請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79158
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 邱智賢,吳兩新 | |
dc.contributor.author | Hsiu-Ju Hsu | en |
dc.contributor.author | 許秀如 | zh_TW |
dc.date.accessioned | 2021-07-11T15:48:49Z | - |
dc.date.available | 2023-08-06 | |
dc.date.copyright | 2018-08-06 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-07-31 | |
dc.identifier.citation | Abounit, K., T. M. Scarabelli, and R. B. McCauley. 2012. Autophagy in mammalian cells. World J. Biol. Chem. 3(1):1-6. doi: 10.4331/wjbc.v3.i1.1
Ascoli, M. 1981. Characterization of several clonal lines of cultured Leydig tumor cells: gonadotropin receptors and steroidogenic responses. Endocrinology 108(1):88-95. doi: 10.1210/endo-108-1-88 Auchus, R. J. 2015. Human Steroid Biosynthesis.295-312. doi: 10.1016/b978-0-12-397175-3.00008-9 Bagatell, C. J., K. D. Dahl, and W. J. Bremner. 1994. The direct pituitary effect of testosterone to inhibit gonadotropin secretion in men is partially mediated by aromatization to estradiol. Journal of Andrology 15(1):15-21. (Article) Barth, S., D. Glick, and K. F. Macleod. 2010. Autophagy: assays and artifacts. J. Pathol. 221(2):117-124. doi: 10.1002/path.2694 Bekaert, M., Y. Van Nieuwenhove, P. Calders, C. A. Cuvelier, A. H. Batens, J. M. Kaufman, D. M. Ouwens, and J. B. Ruige. 2015. Determinants of testosterone levels in human male obesity. Endocrine 50(1):202-211. doi: 10.1007/s12020-015-0563-4 Bjorntorp, P., H. Bergman, and E. Varnauskas. 1969. Plasma free fatty acid turnover rate in obesity. Acta Med. Scand. 185(4):351-356. Brennan, A. M., and C. S. Mantzoros. 2006. Drug Insight: the role of leptin in human physiology and pathophysiology--emerging clinical applications. Nat. Clin. Pract. Endocrinol. Metab. 2(6):318-327. doi: 10.1038/ncpendmet0196 Caro, J. F., J. W. Kolaczynski, M. R. Nyce, J. P. Ohannesian, I. Opentanova, W. H. Goldman, R. B. Lynn, P. L. Zhang, M. K. Sinha, and R. V. Considine. 1996. Decreased cerebrospinal-fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance. Lancet 348(9021):159-161. Castillo, A. F., U. Orlando, K. E. Helfenberger, C. Poderoso, and E. J. Podesta. 2015. The role of mitochondrial fusion and StAR phosphorylation in the regulation of StAR activity and steroidogenesis. Molecular and Cellular Endocrinology 408:73-79. doi: 10.1016/j.mce.2014.12.011 Chang, Y. Y., and T. P. Neufeld. 2009. An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation. Mol. Biol. Cell 20(7):2004-2014. doi: 10.1091/mbc.E08-12-1250 Cheng, C. Y., and D. D. Mruk. 2012. The blood-testis barrier and its implications for male contraception. Pharmacol. Rev. 64(1):16-64. doi: 10.1124/pr.110.002790 Clermont, Y. 1966. Renewal of spermatogonia in man. Am. J. Anat. 118(2):509-&. (Article) doi: 10.1002/aja.1001180211 Clermont, Y. 1972. Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol. Rev. 52(1):198-236. doi: 10.1152/physrev.1972.52.1.198 Cohen, P. G. 1999. The hypogonadal-obesity cycle: role of aromatase in modulating the testosterone-estradiol shunt--a major factor in the genesis of morbid obesity. Med. Hypotheses 52(1):49-51. doi: 10.1054/mehy.1997.0624 Couse, J. F., J. Lindzey, K. Grandien, J. A. Gustafsson, and K. S. Korach. 1997. Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse. Endocrinology 138(11):4613-4621. doi: 10.1210/endo.138.11.5496 Davis, W. W., and L. D. Garren. 1968. On the mechanism of action of adrenocorticotropic hormone. The inhibitory site of cycloheximide in the pathway of steroid biosynthesis. J. Biol. Chem. 243(19):5153-5157. Dong, H., and M. J. Czaja. 2011. Regulation of lipid droplets by autophagy. Trends Endocrinol. Metab. 22(6):234-240. doi: 10.1016/j.tem.2011.02.003 Dym, M., and D. W. Fawcett. 1971. Further observations on the numbers of spermatogonia, spermatocytes, and spermatids connected by intercellular bridges in the mammalian testis. Biol. Reprod. 4(2):195-215. Elshorbagy, A. K., F. Jerneren, C. L. Scudamore, F. McMurray, H. Cater, T. Hough, R. Cox, and H. Refsum. 2016. Exploring the Lean Phenotype of Glutathione-Depleted Mice: Thiol, Amino Acid and Fatty Acid Profiles. PLoS One 11(10):e0163214. doi: 10.1371/journal.pone.0163214 Ferguson, J. J., Jr. 1963. Protein synthesis and adrenocorticotropin responsiveness. J. Biol. Chem. 238:2754-2759. Gao, F., G. Li, C. Liu, H. Gao, H. Wang, W. Liu, M. Chen, Y. Shang, L. Wang, J. Shi, W. Xia, J. Jiao, F. Gao, J. Li, L. Chen, and W. Li. 2018. Autophagy regulates testosterone synthesis by facilitating cholesterol uptake in Leydig cells. J. Cell Biol. doi: 10.1083/jcb.201710078 Gawriluk, T. R., C. Ko, X. M. Hong, L. K. Christenson, and E. B. Rucker. 2014. Beclin-1 deficiency in the murine ovary results in the reduction of progesterone production to promote preterm labor. Proc. Natl. Acad. Sci. U.S.A. 111(40):E4194-E4203. (Article) doi: 10.1073/pnas.1409323111 Glick, D., S. Barth, and K. F. Macleod. 2010. Autophagy: cellular and molecular mechanisms. J. Pathol. 221(1):3-12. doi: 10.1002/path.2697 Gore, A. C. 2010. Neuroendocrine targets of endocrine disruptors. Hormones (Athens) 9(1):16-27. (Review) doi: 10.14310/horm.2002.1249 Gottsch, M. L., M. J. Cunningham, J. T. Smith, S. M. Popa, B. V. Acohido, W. F. Crowley, S. Seminara, D. K. Clifton, and R. A. Steiner. 2004. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology 145(9):4073-4077. (Article) doi: 10.1210/en.2004-0431 Granot, Z., N. Melamed-Book, A. Bahat, and J. Orly. 2007. Turnover of StAR protein: Roles for the proteasome and mitochondrial proteases. Mol. Cell Endocrinol. 265-266:51-58. doi: https://doi.org/10.1016/j.mce.2006.12.003 Griswold, M. D. 1998. The central role of Sertoli cells in spermatogenesis. Semin. Cell Dev. Biol. 9(4):411-416. doi: 10.1006/scdb.1998.0203 Hansson, V., S. C. Weddington, F. S. French, W. McLean, A. Smith, S. N. Nayfeh, E. M. Ritzen, and L. Hagenas. 1976. Secretion and role of androgen-binding proteins in the testis and epididymis. J. Reprod. Fertil. Suppl. (24 suppl):17-33. Hinson, J., P. Raven, and S. Chew. 2010. 8 - Hormonal control of reproduction part I: male reproductive system, The Endocrine System (Second Edition). Churchill Livingstone. p. 87-98. Hoyer-Hansen, M., and M. Jaattela. 2007. AMP-activated protein kinase: a universal regulator of autophagy? Autophagy 3(4):381-383. Hu, K.-L., H. Zhao, H.-M. Chang, Y. Yu, and J. Qiao. 2018. Kisspeptin/Kisspeptin Receptor System in the Ovary. Front. Endocrinol. (Lausanne) 8(365)(Review) doi: 10.3389/fendo.2017.00365 Isidori, A. M., M. Caprio, F. Strollo, C. Moretti, G. Frajese, A. Isidori, and A. Fabbri. 1999. Leptin and androgens in male obesity: evidence for leptin contribution to reduced androgen levels. J. Clin. Endocrinol. Metab. 84(10):3673-3680. doi: 10.1210/jcem.84.10.6082 Jequier, E. 2002. Leptin signaling, adiposity, and energy balance. Ann. N. Y. Acad. Sci. 967:379-388. Jin, J. M., and W. X. Yang. 2014. Molecular regulation of hypothalamus-pituitary-gonads axis in males. Gene 551(1):15-25. doi: 10.1016/j.gene.2014.08.048 Katib, A. 2015. Mechanisms linking obesity to male infertility. Cent. European J. Urol. 68(1):79-85. doi: 10.5173/ceju.2015.01.435 Kirkin, V., D. G. McEwan, I. Novak, and I. Dikic. 2009. A role for ubiquitin in selective autophagy. Mol. Cell. 34(3):259-269. doi: 10.1016/j.molcel.2009.04.026 Klop, B., J. W. Elte, and M. C. Cabezas. 2013. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients 5(4):1218-1240. doi: 10.3390/nu5041218 Koike, M., M. Shibata, S. Waguri, K. Yoshimura, I. Tanida, E. Kominami, T. Gotow, C. Peters, K. von Figura, N. Mizushima, P. Saftig, and Y. Uchiyama. 2005. Participation of autophagy in storage of lysosomes in neurons from mouse models of neuronal ceroid-lipofuscinoses (Batten disease). Am. J. Pathol. 167(6):1713-1728. doi: 10.1016/s0002-9440(10)61253-9 Krahmer, N., R. V. Farese, Jr., and T. C. Walther. 2013. Balancing the fat: lipid droplets and human disease. EMBO Mol. Med. 5(7):973-983. doi: 10.1002/emmm.201100671 Li, W. R., L. Chen, Z. J. Chang, H. Xin, T. Liu, Y. Q. Zhang, G. Y. Li, F. Zhou, Y. Q. Gong, Z. Z. Gao, and Z. C. Xin. 2011. Autophagic deficiency is related to steroidogenic decline in aged rat Leydig cells. Asian J. Androl. 13(6):881-888. doi: 10.1038/aja.2011.85 Lin, T., J. Haskell, N. Vinson, and L. Terracio. 1986. Characterization of insulin and insulin-like growth factor I receptors of purified Leydig cells and their role in steroidogenesis in primary culture: a comparative study. Endocrinology 119(4):1641-1647. doi: 10.1210/endo-119-4-1641 Liu, K., and M. J. Czaja. 2013. Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ. 20(1):3-11. doi: 10.1038/cdd.2012.63 Ma, Y., Y. Zhou, Y. C. Zhu, S. Q. Wang, P. Ping, and X. F. Chen. 2018. Lipophagy Contributes to Testosterone Biosynthesis in Male Rat Leydig Cells. Endocrinology 159(2):1119-1129. doi: 10.1210/en.2017-03020 Margetic, S., C. Gazzola, G. G. Pegg, and R. A. Hill. 2002. Leptin: a review of its peripheral actions and interactions. Int. J. Obes. Relat. Metab. Disord. 26(11):1407-1433. doi: 10.1038/sj.ijo.0802142 Mawhinney, M., and A. Mariotti. 2013. Physiology, pathology and pharmacology of the male reproductive system. Periodontol. 2000 61(1):232-251. doi: 10.1111/j.1600-0757.2011.00408.x Meachem, S. J., E. Nieschlag, and M. Simoni. 2001. Inhibin B in male reproduction: pathophysiology and clinical relevance. Eur. J. Endocrinol. 145(5):561-571. Mei, S., H. M. Ni, S. Manley, A. Bockus, K. M. Kassel, J. P. Luyendyk, B. L. Copple, and W. X. Ding. 2011. Differential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytes. J. Pharmacol. Exp. Ther. 339(2):487-498. doi: 10.1124/jpet.111.184341 Meikle, A. W., S. J. Benson, X. H. Liu, W. D. Boam, and J. D. Stringham. 1989. Nonesterified fatty acids modulate steroidogenesis in mouse Leydig cells. American Journal of Physiology 257(6):E937-E942. (Article) Miller, W. L. 2013. Steroid hormone synthesis in mitochondria. Mol. Cell Endocrinol. 379(1-2):62-73. doi: 10.1016/j.mce.2013.04.014 Miller, W. L., and H. S. Bose. 2011. Early steps in steroidogenesis: intracellular cholesterol trafficking. J. Lipid Res. 52(12):2111-2135. doi: 10.1194/jlr.R016675 Mindell, J. A. 2012. Lysosomal acidification mechanisms. Annu. Rev. Physiol. 74:69-86. doi: 10.1146/annurev-physiol-012110-142317 Mizushima, N. 2007. Autophagy: process and function. Genes Dev. 21(22):2861-2873. doi: 10.1101/gad.1599207 Morris, D. H., C. K. Yip, Y. Shi, B. T. Chait, and Q. J. Wang. 2015. Beclin 1-Vps34 complex architecture: Understanding the nuts and bolts of therapeutic targets. Front. Biol. (Beijing) 10(5):398-426. doi: 10.1007/s11515-015-1374-y Nelson, G. J. 1972. Blood lipids and lipoproteins: quantitation, composition, and metabolism. Wiley-Interscience. Nguyen, R. H., A. J. Wilcox, R. Skjaerven, and D. D. Baird. 2007. Men's body mass index and infertility. Hum. Reprod. 22(9):2488-2493. doi: 10.1093/humrep/dem139 Nieschlag, E., H. M. Behre, and S. Nieschlag. 2010. Andrology. Springer-Verlag Berlin Heidelberg. Noda, T., and Y. Ohsumi. 1998. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J. Biol. Chem. 273(7):3963-3966. Payne, A. H., G. L. Youngblood, L. Sha, M. Burgos-Trinidad, and S. H. Hammond. 1992. Hormonal regulation of steroidogenic enzyme gene expression in Leydig cells. J. Steroid Biochem. Mol. Biol. 43(8):895-906. doi: 10.1016/0960-0760(92)90317-c Phillips, K. P., and N. Tanphaichitr. 2010. Mechanisms of obesity-induced male infertility. Expert. Rev. Endocrinol. Metab. 5(2):229-251. doi: 10.1586/eem.09.65 Pitteloud, N., M. Hardin, A. A. Dwyer, E. Valassi, M. Yialamas, D. Elahi, and F. J. Hayes. 2005a. Increasing insulin resistance is associated with a decrease in Leydig cell testosterone secretion in men. J. Clin. Endocrinol. Metab. 90(5):2636-2641. doi: 10.1210/jc.2004-2190 Pitteloud, N., V. K. Mootha, A. A. Dwyer, M. Hardin, H. Lee, K. F. Eriksson, D. Tripathy, M. Yialamas, L. Groop, D. Elahi, and F. J. Hayes. 2005b. Relationship between testosterone levels, insulin sensitivity, and mitochondrial function in men. Diabetes Care 28(7):1636-1642. Reyland, M. E., R. M. Evans, and E. K. White. 2000. Lipoproteins regulate expression of the steroidogenic acute regulatory protein (StAR) in mouse adrenocortical cells. J. Biol. Chem. 275(47):36637-36644. doi: 10.1074/jbc.M006456200 Rone, M. B., A. S. Midzak, D. B. Martinez-Arguelles, J. Fan, X. Ye, J. Blonder, and V. Papadopoulos. 2014. Steroidogenesis in MA-10 mouse Leydig cells is altered via fatty acid import into the mitochondria. Biol. Reprod. 91(4):96. doi: 10.1095/biolreprod.114.121434 Roosen-Runge, E. C., and A. F. Holstein. 1978. The human rete testis. Cell and Tissue Research 189(3):409-433. Salehi, S., I. Adeshina, H. Chen, B. R. Zirkin, M. A. Hussain, F. Wondisford, A. Wolfe, and S. Radovick. 2015. Developmental and endocrine regulation of kisspeptin expression in mouse Leydig cells. Endocrinology 156(4):1514-1522. doi: 10.1210/en.2014-1606 Sallmen, M., D. P. Sandler, J. A. Hoppin, A. Blair, and D. D. Baird. 2006. Reduced fertility among overweight and obese men. Epidemiology 17(5):520-523. doi: 10.1097/01.ede.0000229953.76862.e5 Sambrook, J., and D. W. Russell. 2006. SDS-Polyacrylamide Gel Electrophoresis of Proteins. CSH Protoc. 2006(4)doi: 10.1101/pdb.prot4540 Sands, W. A., and T. M. Palmer. 2008. Regulating gene transcription in response to cyclic AMP elevation. Cell Signal. 20(3):460-466. doi: 10.1016/j.cellsig.2007.10.005 Senger, P. L. 2011. Pathway to pregnancy and parturition. Current Conceptions Inc. Sharma, R., and A. Agarwal. 2011. Spermatogenesis: An Overview, Sperm Chromatin. p. 19-44. Singh, R., S. Kaushik, Y. Wang, Y. Xiang, I. Novak, M. Komatsu, K. Tanaka, A. M. Cuervo, and M. J. Czaja. 2009. Autophagy regulates lipid metabolism. Nature 458(7242):1131-1135. doi: 10.1038/nature07976 Smith, J. T., B. V. Acohido, D. K. Clifton, and R. A. Steiner. 2006. KiSS-1 neurones are direct targets for leptin in the ob/ob mouse. J. Neuroendocrinol. 18(4):298-303. doi: 10.1111/j.1365-2826.2006.01417.x Stolz, A., A. Ernst, and I. Dikic. 2014. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16(6):495-501. doi: 10.1038/ncb2979 Tanaka, S., H. Hikita, T. Tatsumi, R. Sakamori, Y. Nozaki, S. Sakane, Y. Shiode, T. Nakabori, Y. Saito, N. Hiramatsu, K. Tabata, T. Kawabata, M. Hamasaki, H. Eguchi, H. Nagano, T. Yoshimori, and T. Takehara. 2016. Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice. Hepatology 64(6):1994-2014. doi: 10.1002/hep.28820 Tena-Sempere, M., L. Pinilla, F. P. Zhang, L. C. Gonzalez, I. Huhtaniemi, F. F. Casanueva, C. Dieguez, and E. Aguilar. 2001. Developmental and hormonal regulation of leptin receptor (Ob-R) messenger ribonucleic acid expression in rat testis. Biol. Reprod. 64(2):634-643. Tsai, L. C., and J. A. Beavo. 2011. The roles of cyclic nucleotide phosphodiesterases (PDEs) in steroidogenesis. Curr. Opin. Pharmacol. 11(6):670-675. doi: 10.1016/j.coph.2011.09.003 Tsujishita, Y., and J. H. Hurley. 2000. Structure and lipid transport mechanism of a StAR-related domain. Nat. Struct. Biol. 7(5):408-414. doi: 10.1038/75192 Wang, M. E., B. K. Singh, M. C. Hsu, C. Huang, P. M. Yen, L. S. Wu, D. S. Jong, and C. H. Chiu. 2017. Increasing Dietary Medium-Chain Fatty Acid Ratio Mitigates High-fat Diet-Induced Non-Alcoholic Steatohepatitis by Regulating Autophagy. Sci. Rep. 7(1):13999. doi: 10.1038/s41598-017-14376-y Xing, Y., W. E. Rainey, J. W. Apolzan, O. L. Francone, R. B. Harris, and W. B. Bollag. 2012. Adrenal cell aldosterone production is stimulated by very-low-density lipoprotein (VLDL). Endocrinology 153(2):721-731. doi: 10.1210/en.2011-1752 Yang, L., P. Li, S. Fu, E. S. Calay, and G. S. Hotamisligil. 2010. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11(6):467-478. doi: 10.1016/j.cmet.2010.04.005 Yang, Z., and D. J. Klionsky. 2009. An overview of the molecular mechanism of autophagy. Curr. Top Microbiol. Immunol. 335:1-32. doi: 10.1007/978-3-642-00302-8_1 Zegers-Hochschild, F., G. D. Adamson, J. de Mouzon, O. Ishihara, R. Mansour, K. Nygren, E. Sullivan, S. Vanderpoel, T. International Committee for Monitoring Assisted Reproductive, and O. World Health. 2009. International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) revised glossary of ART terminology, 2009. Fertil. Steril. 92(5):1520-1524. doi: 10.1016/j.fertnstert.2009.09.009 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79158 | - |
dc.description.abstract | 不孕症(infertility)是現今社會中常見的一個問題。根據世界衛生組織的定義,一對夫妻或情侶在沒有採取任何避孕措施的情形下,經過一年以上規律的性行為(平均每週1~3次)後仍然無法成功懷孕,即可以被診斷為不孕症。有鑑於現今生活型態的改變與高糖、高脂之飲食習慣的普及化,肥胖已成為造成不孕的其中一個重要原因。在兩個性別中,雄性個體的生殖能力取決於其本身精子的品質與數量,而其中,位於睪丸的萊迪氏細胞(Leydig cell)所分泌之睪固酮(testosterone)內泌素,在精子製造過程中扮演著重要的角色。由於肥胖個體也常常伴隨著高血脂的症狀,其血液中的游離脂肪酸濃度高於正常標準,因此本研究擬探討在肥胖高血脂的情況下,血液中過高的游離脂肪酸是否會導致萊迪氏細胞類固醇生成低下,最終影響其生殖能力。
我們使用MA-10小鼠萊迪氏細胞株作為模式細胞,並添加1,200 µM脂肪酸[600 µM油酸(oleic acid)及600 µM棕櫚酸(palmitic acid)]於細胞培養液內進行培養48小時,以模擬長時間細胞處於高血脂環境的狀態。結果發現長時間的脂肪酸處理除了會顯著降低MA-10細胞的孕酮(progesterone)生成能力之外,也會抑制CYP11A1與3β-HSD這兩個類固醇生成酶的基因表現。此外,我們也利用類固醇生成酶的受質22(R) -羥基膽固醇(22(R)-hydroxycholesterol)與孕烯醇酮(pregnenolone)檢測類固醇生成酶活性,發現高濃度脂肪酸在降低MA-10細胞類固醇生成能力的原因主要是抑制了CYP11A1這個類固醇生成酶的活性。同時,我們也發現MA-10細胞在經過脂肪酸處理後,其細胞自噬(autophagy)的運送蛋白p62與內質網壓力(endoplasmic reticulum stress)的標記CHOP皆顯著的上升;而且增加的p62與CHOP表現量,可以透過以雷帕黴素(rapamycin)活化細胞自噬作用而有回復的情形。值得注意的是,雷帕黴素除了能夠回復高濃度脂肪酸造成的細胞自噬受損之外,它同時也回復了基礎狀態下脂肪酸所抑制的類固醇生成作用。此一結果顯示在MA-10細胞內,脂肪酸會藉由尚未明瞭的機制損壞細胞自噬作用,進而影響到細胞內的類固醇生成作用。 總結上述,高濃度脂肪酸確實是造成MA-10萊迪氏細胞之類固醇生成作用低下的原因之一。首先,脂肪酸會直接抑制CYP11A1此類固醇生成酶之活性,而使類固醇生成作用受到阻礙;而且,脂肪酸也可能透過抑制細胞內的自噬作用,進而影響到類固醇生成作用。然而,脂肪酸是透過什麼機制而影響類固醇生成酶的活性與細胞自噬作用,以及細胞自噬作用在其中所扮演的角色,仍需進一步的研究去釐清。 | zh_TW |
dc.description.abstract | Infertility is a common problem that bothers both males and females nowadays. According to the definition by the World Health Organization, infertility is “a disease of the reproductive system defined by the failure to achieve a clinical pregnancy after 12 months or more of regular unprotected sexual intercourse.” Although many factors may be involved, obesity has become a prominent cause of infertility recently due to the high fat/sweet dietary habit and life style changes. Among both sex, male’s fertility relies on the quantity and quality of the sperm, and one of the factors involved in sperm production is the action of testosterone, which is produced by Leydig cells in testis. In addition, one of the signs exist in obese individuals are hyperlipidemia, which indicates the higher plasma free-fatty-acid (FFA) level. The aim of this study is to investigate whether the higher FFA level is the cause for the impaired Leydig cell function and how it induces hyposteroidogenesis.
To verify the hypothesis, we used MA-10 mouse Leydig cell line as the cell model, and treated with 1,200 µM fatty-acid (600 µM oleic acid and 600 µM palmitic acid) for 48 hours to mimic the hyperlipidemia situation. Results showed that the steroidogenic ability declined after the FFA challenge, and meanwhile, the expression of two steroidogenic enzymes, CYP11A1 and 3β-HSD, decreased at the transcriptional levels. Furthermore, according to the results of the pregnenolone and 22(R)-hydroxycholesterol supplement experiments, the impaired progesterone production was mainly due to the damaged CYP11A1 function. In addition to the decreased enzyme function, we also observed that the autophagic cargo protein p62 and endoplasmic reticulum (ER) stress marker CHOP significantly increased after fatty-acid treatment, and this increment could be alleviated by adding autophagy activator rapamycin. Additionally, rapamycin could also reverse the basal condition of steroidogenesis in FFA-treated MA-10 cells, indicating FFA would impair the autophagic function thus affecting the steroidogenesis of cells through some unknown mechanisms. In conclusion, our results demonstrated that one of the causes for the hyposteroidogenesis is the higher FFA level, and fatty acids can directly damage the function of CYP11A1, a key steroidogenic enzyme. Besides, fatty acids may also affect other cellular functions including autophagy, which mainly participated in the basal condition of steroidogenesis. However, it is necessary to elucidate how fatty acids impair the function of the enzymes and what the roles of autophagy play in steroid production. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:48:49Z (GMT). No. of bitstreams: 1 ntu-107-R05626004-1.pdf: 3128308 bytes, checksum: 97ef060eb6d8a25d4cca80a7874a7a09 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iii Abstract v Contents vii Figure Index ix Table Index xi 1. Introduction 1 2. Literature Review 3 2.1 Male reproductive system 3 2.1.1 Testicular composition 4 2.1.2 The hypothalamus-pituitary-gonadal (HPG) axis 5 2.1.3 Steroidogenesis in Leydig cell 8 2.1.4 Spermatogenesis 11 2.2 Male obesity-associated hypogonadism 14 2.2.1 The relation between obesity and male subfertility 14 2.2.2 Mechanisms of obesity-induced male hypogonadism 15 2.2.3 The relationship between hyperlipidemia and hypotestosteronemia 17 2.3 Autophagy and steroidogenesis 18 2.3.1 The mechanism of autophagy 19 2.3.2 The relationship between autophagy and steroidogenesis 22 2.3.3 Fatty acids impair the cellular autophagic functions 23 2.4 The aim of this study 24 3. Materials and Methods 26 3.1 Cell culture 26 3.2 Enzyme-linked immunosorbent assay (ELISA) 27 3.3 Nile Red staining 28 3.4 Western blot 29 3.5 RNA extraction and cDNA synthesis 30 3.6 Quantitative real-time PCR 31 3.7 Statistical analysis 32 4. Results 35 4.1 48-hour fatty-acid treatment impairs the steroidogenic ability in MA-10 mouse Leydig cells. 35 4.2 48-hour fatty-acid treatment impairs the steroidogenic function through damaging CYP11A1 in MA-10 cells. 37 4.3 Autophagy is required for normal steroidogenic function in MA-10 cells. 40 4.4 48-hour fatty-acid treatment impairs the steroidogenic function through damaging the autophagic function at basal level in MA-10 cells. 40 5. Discussion 45 5.1 48-hour fatty-acid treatment impairs the steroidogenic ability in MA-10 mouse Leydig cells. 45 5.2 48-hour fatty-acid treatment impairs the steroidogenic function through damaging CYP11A1 in MA-10 cells. 46 5.3 48-hour fatty-acid treatment impairs the steroidogenic function through damaging the autophagic function at basal level in MA-10 cells. 49 6. Conclusion 52 7. Figures 53 8. References 75 | |
dc.language.iso | en | |
dc.title | 探討脂肪酸降低小鼠萊迪氏細胞之類固醇生成作用 | zh_TW |
dc.title | The Investigation of Fatty Acid-Induced Hyposteroidogenesis in Mouse Leydig Cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鍾德憲,陳億乘,徐慶琳 | |
dc.subject.keyword | 肥胖,游離脂肪酸,類固醇生成低下,類固醇生成作用,細胞自噬, | zh_TW |
dc.subject.keyword | Obesity,Free fatty acids,Hyposteroidogenesis,Steroidogenesis,Autophagy, | en |
dc.relation.page | 87 | |
dc.identifier.doi | 10.6342/NTU201802278 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-01 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
dc.date.embargo-lift | 2023-08-06 | - |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-R05626004-1.pdf 目前未授權公開取用 | 3.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。