Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 病理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79178
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭永銘zh_TW
dc.contributor.advisorYung-Ming Jengen
dc.contributor.author王映涵zh_TW
dc.contributor.authorYing-Han Wangen
dc.date.accessioned2021-07-11T15:50:34Z-
dc.date.available2024-02-28-
dc.date.copyright2018-10-09-
dc.date.issued2018-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Park JR, Eggert A, Caron H. Neuroblastoma: biology, prognosis, and treatment. Pediatric clinics of North America. 2008;55(1):97-120, x.
2. Haupt R, Garaventa A, Gambini C, Parodi S, Cangemi G, Casale F, et al. Improved survival of children with neuroblastoma between 1979 and 2005: a report of the Italian Neuroblastoma Registry. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2010;28(14):2331-8.
3. Maris JM, Hogarty MD, Bagatell R, Cohn SL. Neuroblastoma. Lancet (London, England). 2007;369(9579):2106-20.
4. Brodeur GM. Neuroblastoma: biological insights into a clinical enigma. Nature reviews Cancer. 2003;3(3):203-16.
5. Haase GM, Perez C, Atkinson JB. Current aspects of biology, risk assessment, and treatment of neuroblastoma. Seminars in surgical oncology. 1999;16(2):91-104.
6. Matthay KK, Reynolds CP, Seeger RC, Shimada H, Adkins ES, Haas-Kogan D, et al. Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a children's oncology group study. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2009;27(7):1007-13.
7. Dang CV. MYC on the path to cancer. Cell. 2012;149(1):22-35.
8. Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science (New York, NY). 1984;224(4653):1121-4.
9. Seeger RC, Brodeur GM, Sather H, Dalton A, Siegel SE, Wong KY, et al. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. The New England journal of medicine. 1985;313(18):1111-6.
10. Schnepp RW, Khurana P, Attiyeh EF, Raman P, Chodosh SE, Oldridge DA, et al. A LIN28B-RAN-AURKA Signaling Network Promotes Neuroblastoma Tumorigenesis. Cancer cell. 2015;28(5):599-609.
11. Cheung NK, Zhang J, Lu C, Parker M, Bahrami A, Tickoo SK, et al. Association of age at diagnosis and genetic mutations in patients with neuroblastoma. Jama. 2012;307(10):1062-71.
12. Kadin ME, Morris SW. The t(2;5) in human lymphomas. Leukemia & lymphoma. 1998;29(3-4):249-56.
13. De La Fuente R, Baumann C, Viveiros MM. Role of ATRX in chromatin structure and function: implications for chromosome instability and human disease. Reproduction (Cambridge, England). 2011;142(2):221-34.
14. Molenaar JJ, Koster J, Zwijnenburg DA, van Sluis P, Valentijn LJ, van der Ploeg I, et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature. 2012;483(7391):589-93.
15. Yang F, He Y, Liu HX, Tsuei J, Jiang X, Yang L, et al. All-trans retinoic acid regulates hepatic bile acid homeostasis. Biochemical pharmacology. 2014;91(4):483-9.
16. Sidell N, Altman A, Haussler MR, Seeger RC. Effects of retinoic acid (RA) on the growth and phenotypic expression of several human neuroblastoma cell lines. Experimental Cell Research. 1983;148(1):21-30.
17. McKenna NJ, O'Malley BW. Combinatorial control of gene expression by nuclear receptors and coregulators. Cell. 2002;108(4):465-74.
18. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, et al. The nuclear receptor superfamily: the second decade. Cell. 1995;83(6):835-9.
19. Chen JD, Evans RM. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature. 1995;377(6548):454-7.
20. Horlein AJ, Naar AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature. 1995;377(6548):397-404.
21. Chen H, Lin RJ, Schiltz RL, Chakravarti D, Nash A, Nagy L, et al. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell. 1997;90(3):569-80.
22. Voegel JJ, Heine MJ, Zechel C, Chambon P, Gronemeyer H. TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. The EMBO journal. 1996;15(14):3667-75.
23. Huang S, Laoukili J, Epping MT, Koster J, Hölzel M, Westerman BA, et al. ZNF423 Is Critically Required for Retinoic Acid-Induced Differentiation and Is a Marker of Neuroblastoma Outcome. Cancer cell. 2009;15(4):328-40.
24. Altucci L, Gronemeyer H. The promise of retinoids to fight against cancer. Nature reviews Cancer. 2001;1(3):181-93.
25. Pollak MN, Schernhammer ES, Hankinson SE. Insulin-like growth factors and neoplasia. Nature reviews Cancer. 2004;4(7):505-18.
26. Sarkissyan S, Sarkissyan M, Wu Y, Cardenas J, Koeffler HP, Vadgama JV. IGF-1 regulates Cyr61 induced breast cancer cell proliferation and invasion. PloS one. 2014;9(7):e103534.
27. Mairet-Coello G, Tury A, DiCicco-Bloom E. IGF-1 promotes G1/S cell cycle progression through bidirectional regulation of cyclins and CDK inhibitors via the PI3K/Akt pathway in developing rat cerebral cortex. The Journal of Neuroscience. 2009;29(3):775-88.
28. Lee HY, Chun KH, Liu B, Wiehle SA, Cristiano RJ, Hong WK, et al. Insulin-like growth factor binding protein-3 inhibits the growth of non-small cell lung cancer. Cancer research. 2002;62(12):3530-7.
29. Jogie-Brahim S, Feldman D, Oh Y. Unraveling insulin-like growth factor binding protein-3 actions in human disease. Endocrine reviews. 2009;30(5):417-37.
30. Baxter RC. IGF binding proteins in cancer: mechanistic and clinical insights. Nature reviews Cancer. 2014;14(5):329-41.
31. Furstenberger G, Senn HJ. Insulin-like growth factors and cancer. The Lancet Oncology. 2002;3(5):298-302.
32. Firth SM, Baxter RC. Cellular actions of the insulin-like growth factor binding proteins. Endocrine reviews. 2002;23(6):824-54.
33. Guix M, Faber AC, Wang SE, Olivares MG, Song Y, Qu S, et al. Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins. The Journal of Clinical Investigation. 2008;118(7):2609-19.
34. Gonzalez-Roibon N, Kim JJ, Faraj SF, Chaux A, Bezerra SM, Munari E, et al. Insulin-like growth factor-1 receptor overexpression is associated with outcome in invasive urothelial carcinoma of urinary bladder: a retrospective study of patients treated using radical cystectomy. Urology. 2014;83(6):1444.e1-6.
35. Papa V, Gliozzo B, Clark GM, McGuire WL, Moore D, Fujita-Yamaguchi Y, et al. Insulin-like growth factor-I receptors are overexpressed and predict a low risk in human breast cancer. Cancer research. 1993;53(16):3736-40.
36. Boone DN, Lee AV. Targeting the Insulin-like Growth Factor Receptor: Developing Biomarkers from Gene Expression Profiling. Critical reviews in oncogenesis. 2012;17(2):161-73.
37. Han JJ, Xue DW, Han QR, Liang XH, Xie L, Li S, et al. Induction of apoptosis by IGFBP3 overexpression in hepatocellular carcinoma cells. Asian Pacific journal of cancer prevention : APJCP. 2014;15(23):10085-9.
38. Grkovic S, O'Reilly VC, Han S, Hong M, Baxter RC, Firth SM. IGFBP-3 binds GRP78, stimulates autophagy and promotes the survival of breast cancer cells exposed to adverse microenvironments. Oncogene. 2013;32(19):2412-20.
39. Butt AJ, Firth SM, King MA, Baxter RC. Insulin-like growth factor-binding protein-3 modulates expression of Bax and Bcl-2 and potentiates p53-independent radiation-induced apoptosis in human breast cancer cells. The Journal of biological chemistry. 2000;275(50):39174-81.
40. Jin Q, Lee HJ, Min HY, Smith JK, Hwang SJ, Whang YM, et al. Transcriptional and posttranslational regulation of insulin-like growth factor binding protein-3 by Akt3. Carcinogenesis. 2014;35(10):2232-43.
41. Burger AM, Leyland-Jones B, Banerjee K, Spyropoulos DD, Seth AK. Essential roles of IGFBP-3 and IGFBP-rP1 in breast cancer. European journal of cancer (Oxford, England : 1990). 2005;41(11):1515-27.
42. Chan YX, Alfonso H, Paul Chubb SA, Ho KKY, Gerard Fegan P, Hankey GJ, et al. Higher IGFBP3 is associated with increased incidence of colorectal cancer in older men independently of IGF1. Clinical endocrinology. 2018;88(2):333-40.
43. Friedrichsen DM, Hawley S, Shu J, Humphrey M, Sabacan L, Iwasaki L, et al. IGF-I and IGFBP-3 polymorphisms and risk of prostate cancer. The Prostate. 2005;65(1):44-51.
44. Kamachi Y, Kondoh H. Sox proteins: regulators of cell fate specification and differentiation. Development (Cambridge, England). 2013;140(20):4129-44.
45. Bowles J, Schepers G, Koopman P. Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Developmental biology. 2000;227(2):239-55.
46. Wegner M. From head to toes: the multiple facets of Sox proteins. Nucleic acids research. 1999;27(6):1409-20.
47. Lefebvre V, Li P, de Crombrugghe B. A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. The EMBO journal. 1998;17(19):5718-33.
48. Connor F, Wright E, Denny P, Koopman P, Ashworth A. The Sry -related HMG box-containing gene Sox6 is expressed in the adult testis and developing nervous system of the mouse. Nucleic acids research. 1995;23(17):3365-72.
49. Richardson WD, Kessaris N, Pringle N. Oligodendrocyte wars. Nature reviews Neuroscience. 2006;7(1):11-8.
50. Emery B. Regulation of oligodendrocyte differentiation and myelination. Science (New York, NY). 2010;330(6005):779-82.
51. Stolt CC, Schlierf A, Lommes P, Hillgartner S, Werner T, Kosian T, et al. SoxD proteins influence multiple stages of oligodendrocyte development and modulate SoxE protein function. Developmental cell. 2006;11(5):697-709.
52. Lee KE, Seo J, Shin J, Ji EH, Roh J, Kim JY, et al. Positive feedback loop between Sox2 and Sox6 inhibits neuronal differentiation in the developing central nervous system. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(7):2794-9.
53. Lefebvre V, Li P, de Crombrugghe B. A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. The EMBO journal. 1998;17(19):5718-33.
54. Han Y, Lefebvre V. L-Sox5 and Sox6 Drive Expression of the Aggrecan Gene in Cartilage by Securing Binding of Sox9 to a Far-Upstream Enhancer. Molecular and Cellular Biology. 2008;28(16):4999-5013.
55. Nagy A, Kénesi E, Rentsendorj O, Molnár A, Szénási T, Sinkó I, et al. Evolutionarily Conserved, Growth Plate Zone-Specific Regulation of the Matrilin-1 Promoter: L-Sox5/Sox6 and Nfi Factors Bound near TATA Finely Tune Activation by Sox9. Molecular and Cellular Biology. 2011;31(4):686-99.
56. Guo X, Yang M, Gu H, Zhao J, Zou L. Decreased expression of SOX6 confers a poor prognosis in hepatocellular carcinoma. Cancer epidemiology. 2013;37(5):732-6.
57. Qin YR, Tang H, Xie F, Liu H, Zhu Y, Ai J, et al. Characterization of tumor-suppressive function of SOX6 in human esophageal squamous cell carcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research. 2011;17(1):46-55.
58. Li Y, Xiao M, Guo F. The role of Sox6 and Netrin-1 in ovarian cancer cell growth, invasiveness, and angiogenesis. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 2017;39(5):1010428317705508.
59. Hamada-Kanazawa M, Ogawa D, Takano M, Miyake M. Sox6 suppression induces RA-dependent apoptosis mediated by BMP-4 expression during neuronal differentiation in P19 cells. Molecular and cellular biochemistry. 2016;412(1-2):49-57.
60. Lo-Coco F, Avvisati G, Vignetti M, Thiede C, Orlando SM, Iacobelli S, et al. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. The New England journal of medicine. 2013;369(2):111-21.
61. Alison MR, Islam S, Wright NA. Stem cells in cancer: instigators and propagators? Journal of cell science. 2010;123(Pt 14):2357-68.
62. Nguyen PH, Giraud J, Staedel C, Chambonnier L, Dubus P, Chevret E, et al. All-trans retinoic acid targets gastric cancer stem cells and inhibits patient-derived gastric carcinoma tumor growth. Oncogene. 2016;35:5619.
63. Karsy M, Albert L, Tobias ME, Murali R, Jhanwar-Uniyal M. All-trans retinoic acid modulates cancer stem cells of glioblastoma multiforme in an MAPK-dependent manner. Anticancer research. 2010;30(12):4915-20.
64. Hämmerle B, Yañez Y, Palanca S, Cañete A, Burks DJ, Castel V, et al. Targeting Neuroblastoma Stem Cells with Retinoic Acid and Proteasome Inhibitor. PloS one. 2013;8(10):e76761.
65. Lopez-Carballo G, Moreno L, Masia S, Perez P, Barettino D. Activation of the phosphatidylinositol 3-kinase/Akt signaling pathway by retinoic acid is required for neural differentiation of SH-SY5Y human neuroblastoma cells. The Journal of biological chemistry. 2002;277(28):25297-304.
66. Constantinescu R, Constantinescu AT, Reichmann H, Janetzky B. Neuronal differentiation and long-term culture of the human neuroblastoma line SH-SY5Y. Journal of neural transmission Supplementum. 2007(72):17-28.
67. Agholme L, Lindstrom T, Kagedal K, Marcusson J, Hallbeck M. An in vitro model for neuroscience: differentiation of SH-SY5Y cells into cells with morphological and biochemical characteristics of mature neurons. Journal of Alzheimer's disease : JAD. 2010;20(4):1069-82.
68. Ying M, Zhang L, Zhou Q, Shao X, Cao J, Zhang N, et al. The E3 ubiquitin protein ligase MDM2 dictates all-trans retinoic acid-induced osteoblastic differentiation of osteosarcoma cells by modulating the degradation of RARalpha. Oncogene. 2016;35(33):4358-67.
69. Hisada K, Hata K, Ichida F, Matsubara T, Orimo H, Nakano T, et al. Retinoic acid regulates commitment of undifferentiated mesenchymal stem cells into osteoblasts and adipocytes. Journal of Bone and Mineral Metabolism. 2013;31(1):53-63.
70. Chan SS, Schedlich LJ, Twigg SM, Baxter RC. Inhibition of adipocyte differentiation by insulin-like growth factor-binding protein-3. American journal of physiology Endocrinology and metabolism. 2009;296(4):E654-63.
71. Chang YS, Cho JY, Cho HA, Kim HJ, Chang J, Ahn CM, et al. 9-cis retinoic acid induces insulin-like growth factor binding protein-3 through DR-8 retinoic acid responsive elements. Cancer biology & therapy. 2006;5(6):586-92.
72. Wang YA, Sun Y, Palmer J, Solomides C, Huang LC, Shyr Y, et al. IGFBP3 Modulates Lung Tumorigenesis and Cell Growth through IGF1 Signaling. Molecular cancer research : MCR. 2017;15(7):896-904.
73. Han J, Jogie-Brahim S, Harada A, Oh Y. Insulin-like growth factor-binding protein-3 suppresses tumor growth via activation of caspase-dependent apoptosis and cross-talk with NF-kappaB signaling. Cancer letters. 2011;307(2):200-10.
74. Liu B, Lee KW, Anzo M, Zhang B, Zi X, Tao Y, et al. Insulin-like growth factor-binding protein-3 inhibition of prostate cancer growth involves suppression of angiogenesis. Oncogene. 2007;26(12):1811-9.
75. Luo LL, Zhao L, Wang YX, Tian XP, Xi M, Shen JX, et al. Insulin-like growth factor binding protein-3 is a new predictor of radiosensitivity on esophageal squamous cell carcinoma. Scientific reports. 2015;5:17336.
76. Ibanez de Caceres I, Cortes-Sempere M, Moratilla C, Machado-Pinilla R, Rodriguez-Fanjul V, Manguan-Garcia C, et al. IGFBP-3 hypermethylation-derived deficiency mediates cisplatin resistance in non-small-cell lung cancer. Oncogene. 2010;29(11):1681-90.
77. Cortes-Sempere M, de Miguel MP, Pernia O, Rodriguez C, de Castro Carpeno J, Nistal M, et al. IGFBP-3 methylation-derived deficiency mediates the resistance to cisplatin through the activation of the IGFIR/Akt pathway in non-small cell lung cancer. Oncogene. 2013;32(10):1274-83.
78. Wang Z, Li J, Li K, Xu J. SOX6 is downregulated in osteosarcoma and suppresses the migration, invasion and epithelial-mesenchymal transition via TWIST1 regulation. Molecular medicine reports. 2018;17(5):6803-11.
79. Simmons GW, Pong WW, Emnett RJ, White CR, Gianino SM, Rodriguez FJ, et al. Neurofibromatosis-1 heterozygosity increases microglia in a spatially and temporally restricted pattern relevant to mouse optic glioma formation and growth. Journal of neuropathology and experimental neurology. 2011;70(1):51-62.
80. Ueda R, Iizuka Y, Yoshida K, Kawase T, Kawakami Y, Toda M. Identification of a human glioma antigen, SOX6, recognized by patients' sera. Oncogene. 2004;23(7):1420-7.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79178-
dc.description.abstract神經母細胞瘤是一種高度惡性的孩童癌症,好發於腎上腺,常轉移到骨髓、淋巴結、或是肝臟等器官,根據分化程度上的差異有不同的亞型,患有分化較好的癌症的病人通常有較好的預後,高危險性的NB病人會接受清髓性的化學治療及持續性的給予維生素A酸(RA)來促使癌細胞分化。
  首先我們藉由微陣列基因表現分析的方式來找尋可能與分化相關的基因,我們發現IGFBP3在細胞分化的同時它的表現量會上升以及Sox6在細胞分化之後表現量會下降,此篇研究的主要目的在於探討IGFBP3及Sox6在神經瘤細胞的生長及分化扮演甚麼樣的角色。首先我們在SK-N-DZ、SH-SY5Y和SK-N-SH這三株神經瘤細胞分別證實了微陣列分析的結果。在IGFBP3方面,我們發現添加RAR 抑制劑會抑制RA促進的IGFBP3上升,接著透過螢光素酶報告基因檢測系統確認IGFBP3的上升是透過RA直接結合導致。在細胞功能相關的實驗,我們發現IGFBP3會抑制細胞的增生,然而IGFBP3對於細胞侵犯並沒有看到顯著的影響。在病理組織切片染色的結果我們發現只有在分化較好的病人才能觀察到IGFBP3的表現。在Sox6方面,在臨床的部份我們透過免疫組織化學染色法證明Sox6在分化不良的神經母細胞瘤的表現量會有顯著的上昇以及Sox6高表現量高可預測病人低存活率。
zh_TW
dc.description.abstractNeuroblastoma (NB) is a highly malignant pediatric cancer that often arises from the adrenal glands. NB is also an aggressive cancer that has a potential to distant organs, such as bone marrow, lymph node, liver, and so on. The definition of different subtypes of NB depends on its differentiation state and the well-differentiated patients show better prognosis. Patients with high risk NB will accept myeloablative chemotherapy and retinoid acid (RA) treatment, which can induce differentiation persistently.
We used microarray analysis to search the possible genes that induced after differentiation. We found that the expression level of IGFBP3 increased and that of Sox6 decreased during differentiation of NB cells. The aim of this study is to explore the role of IGFBP3 and Sox6 in the growth and differentiation of NB. First, we used three human NB cells, SK-N-DZ, SH-SY5Y, and SK-N-SH, to confirm the finding of microarray analysis. We found that the treatment of RAR inhibitor decreased the up-regulation of IGFBP3 induced by RA. Then we used a luciferase assay to show the increase of IGFBP3 level was though the directly binding of RA. Besides, we perform some experiments to explore cellular function. The results showed that IGFBP3 inhibit NB cell growth and proliferation but there is no significantly effect on cell migration. Furthermore, we observed the expression of IGFBP3 was seen only in well-differentiated ganglion cells of ganglioneruoma on the histopathological sections. On the other hand, we demonstrated a remarkable increase of Sox6 level in the poorly differentiated NB patients by immunohistochemical stain and Sox6 can be used as a potential marker to predict the survival rate of NB patients.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:50:34Z (GMT). No. of bitstreams: 1
ntu-107-R05444002-1.pdf: 13849330 bytes, checksum: df2fe78c456d2ed39bb3b43c76ec27b9 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsIndex
口試委員審定書.......................................................................................................................................i
謝辭 ii
中文摘要 iii
Abstract iv
Index v
I. Introduction 1
1.1. Neuroblastoma 1
1.2. Genetic changes of NB 3
1.3. Retinoic acid 4
1.4. IGFBP3: IGF1 dependent and independent signaling (IGF1-IGFBP3 axis pathway) 5
1.5. SOX6 6
1.6. Aim of the study 8
II. Materials and Methods 10
2.1. Materials 10
2.2. Cell culture 10
2.3. RNA isolation 11
2.4. RT-PCR 11
2.5. Real-time PCR 12
2.6. Western blot 12
2.7. Immunohistochemistry (IHC) 13
2.8. Immuofluorescence 14
2.9. In vitro Boyden chamber migration assay 15
2.10. MTT assay 15
2.11. Construct for IGFBP3 promoter reporter plasmid 16
2.12. Reporter assay 16
2.13. RNA interference for knockdown experiments 17
2.14. Quantitative in-situ hybridization (ISH) 17
2.15. RTK array 18
Table 1. The primers used for PCR reaction 19
Table 2. The primers used for qPCR reaction 20
Table 3. The primers used for PCR cloning 20
III. Results 21
3.1. Increased IGFBP3 expression during ATRA-induced differentiation in SK-N-DZ and SH-SY5Y cells. 21
3.2. The increase of IGFBP3 level was through the RAR/RXR and ZNF423 binding elements. 22
3.3. The treatment of IGFBP3 recombinant protein inhibited cell proliferation but did not affect cell migration in NB cells. 22
3.4. The treatment of IGFBP3 recombinant protein induced NeuroD expression and decreased Nanog expression. 23
3.5. Human phospho-RTK array to detect phosphorylation of RTK upon IGFBP3 recombinant protein treatment. 24
3.6. IGFBP-3 mRNA was localized to the well-differentiated ganglion cells of ganglioneuroma. 24
3.7. Decreased SOX6 expression during ATRA-induced differentiation in SK-N-SH and SH-SY5Y cells. 25
3.8. Knockdown of SOX6 expression showed no effect on NB differentiation. 25
3.9. Predominate expression of SOX6 in NB of unfavorable prognosis. 26
3.10. SOX6 acts as a prognostic marker in NB. 26
3.11. Correlation of SOX6 staining with clinicopathological data. 27
IV. Discussion 28
4.1. The anti-cancer activity of RA in various cancers. 28
4.2. Markers for differentiation 29
4.3. The relationship between RA and IGFBP3 29
4.4. IGFBP3 in cancer 30
4.5. SOX6 in cancer 31
V. Figures and Tables 32
Figure 1. The levels of IGFBP3 during RA-induced differentiateion detected by microarray analysis. 32
Figure 2. Morphological change of NB cells differentiating from parental cells to neuron-like cells. 33
Figure 3. Increased IGFBP3 expression during ATRA-induced differentiation in SK-N-DZ and SH-SY5Y cells. 35
Figure 4. Expression pattern of various neuronal and stemness genes during ATRA-induced differentiation in SK-N-DZ and SH-SY5Y cells. 37
Figure 5. The increase of IGFBP3 level was through the RAR/RXR and ZNF423 binding elements. 38
Figure 6. The treatment of IGFBP3 recombinant protein blocked the activation of AKT and ERK pathway induced by IGF-1. 40
Figure 7. The treatment of IGFBP3 recombinant protein inhibited cell proliferation in NB cell lines. 41
Figure 8. The treatment of IGFBP3 recombinant protein did not affect cell migration in NB cells. 43
Figure 9. The treatment of IGFBP3 increased the expression of NeuroD and decreased the expression of Nanog in SK-N-DZ cells. 45
Figure 10. Human phospho-RTK array to detect phosphorylation of RTK upon IGFBP3 recombinant protein treatment. 46
Figure 11. IGFBP-3 mRNA was localized to the well-differentiated ganglion cells of ganglioneuroma. 47
Figure 12. Morphological change of NB cells differentiated from parental cells to neuron-like cells. 49
Figure 13. Decreased SOX6 expression during ATRA-induced differentiation in SK-N-SH and SH-SY5Y cells. 50
Figure 14. Expression pattern of various neuronal genes during ATRA-induced differentiation in SK-N-SH and SH-SY5Y cells. 51
Figure 15. Knockdown of SOX6 expression showed no effect on NB differentiation. 52
Figure 16. A remarkable increase of SOX6 level in the poorly differentiated NB patients. 54
Figure 17. SOX6 acts as a prognostic marker in NB. 56
Table 4: Clinicopathologic characteristics of patients (n = 51) with neuroblastoma 57
Table 5. SOX6 protein expression and clinicopathologic factors in patients (n=51) with neuroblastoma 58
Supplementary figure 1. Micro-array analysis of SH-SY5Y cell treated with 10 μM ATRA from GSE71817 database. 59
VI. References 60
-
dc.language.isoen-
dc.title探討維生素A酸促使的神經母細胞瘤分化中IGFBP3和SOX6所扮演的角色zh_TW
dc.titleThe role of IGFBP3 and SOX6 in retinoic acid- induced neuroblastoma differentiationen
dc.typeThesis-
dc.date.schoolyear106-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張以承;張修豪;楊卿堯zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keyword神經母細胞瘤,IGFBP3,SOX6,分化,zh_TW
dc.subject.keywordneuroblastoma,IGFBP3,Sox6,differentiation.,en
dc.relation.page66-
dc.identifier.doi10.6342/NTU201802004-
dc.rights.note未授權-
dc.date.accepted2018-07-27-
dc.contributor.author-college醫學院-
dc.contributor.author-dept病理學研究所-
顯示於系所單位:病理學科所

文件中的檔案:
檔案 大小格式 
ntu-106-2.pdf
  目前未授權公開取用
13.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved