5.4 STATISTICAL SIGNIFICANCE OF THE FEATURES 67 5.4.1 Morphology features 67 5.4.2 PCA related features 69 5.4.3 Inter-lead P-wave dispersion 69 5.5. CLASSIFICATION OF AF AND CONTROL PATIENTS 70 5.6 DISCUSSION AND IMPLICATION 72 CHAPTER 6. EXTENSION TO STEP FUNCTION 75 6.1 GENERALIZED ALGORITHM 75 6.2 EXAMPLE: PHOTOPLETHYSMOGRAM (PPG) RECORDING 76 CHAPTER 7. CONCLUSION 80 BIBLIOGRAPHY 82 | - |
| dc.language.iso | en | - |
| dc.subject | 訊號處理 | zh_TW |
| dc.subject | 經驗模態分解 | zh_TW |
| dc.subject | 心房顫動 | zh_TW |
| dc.subject | 可適性濾波 | zh_TW |
| dc.subject | adaptive filter | en |
| dc.subject | Empirical mode decomposition | en |
| dc.subject | signal processing | en |
| dc.subject | atrial fibrillation | en |
| dc.title | 經驗模態分解中突波問題的解決架構 | zh_TW |
| dc.title | A solution framework for spike problem in empirical mode decomposition | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 108-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 羅孟宗 | zh_TW |
| dc.contributor.coadvisor | ; | en |
| dc.contributor.oralexamcommittee | 王淵弘;林亮宇;黃文良 | zh_TW |
| dc.contributor.oralexamcommittee | ;; | en |
| dc.subject.keyword | 經驗模態分解,訊號處理,心房顫動,可適性濾波, | zh_TW |
| dc.subject.keyword | Empirical mode decomposition,signal processing,atrial fibrillation,adaptive filter, | en |
| dc.relation.page | 89 | - |
| dc.identifier.doi | 10.6342/NTU202000887 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2020-05-29 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-2.pdf 未授權公開取用 | 4.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
