Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79167
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李明學zh_TW
dc.contributor.advisorMing-Shyue Leeen
dc.contributor.author黃宜雯zh_TW
dc.contributor.authorI-Wen Huangen
dc.date.accessioned2021-07-11T15:49:37Z-
dc.date.available2024-02-28-
dc.date.copyright2018-10-09-
dc.date.issued2018-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Matutes, E., A. Wotherspoon, and D. Catovsky, Differential diagnosis in chronic lymphocytic leukaemia. Best Pract Res Clin Haematol, 2007. 20(3): p. 367-84.
2. Chiorazzi, N., K.R. Rai, and M. Ferrarini, Chronic lymphocytic leukemia. N Engl J Med, 2005. 352(8): p. 804-15.
3. Wu, S.J., S.Y. Huang, C.T. Lin, Y.J. Lin, C.J. Chang, and H.F. Tien, The incidence of chronic lymphocytic leukemia in Taiwan, 1986-2005: a distinct increasing trend with birth-cohort effect. Blood, 2010. 116(22): p. 4430-5.
4. Gine, E., A. Martinez, N. Villamor, A. Lopez-Guillermo, M. Camos, D. Martinez, J. Esteve, X. Calvo, A. Muntanola, P. Abrisqueta, M. Rozman, C. Rozman, F. Bosch, E. Campo, and E. Montserrat, Expanded and highly active proliferation centers identify a histological subtype of chronic lymphocytic leukemia ("accelerated" chronic lymphocytic leukemia) with aggressive clinical behavior. Haematologica, 2010. 95(9): p. 1526-33.
5. Schmid, C. and P.G. Isaacson, Proliferation centres in B-cell malignant lymphoma, lymphocytic (B-CLL): an immunophenotypic study. Histopathology, 1994. 24(5): p. 445-51.
6. Herishanu, Y., P. Perez-Galan, D. Liu, A. Biancotto, S. Pittaluga, B. Vire, F. Gibellini, N. Njuguna, E. Lee, L. Stennett, N. Raghavachari, P. Liu, J.P. McCoy, M. Raffeld, M. Stetler-Stevenson, C. Yuan, R. Sherry, D.C. Arthur, I. Maric, T. White, G.E. Marti, P. Munson, W.H. Wilson, and A. Wiestner, The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood, 2011. 117(2): p. 563-74.
7. Veldurthy, A., M. Patz, S. Hagist, C.P. Pallasch, C.M. Wendtner, M. Hallek, and G. Krause, The kinase inhibitor dasatinib induces apoptosis in chronic lymphocytic leukemia cells in vitro with preference for a subgroup of patients with unmutated IgVH genes. Blood, 2008. 112(4): p. 1443-52.
8. Suljagic, M., P.G. Longo, S. Bennardo, E. Perlas, G. Leone, L. Laurenti, and D.G. Efremov, The Syk inhibitor fostamatinib disodium (R788) inhibits tumor growth in the Emu- TCL1 transgenic mouse model of CLL by blocking antigen-dependent B-cell receptor signaling. Blood, 2010. 116(23): p. 4894-905.
9. Pan, Z., H. Scheerens, S.J. Li, B.E. Schultz, P.A. Sprengeler, L.C. Burrill, R.V. Mendonca, M.D. Sweeney, K.C. Scott, P.G. Grothaus, D.A. Jeffery, J.M. Spoerke, L.A. Honigberg, P.R. Young, S.A. Dalrymple, and J.T. Palmer, Discovery of selective irreversible inhibitors for Bruton's tyrosine kinase. ChemMedChem, 2007. 2(1): p. 58-61.
10. Herman, S.E., A.L. Gordon, A.J. Wagner, N.A. Heerema, W. Zhao, J.M. Flynn, J. Jones, L. Andritsos, K.D. Puri, B.J. Lannutti, N.A. Giese, X. Zhang, L. Wei, J.C. Byrd, and A.J. Johnson, Phosphatidylinositol 3-kinase-delta inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood, 2010. 116(12): p. 2078-88.
11. Young, R.M. and L.M. Staudt, Targeting pathological B cell receptor signalling in lymphoid malignancies. Nat Rev Drug Discov, 2013. 12(3): p. 229-43.
12. Buggy, J.J. and L. Elias, Bruton tyrosine kinase (BTK) and its role in B-cell malignancy. Int Rev Immunol, 2012. 31(2): p. 119-32.
13. Byrd, J.C., R.R. Furman, S.E. Coutre, I.W. Flinn, J.A. Burger, K.A. Blum, B. Grant, J.P. Sharman, M. Coleman, W.G. Wierda, J.A. Jones, W. Zhao, N.A. Heerema, A.J. Johnson, J. Sukbuntherng, B.Y. Chang, F. Clow, E. Hedrick, J.J. Buggy, D.F. James, and S. O'Brien, Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med, 2013. 369(1): p. 32-42.
14. Wang, M.L., S. Rule, P. Martin, A. Goy, R. Auer, B.S. Kahl, W. Jurczak, R.H. Advani, J.E. Romaguera, M.E. Williams, J.C. Barrientos, E. Chmielowska, J. Radford, S. Stilgenbauer, M. Dreyling, W.W. Jedrzejczak, P. Johnson, S.E. Spurgeon, L. Li, L. Zhang, K. Newberry, Z. Ou, N. Cheng, B. Fang, J. McGreivy, F. Clow, J.J. Buggy, B.Y. Chang, D.M. Beaupre, L.A. Kunkel, and K.A. Blum, Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med, 2013. 369(6): p. 507-16.
15. Brown, J.R., J.C. Barrientos, P.M. Barr, I.W. Flinn, J.A. Burger, A. Tran, F. Clow, D.F. James, T. Graef, J.W. Friedberg, K. Rai, and S. O'Brien, The Bruton tyrosine kinase inhibitor ibrutinib with chemoimmunotherapy in patients with chronic lymphocytic leukemia. Blood, 2015. 125(19): p. 2915-22.
16. Byrd, J.C., R.R. Furman, S.E. Coutre, J.A. Burger, K.A. Blum, M. Coleman, W.G. Wierda, J.A. Jones, W. Zhao, N.A. Heerema, A.J. Johnson, Y. Shaw, E. Bilotti, C. Zhou, D.F. James, and S. O'Brien, Three-year follow-up of treatment-naive and previously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood, 2015. 125(16): p. 2497-506.
17. Levade, M., E. David, C. Garcia, P.A. Laurent, S. Cadot, A.S. Michallet, J.C. Bordet, C. Tam, P. Sie, L. Ysebaert, and B. Payrastre, Ibrutinib treatment affects collagen and von Willebrand factor-dependent platelet functions. Blood, 2014. 124(26): p. 3991-5.
18. McMullen, J.R., E.J. Boey, J.Y. Ooi, J.F. Seymour, M.J. Keating, and C.S. Tam, Ibrutinib increases the risk of atrial fibrillation, potentially through inhibition of cardiac PI3K-Akt signaling. Blood, 2014. 124(25): p. 3829-30.
19. Woyach, J.A., R.R. Furman, T.M. Liu, H.G. Ozer, M. Zapatka, A.S. Ruppert, L. Xue, D.H. Li, S.M. Steggerda, M. Versele, S.S. Dave, J. Zhang, A.S. Yilmaz, S.M. Jaglowski, K.A. Blum, A. Lozanski, G. Lozanski, D.F. James, J.C. Barrientos, P. Lichter, S. Stilgenbauer, J.J. Buggy, B.Y. Chang, A.J. Johnson, and J.C. Byrd, Resistance mechanisms for the Bruton's tyrosine kinase inhibitor ibrutinib. N Engl J Med, 2014. 370(24): p. 2286-94.
20. Li, Y., F. Ramirez-Valle, Y. Xue, J.I. Ventura, O. Gouedard, J. Mei, K. Takeshita, M. Palmisano, and S. Zhou, Population Pharmacokinetics and Exposure Response Assessment of CC-292, a Potent BTK Inhibitor, in Patients With Chronic Lymphocytic Leukemia. J Clin Pharmacol, 2017. 57(10): p. 1279-1289.
21. Walter, H.S., S.A. Rule, M.J. Dyer, L. Karlin, C. Jones, B. Cazin, P. Quittet, N. Shah, C.V. Hutchinson, H. Honda, K. Duffy, J. Birkett, V. Jamieson, N. Courtenay-Luck, T. Yoshizawa, J. Sharpe, T. Ohno, S. Abe, A. Nishimura, G. Cartron, F. Morschhauser, C. Fegan, and G. Salles, A phase 1 clinical trial of the selective BTK inhibitor ONO/GS-4059 in relapsed and refractory mature B-cell malignancies. Blood, 2016. 127(4): p. 411-9.
22. Burger, J.A. and J.J. Buggy, Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765). Leuk Lymphoma, 2013. 54(11): p. 2385-91.
23. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2018. CA Cancer J Clin, 2018. 68(1): p. 7-30.
24. Ito, K., Prostate cancer in Asian men. Nat Rev Urol, 2014. 11(4): p. 197-212.
25. Taiwan, H.p.a.m.o.h.a.w., Cancer registry annual report, 2015 Taiwan. 2017.
26. Blum, D.L., T. Koyama, A.E. M'Koma, J.M. Iturregui, M. Martinez-Ferrer, C. Uwamariya, J.A. Smith, Jr., P.E. Clark, and N.A. Bhowmick, Chemokine markers predict biochemical recurrence of prostate cancer following prostatectomy. Clin Cancer Res, 2008. 14(23): p. 7790-7.
27. Mehra, R., B. Han, S.A. Tomlins, L. Wang, A. Menon, M.J. Wasco, R. Shen, J.E. Montie, A.M. Chinnaiyan, and R.B. Shah, Heterogeneity of TMPRSS2 gene rearrangements in multifocal prostate adenocarcinoma: molecular evidence for an independent group of diseases. Cancer Res, 2007. 67(17): p. 7991-5.
28. DeMarzo, A.M., W.G. Nelson, W.B. Isaacs, and J.I. Epstein, Pathological and molecular aspects of prostate cancer. Lancet, 2003. 361(9361): p. 955-64.
29. Shen, M.M. and C. Abate-Shen, Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev, 2010. 24(18): p. 1967-2000.
30. Denmeade, S.R. and J.T. Isaacs, A history of prostate cancer treatment. Nature reviews. Cancer, 2002. 2(5): p. 389-396.
31. Jin, J.-K., F. Dayyani, and G.E. Gallick, Steps in Prostate Cancer Progression that lead to Bone Metastasis. International journal of cancer. Journal international du cancer, 2011. 128(11): p. 2545-2561.
32. Gupta, G.P. and J. Massague, Cancer metastasis: building a framework. Cell, 2006. 127(4): p. 679-95.
33. Brabletz, T., To differentiate or not--routes towards metastasis. Nat Rev Cancer, 2012. 12(6): p. 425-36.
34. Hall, A., The cytoskeleton and cancer. Cancer Metastasis Rev, 2009. 28(1-2): p. 5-14.
35. Mierke, C.T., Physical break-down of the classical view on cancer cell invasion and metastasis. Eur J Cell Biol, 2013. 92(3): p. 89-104.
36. Fife, C.M., J.A. McCarroll, and M. Kavallaris, Movers and shakers: cell cytoskeleton in cancer metastasis. Br J Pharmacol, 2014. 171(24): p. 5507-23.
37. Pollard, T.D. and J.A. Cooper, Actin, a central player in cell shape and movement. Science, 2009. 326(5957): p. 1208-12.
38. Banuelos, S., M. Saraste, and K. Djinovic Carugo, Structural comparisons of calponin homology domains: implications for actin binding. Structure, 1998. 6(11): p. 1419-31.
39. de Arruda, M.V., S. Watson, C.S. Lin, J. Leavitt, and P. Matsudaira, Fimbrin is a homologue of the cytoplasmic phosphoprotein plastin and has domains homologous with calmodulin and actin gelation proteins. J Cell Biol, 1990. 111(3): p. 1069-79.
40. Namba, Y., M. Ito, Y. Zu, K. Shigesada, and K. Maruyama, Human T cell L-plastin bundles actin filaments in a calcium-dependent manner. J Biochem, 1992. 112(4): p. 503-7.
41. Shinomiya, H., Plastin family of actin-bundling proteins: its functions in leukocytes, neurons, intestines, and cancer. Int J Cell Biol, 2012. 2012: p. 213492.
42. Janji, B., A. Giganti, V. De Corte, M. Catillon, E. Bruyneel, D. Lentz, J. Plastino, J. Gettemans, and E. Friederich, Phosphorylation on Ser5 increases the F-actin-binding activity of L-plastin and promotes its targeting to sites of actin assembly in cells. J Cell Sci, 2006. 119(Pt 9): p. 1947-60.
43. Evans, J.G., I. Correia, O. Krasavina, N. Watson, and P. Matsudaira, Macrophage podosomes assemble at the leading lamella by growth and fragmentation. J Cell Biol, 2003. 161(4): p. 697-705.
44. Babb, S.G., P. Matsudaira, M. Sato, I. Correia, and S.S. Lim, Fimbrin in podosomes of monocyte-derived osteoclasts. Cell Motil Cytoskeleton, 1997. 37(4): p. 308-25.
45. Jones, S.L. and E.J. Brown, FcgammaRII-mediated adhesion and phagocytosis induce L-plastin phosphorylation in human neutrophils. J Biol Chem, 1996. 271(24): p. 14623-30.
46. Wang, J. and E.J. Brown, Immune complex-induced integrin activation and L-plastin phosphorylation require protein kinase A. J Biol Chem, 1999. 274(34): p. 24349-56.
47. Zu, Y.L., K. Shigesada, E. Nishida, I. Kubota, M. Kohno, M. Hanaoka, and Y. Namba, 65-kilodalton protein phosphorylated by interleukin 2 stimulation bears two putative actin-binding sites and two calcium-binding sites. Biochemistry, 1990. 29(36): p. 8319-24.
48. Zheng, J., N. Rudra-Ganguly, G.J. Miller, K.A. Moffatt, R.J. Cote, and P. Roy-Burman, Steroid hormone induction and expression patterns of L-plastin in normal and carcinomatous prostate tissues. Am J Pathol, 1997. 150(6): p. 2009-18.
49. Lapillonne, A., O. Coue, E. Friederich, A. Nicolas, L. Del Maestro, D. Louvard, S. Robine, and X. Sastre-Garau, Expression patterns of L-plastin isoform in normal and carcinomatous breast tissues. Anticancer Res, 2000. 20(5a): p. 3177-82.
50. Foran, E., P. McWilliam, D. Kelleher, D.T. Croke, and A. Long, The leukocyte protein L-plastin induces proliferation, invasion and loss of E-cadherin expression in colon cancer cells. Int J Cancer, 2006. 118(8): p. 2098-104.
51. Lin, C.S., T. Park, Z.P. Chen, and J. Leavitt, Human plastin genes. Comparative gene structure, chromosome location, and differential expression in normal and neoplastic cells. J Biol Chem, 1993. 268(4): p. 2781-92.
52. Park, T., Z.P. Chen, and J. Leavitt, Activation of the leukocyte plastin gene occurs in most human cancer cells. Cancer Res, 1994. 54(7): p. 1775-81.
53. Zheng, J., N. Rudra-Ganguly, W.C. Powell, and P. Roy-Burman, Suppression of prostate carcinoma cell invasion by expression of antisense L-plastin gene. Am J Pathol, 1999. 155(1): p. 115-22.
54. Riplinger, S.M., G.H. Wabnitz, H. Kirchgessner, B. Jahraus, F. Lasitschka, B. Schulte, G. van der Pluijm, G. van der Horst, G.J. Hammerling, I. Nakchbandi, and Y. Samstag, Metastasis of prostate cancer and melanoma cells in a preclinical in vivo mouse model is enhanced by L-plastin expression and phosphorylation. Mol Cancer, 2014. 13: p. 10.
55. Gayko, U., M. Fung, F. Clow, S. Sun, E. Faust, S. Price, D. James, M. Doyle, S. Bari, and S.H. Zhuang, Development of the Bruton's tyrosine kinase inhibitor ibrutinib for B cell malignancies. Ann N Y Acad Sci, 2015. 1358: p. 82-94.
56. Guo, W., R. Liu, G. Bhardwaj, J.C. Yang, C. Changou, A.H. Ma, A. Mazloom, S. Chintapalli, K. Xiao, W. Xiao, P. Kumaresan, E. Sanchez, C.T. Yeh, C.P. Evans, R. Patterson, K.S. Lam, and H.J. Kung, Targeting Btk/Etk of prostate cancer cells by a novel dual inhibitor. Cell Death Dis, 2014. 5: p. e1409.
57. Nilsson, K., H. Bennich, S.G. Johansson, and J. Ponten, Established immunoglobulin producing myeloma (IgE) and lymphoblastoid (IgG) cell lines from an IgE myeloma patient. Clin Exp Immunol, 1970. 7(4): p. 477-89.
58. Gazdar, A.F., H.K. Oie, I.R. Kirsch, and G.F. Hollis, Establishment and characterization of a human plasma cell myeloma culture having a rearranged cellular myc proto-oncogene. Blood, 1986. 67(6): p. 1542-9.
59. Matsuoka, Y., G.E. Moore, Y. Yagi, and D. Pressman, Production of free light chains of immunoglobulin by a hematopoietic cell line derived from a patient with multiple myeloma. Proc Soc Exp Biol Med, 1967. 125(4): p. 1246-50.
60. Pulvertaft, J.V., CYTOLOGY OF BURKITT'S TUMOUR (AFRICAN LYMPHOMA). Lancet, 1964. 1(7327): p. 238-40.
61. Stacchini, A., M. Aragno, A. Vallario, A. Alfarano, P. Circosta, D. Gottardi, A. Faldella, G. Rege-Cambrin, U. Thunberg, K. Nilsson, and F. Caligaris-Cappio, MEC1 and MEC2: two new cell lines derived from B-chronic lymphocytic leukaemia in prolymphocytoid transformation. Leuk Res, 1999. 23(2): p. 127-36.
62. Horoszewicz, J.S., S.S. Leong, T.M. Chu, Z.L. Wajsman, M. Friedman, L. Papsidero, U. Kim, L.S. Chai, S. Kakati, S.K. Arya, and A.A. Sandberg, The LNCaP cell line--a new model for studies on human prostatic carcinoma. Prog Clin Biol Res, 1980. 37: p. 115-32.
63. Lin, M.F., T.C. Meng, P.S. Rao, C. Chang, A.H. Schonthal, and F.F. Lin, Expression of human prostatic acid phosphatase correlates with androgen-stimulated cell proliferation in prostate cancer cell lines. J Biol Chem, 1998. 273(10): p. 5939-47.
64. Kaighn, M.E., K.S. Narayan, Y. Ohnuki, J.F. Lechner, and L.W. Jones, Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol, 1979. 17(1): p. 16-23.
65. Sramkoski, R.M., T.G. Pretlow, 2nd, J.M. Giaconia, T.P. Pretlow, S. Schwartz, M.S. Sy, S.R. Marengo, J.S. Rhim, D. Zhang, and J.W. Jacobberger, A new human prostate carcinoma cell line, 22Rv1. In Vitro Cell Dev Biol Anim, 1999. 35(7): p. 403-9.
66. Tsai, C.H., S.F. Tzeng, T.K. Chao, C.Y. Tsai, Y.C. Yang, M.T. Lee, J.J. Hwang, Y.C. Chou, M.H. Tsai, T.L. Cha, and P.W. Hsiao, Metastatic Progression of Prostate Cancer Is Mediated by Autonomous Binding of Galectin-4-O-Glycan to Cancer Cells. Cancer Res, 2016. 76(19): p. 5756-5767.
67. Bendris, N., K.C. Williams, C.R. Reis, E.S. Welf, P.H. Chen, B. Lemmers, M. Hahne, H.S. Leong, and S.L. Schmid, SNX9 promotes metastasis by enhancing cancer cell invasion via differential regulation of RhoGTPases. Mol Biol Cell, 2016.
68. Berger, C.M., X. Gaume, and P. Bouvet, The roles of nucleolin subcellular localization in cancer. Biochimie, 2015. 113: p. 78-85.
69. Cawthorn, T.R., J.C. Moreno, M. Dharsee, D. Tran-Thanh, S. Ackloo, P.H. Zhu, G. Sardana, J. Chen, P. Kupchak, L.M. Jacks, N.A. Miller, B.J. Youngson, V. Iakovlev, C.J. Guidos, K.A. Vallis, K.R. Evans, D. McCready, W.L. Leong, and S.J. Done, Proteomic analyses reveal high expression of decorin and endoplasmin (HSP90B1) are associated with breast cancer metastasis and decreased survival. PLoS One, 2012. 7(2): p. e30992.
70. Chen, W., P. Zhou, and X. Li, High expression of DDX20 enhances the proliferation and metastatic potential of prostate cancer cells through the NF-kappaB pathway. Int J Mol Med, 2016. 37(6): p. 1551-7.
71. Connolly, D., Z. Yang, M. Castaldi, N. Simmons, M.H. Oktay, S. Coniglio, M.J. Fazzari, P. Verdier-Pinard, and C. Montagna, Septin 9 isoform expression, localization and epigenetic changes during human and mouse breast cancer progression. Breast Cancer Res, 2011. 13(4): p. R76.
72. Czerwinska, P., S. Mazurek, and M. Wiznerowicz, The complexity of TRIM28 contribution to cancer. J Biomed Sci, 2017. 24(1): p. 63.
73. Du, C., D.Q. Li, N. Li, L. Chen, S.S. Li, Y. Yang, M.X. Hou, M.J. Xie, and Z.D. Zheng, DDX5 promotes gastric cancer cell proliferation in vitro and in vivo through mTOR signaling pathway. Sci Rep, 2017. 7: p. 42876.
74. Flavin, R., S. Peluso, P.L. Nguyen, and M. Loda, Fatty acid synthase as a potential therapeutic target in cancer. Future Oncol, 2010. 6(4): p. 551-62.
75. Jing, P., N. Zhao, M. Ye, Y. Zhang, Z. Zhang, J. Sun, Z. Wang, J. Zhang, and Z. Gu, Protein arginine methyltransferase 5 promotes lung cancer metastasis via the epigenetic regulation of miR-99 family/FGFR3 signaling. Cancer Lett, 2018. 427: p. 38-48.
76. Kim, J.A., Y. Tan, X. Wang, X. Cao, J. Veeraraghavan, Y. Liang, D.P. Edwards, S. Huang, X. Pan, K. Li, R. Schiff, and X.S. Wang, Comprehensive functional analysis of the tousled-like kinase 2 frequently amplified in aggressive luminal breast cancers. Nat Commun, 2016. 7: p. 12991.
77. Kuo, T.F., T.Y. Chen, S.T. Jiang, K.W. Chen, Y.M. Chiang, Y.J. Hsu, Y.J. Liu, H.M. Chen, K.K. Yokoyama, K.C. Tsai, H.H. Yeh, Y.R. Chen, M.T. Yang, C.Y. Yang, and W.C. Yang, Protein disulfide isomerase a4 acts as a novel regulator of cancer growth through the procaspase pathway. Oncogene, 2017. 36(39): p. 5484-5496.
78. Lee, D., I.M. Xu, D.K. Chiu, R.K. Lai, A.P. Tse, L. Lan Li, C.T. Law, F.H. Tsang, L.L. Wei, C.Y. Chan, C.M. Wong, I.O. Ng, and C.C. Wong, Folate cycle enzyme MTHFD1L confers metabolic advantages in hepatocellular carcinoma. J Clin Invest, 2017. 127(5): p. 1856-1872.
79. Meng, Y., Z. Lu, S. Yu, Q. Zhang, Y. Ma, and J. Chen, Ezrin promotes invasion and metastasis of pancreatic cancer cells. J Transl Med, 2010. 8: p. 61.
80. Peiris-Pages, M., D.L. Smith, B. Gyorffy, F. Sotgia, and M.P. Lisanti, Proteomic identification of prognostic tumour biomarkers, using chemotherapy-induced cancer-associated fibroblasts. Aging (Albany NY), 2015. 7(10): p. 816-38.
81. Xu, I.M., R.K. Lai, S.H. Lin, A.P. Tse, D.K. Chiu, H.Y. Koh, C.T. Law, C.M. Wong, Z. Cai, C.C. Wong, and I.O. Ng, Transketolase counteracts oxidative stress to drive cancer development. Proc Natl Acad Sci U S A, 2016. 113(6): p. E725-34.
82. Schwebach, C.L., R. Agrawal, S. Lindert, E. Kudryashova, and D.S. Kudryashov, The Roles of Actin-Binding Domains 1 and 2 in the Calcium-Dependent Regulation of Actin Filament Bundling by Human Plastins. J Mol Biol, 2017. 429(16): p. 2490-2508.
83. Ning, Y., A. Gerger, W. Zhang, D.L. Hanna, D. Yang, T. Winder, T. Wakatsuki, M.J. Labonte, S. Stintzing, N. Volz, Y. Sunakawa, S. Stremitzer, R. El-Khoueiry, and H.J. Lenz, Plastin polymorphisms predict gender- and stage-specific colon cancer recurrence after adjuvant chemotherapy. Mol Cancer Ther, 2014. 13(2): p. 528-39.
84. Harris, L.D., J. De La Cerda, T. Tuziak, D. Rosen, L. Xiao, Y. Shen, A.L. Sabichi, B. Czerniak, and H.B. Grossman, Analysis of the expression of biomarkers in urinary bladder cancer using a tissue microarray. Mol Carcinog, 2008. 47(9): p. 678-85.
85. Klemke, M., M.T. Rafael, G.H. Wabnitz, T. Weschenfelder, M.H. Konstandin, N. Garbi, F. Autschbach, W. Hartschuh, and Y. Samstag, Phosphorylation of ectopically expressed L-plastin enhances invasiveness of human melanoma cells. Int J Cancer, 2007. 120(12): p. 2590-9.
86. John C. Byrd, R.R.F., Steven Coutre, Ian W. Flinn, Jan A. Burger, Kristie A. Blum, Jeff Sharman, Barbara Grant, Jeffrey A. Jones, William G. Wierda, Weiqiang Zhao, Nyla A. Heerema, Amy J. Johnson, Anh Tran, Fong Clow, Lori Kunkel, Danelle F. James and Susan O'Brien and B. 120:189;, The Bruton's Tyrosine Kinase (BTK) Inhibitor Ibrutinib (PCI-32765) Promotes High Response Rate, Durable Remissions, and Is Tolerable in Treatment Naïve (TN) and Relapsed or Refractory (RR) Chronic Lymphocytic Leukemia (CLL) or Small Lymphocytic Lymphoma (SLL) Patients Including Patients with High-Risk (HR) Disease: New and Updated Results of 116 Patients in a Phase Ib/II Study. Blood, 2012. 120(189).
87. Al Tanoury, Z., E. Schaffner-Reckinger, A. Halavatyi, C. Hoffmann, M. Moes, E. Hadzic, M. Catillon, M. Yatskou, and E. Friederich, Quantitative kinetic study of the actin-bundling protein L-plastin and of its impact on actin turn-over. PLoS One, 2010. 5(2): p. e9210.
88. Dubovsky, J.A., D.L. Chappell, B.K. Harrington, K. Agrawal, L.A. Andritsos, J.M. Flynn, J.A. Jones, M.E. Paulaitis, B. Bolon, A.J. Johnson, J.C. Byrd, and N. Muthusamy, Lymphocyte cytosolic protein 1 is a chronic lymphocytic leukemia membrane-associated antigen critical to niche homing. Blood, 2013. 122(19): p. 3308-16.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79167-
dc.description.abstract對於標靶藥物而言,了解它完整的作用標的族群是非常重要的,這可以幫助我們研究藥物作用的機制、增強藥效、開發新的適應症、以及減少藥物的副作用。BI1 是一種第二代Bruton’s tyrosine kinase (BTK)抑制劑,目前用於慢性淋巴性白血病(CLL)的治療,雖然BI1於臨床使用中有很好的藥效,但有別於大多數抗癌藥物,BI1對於表達有BTK這個作用標的的CLL細胞於生理濃度時幾乎沒有毒殺性,因此它的藥物作用機制仍有許多部分等待探討。本研究的目的就是希望能夠找到BI1新的藥物作用標的,並了解其在BI1抗癌的作用機制中是否扮演角色。我首先測試了BI1對於B細胞淋巴癌與前列腺癌細胞的藥效,並發現它對於抑制癌細胞生長與移動能力的藥效並沒有和癌細胞中的BTK表達量呈正相關,由此可以看出BI1存在有除了BTK以外新的藥物作用標的的可能性。我們與台大生化科學研究所的張震東教授合作,使用了一種BI1專一性的抗體將癌細胞當中所有被BI1結合的蛋白質以免疫沉澱的方式進行純化,並以LC-MS/MS進行蛋白質身分鑑定,獲得了在細胞中BI1作用蛋白的清單,並從中篩選出了L-plastin作為新的藥物標的進行後續的研究。實驗結果顯示,BI1與L-plastin有直接的共價鍵連接,並且可以抑制L-plastin綑綁肌動蛋白(actin bundling)的功能。這些結果共同證實了L-plastin是BI1抑制前列腺癌細胞侵襲能力中的新作用標的。這個發現或許能讓我們對於BI1藥物作用機制有更進一步的瞭解,也提出了前列腺癌作為BI1新適應症的可能性。zh_TW
dc.description.abstractIdentification of a drug target profile is crucial for clearly understanding of the drug mechanism of action, improvement of the drug efficacy, new indications of the drug, or reduction of side effects. BI1 is one of the second-generation Bruton’s tyrosine kinase (BTK) inhibitors and currently used in clinic for the treatment of CLL. Although BI1 exhibits a good efficacy on CLL, it still remains elusive because of its no or low cytotoxicity on BTK-positive CLL cancer cells at the physiological concentrations. The purpose of this study is to identify a novel drug target profile of BI1 and to understand its mechanism of action in human cancer. I found that the inhibitory efficacy of BI1 on the cancer cell proliferation and mobility is not dependent on the BTK levels in the B cell and prostate cancer cells, and encouraged us to identify novel target(s) of BI1. We collaborated with Dr. Geen-Dong Chang and used an antibody-based approach to pull down the BI1-labeled proteins in human B cell and prostate cancer cells, and applied LC-MS/MS analysis to reveal the identity of the target candidates. With this approach, I isolated L-plastin to be a novel target of BI1. BI1 can form a covalent linkage with L-plastin and suppress its actin-bundling function. The data indicate that L-plastin is a novel target for BI1 to suppress prostate cancer cell invasion. This findings provide more insights into the mechanism which lays behind the drug actions of this newly-developed BTK inhibitor, and give a new opportunity for indication of BI1 against prostate cancer.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:49:37Z (GMT). No. of bitstreams: 1
ntu-107-R05442006-1.pdf: 2588359 bytes, checksum: 3788f938c6e43d02a739295f77f347c0 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsContents
致謝 1
中文摘要 2
Abstract 3
Chapter 1. Introduction 7
1.1 Chronic lymphocytic leukemia 8
1.2 Bruton’s tyrosine kinase inhibitors 9
1.3 Prostate cancer 9
1.4 Prostate cancer progression 11
1.5 Metastasis 12
1.6 L-plastin 13
1.7 L-plastin and prostate cancer 14
1.8 Purpose of this study 15
Chapter 2. Materials and Methods 17
Chapter 3. Results 37
3.1 BTK expression levels in different B cell and prostate cancer cell lines 38
3.2 Effects of BI1 on the cell viability of different B cell and prostate cancer cell lines 39
3.3 Effects of BI1 in the cell mobility of different prostate cancer cell lines 40
3.4 Specificity of an anti-BI1 antibody against BI1-targeted proteins 41
3.5 Identification of BI1-targeted proteins in MEC1 and PC3 cells 41
3.6 Analyzing of the LC-MS/MS protein identification data 42
3.7 The direct interaction between BI1 and L-plastin in human cancer cells 43
3.8 Role of LCP-1 in BI1-inhibited prostate cancer cell invasion 44
3.9 LCP-1 protein expression level in prostate cancer cells is not altered by BI1 treatment 46
3.10 The actin-bundling function of L-plastin is inhibited by BI1 treatment 46
Chapter 4. Discussion 48
Chapter 5. Figure 52
Chapter 6. Reference 79
-
dc.language.isoen-
dc.subject侵襲能力zh_TW
dc.subjectL-plastinzh_TW
dc.subjectBTK抑制劑zh_TW
dc.subject淋巴癌zh_TW
dc.subject前列腺癌zh_TW
dc.subjectBTK inhibitoren
dc.subjectProstate canceren
dc.subjectInvasionen
dc.subjectL-plastinen
dc.subjectLymphomaen
dc.title鑑尋BTK抑制劑的新作用標的與其作用機制之探討zh_TW
dc.titleIdentifying novel drug targets of an irreversible BTK inhibitoren
dc.typeThesis-
dc.date.schoolyear106-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張震東;吳尚儒;黃祥博zh_TW
dc.contributor.oralexamcommitteeGeen-Dong Chang;Shang-Ju Wu;Shiang-Bo Huangen
dc.subject.keywordBTK抑制劑,L-plastin,淋巴癌,前列腺癌,侵襲能力,zh_TW
dc.subject.keywordBTK inhibitor,L-plastin,Lymphoma,Prostate cancer,Invasion,en
dc.relation.page88-
dc.identifier.doi10.6342/NTU201801951-
dc.rights.note未授權-
dc.date.accepted2018-07-31-
dc.contributor.author-college醫學院-
dc.contributor.author-dept生物化學暨分子生物學研究所-
dc.date.embargo-lift2023-10-09-
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-106-2.pdf
  未授權公開取用
2.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved