請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79152
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林郁真 | |
dc.contributor.author | YU-JUNG TSENG | en |
dc.contributor.author | 曾昱蓉 | zh_TW |
dc.date.accessioned | 2021-07-11T15:48:19Z | - |
dc.date.available | 2023-08-07 | |
dc.date.copyright | 2018-08-07 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-01 | |
dc.identifier.citation | Baena-Nogueras, R.M., González-Mazo, E., Lara-Martín, P.A., 2017. Degradation kinetics of pharmaceuticals and personal care products in surface waters: photolysis vs biodegradation. Science of The Total Environment 590-591, 643-654.
Baker, D.R., Kasprzyk-Hordern, B., 2013. Spatial and temporal occurrence of pharmaceuticals and illicit drugs in the aqueous environment and during wastewater treatment: New developments. Science of The Total Environment 454-455, 442-456. Bertelkamp, C., Reungoat, J., Cornelissen, E.R., Singhal, N., Reynisson, J., Cabo, A.J., van der Hoek, J.P., Verliefde, A.R.D., 2014. Sorption and biodegradation of organic micropollutants during river bank filtration: A laboratory column study. Water Research 52, 231-241. Blair, B., Nikolaus, A., Hedman, C., Klaper, R., Grundl, T., 2015. Evaluating the degradation, sorption, and negative mass balances of pharmaceuticals and personal care products during wastewater treatment. Chemosphere 134, 395-401. Blowes, D.W., Robertson, W.D., Ptacek, C.J., Merkley, C., 1994. Removal of agricultural nitrate from tile-drainage effluent water using in-line bioreactors. Journal of Contaminant Hydrology 15, 207-221. Boreen, A.L., Arnold, W.A., McNeill, K., 2004. Photochemical Fate of Sulfa Drugs in the Aquatic Environment: Sulfa Drugs Containing Five-Membered Heterocyclic Groups. Environmental Science & Technology 38, 3933-3940. Boudesocque, S., Guillon, E., Aplincourt, M., Martel, F., Noël, S., 2008. Use of a Low-Cost Biosorbent to Remove Pesticides from Wastewater All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Journal of Environmental Quality 37, 631-638. Boyd, G.R., Zhang, S., Grimm, D.A., 2005. Naproxen removal from water by chlorination and biofilm processes. Water Research 39, 668-676. Bradley Paul, M., Barber Larry, B., Kolpin Dana, W., McMahon Peter, B., Chapelle Francis, H., 2009. Biotransformation of caffeine, cotinine, and nicotine in stream sediments: Implications for use as wastewater indicators. Environmental Toxicology and Chemistry 26, 1116-1121. Brás, I.P., Santos, L., Alves, A., 1999. Organochlorine Pesticides Removal by Pinus Bark Sorption. Environmental Science & Technology 33, 631-634. Calderón-Preciado, D., Jiménez-Cartagena, C., Matamoros, V., Bayona, J.M., 2011. Screening of 47 organic microcontaminants in agricultural irrigation waters and their soil loading. Water Research 45, 221-231. Cantwell, M.G., Katz, D.R., Sullivan, J.C., Shapley, D., Lipscomb, J., Epstein, J., Juhl, A.R., Knudson, C., O'Mullan, G.D., 2018. Spatial patterns of pharmaceuticals and wastewater tracers in the Hudson River Estuary. Water Research 137, 335-343. Chen, W., Xu, J., Lu, S., Jiao, W., Wu, L., Chang, A.C., 2013. Fates and transport of PPCPs in soil receiving reclaimed water irrigation. Chemosphere 93, 2621-2630. Chung, K.H.-Y., Lin, Y.-C., Lin, A.Y.-C., 2018. The persistence and photostabilizing characteristics of benzotriazole and 5-methyl-1H-benzotriazole reduce the photochemical behavior of common photosensitizers and organic compounds in aqueous environments. Environmental Science and Pollution Research 25, 5911-5920. Gómez, M.J., Martínez Bueno, M.J., Lacorte, S., Fernández-Alba, A.R., Agüera, A., 2007. Pilot survey monitoring pharmaceuticals and related compounds in a sewage treatment plant located on the Mediterranean coast. Chemosphere 66, 993-1002. Gauthier, H., Yargeau, V., Cooper, D.G., 2010. Biodegradation of pharmaceuticals by Rhodococcus rhodochrous and Aspergillus niger by co-metabolism. Science of The Total Environment 408, 1701-1706. Gottschall, N., Edwards, M., Craiovan, E., Frey, S.K., Sunohara, M., Ball, B., Zoski, E., Topp, E., Khan, I., Clark, I.D., Lapen, D.R., 2016. Amending woodchip bioreactors with water treatment plant residuals to treat nitrogen, phosphorus, and veterinary antibiotic compounds in tile drainage. Ecological Engineering 95, 852-864. Greenan, C.M., Moorman, T.B., Kaspar, T.C., Parkin, T.B., Jaynes, D.B., 2006. Comparing Carbon Substrates for Denitrification of Subsurface Drainage Water. Journal of Environmental Quality 35, 824-829. Gurr, C.J., Reinhard, M., 2006. Harnessing Natural Attenuation of Pharmaceuticals and Hormones in Rivers. Environmental Science & Technology 40, 2872-2876. Halaburka, B.J., LeFevre, G.H., Luthy, R.G., 2017. Evaluation of Mechanistic Models for Nitrate Removal in Woodchip Bioreactors. Environmental Science & Technology 51, 5156-5164. Hart, D., Davis, L., Erickson, L., M Callender, T., 2004. Sorption and partitioning parameters of benzotriazole compounds. Heberer, T., 2002. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicology Letters 131, 5-17. Ilhan, Z.E., Ong, S.K., Moorman, T.B., 2012. Herbicide and Antibiotic Removal by Woodchip Denitrification Filters: Sorption Processes. Water, Air, & Soil Pollution 223, 2651-2662. Jones, O., Voulvoulis, N., N Lester, J., 2007. The Occurrence and Removal of Selected Pharmaceutical Compounds in a Sewage Treatment Works Utilizing Activated Sludge Treatment. Kümmerer, K., Al‐Ahmad, A., 1997. Biodegradability of the Anti‐tumour Agents 5‐Fluorouracil, Cytarabine, and Gemcitabine: Impact of the Chemical Structure and Synergistic Toxicity with Hospital Effluent. Acta hydrochimica et hydrobiologica 25, 166-172. Kahle, M., Stamm, C., 2007a. Sorption of the Veterinary Antimicrobial Sulfathiazole to Organic Materials of Different Origin. Environmental Science & Technology 41, 132-138. Kahle, M., Stamm, C., 2007b. Time and pH-dependent sorption of the veterinary antimicrobial sulfathiazole to clay minerals and ferrihydrite. Chemosphere 68, 1224-1231. Katritzky, A.R., Kasemets, K., Slavov, S., Radzvilovits, M., Tämm, K., Karelson, M., 2010. Estimating the toxicities of organic chemicals in activated sludge process. Water Research 44, 2451-2460. Kim, S.D., Cho, J., Kim, I.S., Vanderford, B.J., Snyder, S.A., 2007. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Research 41, 1013-1021. López-Serna, R., Jurado, A., Vázquez-Suñé, E., Carrera, J., Petrović, M., Barceló, D., 2013. Occurrence of 95 pharmaceuticals and transformation products in urban groundwaters underlying the metropolis of Barcelona, Spain. Environmental Pollution 174, 305-315. Li, S.-W., Lin, A.Y.-C., 2015. Increased acute toxicity to fish caused by pharmaceuticals in hospital effluents in a pharmaceutical mixture and after solar irradiation. Chemosphere 139, 190-196. Lin, A.Y.-C., Lin, C.-A., Tung, H.-H., Chary, N.S., 2010. Potential for biodegradation and sorption of acetaminophen, caffeine, propranolol and acebutolol in lab-scale aqueous environments. Journal of Hazardous Materials 183, 242-250. Lin, A.Y.-C., Tsai, Y.-T., 2009. Occurrence of pharmaceuticals in Taiwan's surface waters: Impact of waste streams from hospitals and pharmaceutical production facilities. Science of The Total Environment 407, 3793-3802. Lin, A.Y.-C., Yu, T.-H., Lin, C.-F., 2008. Pharmaceutical contamination in residential, industrial, and agricultural waste streams: Risk to aqueous environments in Taiwan. Chemosphere 74, 131-141. Liu, Y.-S., Ying, G.-G., Shareef, A., Kookana, R.S., 2011. Simultaneous determination of benzotriazoles and ultraviolet filters in ground water, effluent and biosolid samples using gas chromatography–tandem mass spectrometry. Journal of Chromatography A 1218, 5328-5335. Loonen, H., Lindgren, F., Hansen, B., Karcher, W., Niemelä, J., Hiromatsu, K., Takatsuki, M., Peijnenburg, W., Rorije, E., Struijś, J., 1999. Prediction of biodegradability from chemical structure: Modeling of ready biodegradation test data. Environmental Toxicology and Chemistry 18, 1763-1768. Lyman, W.J., Reehl, W.F., Rosenblatt, D.H., 1990. Handbook of chemical property estimation methods: Environmental behavior of organic compounds. Washington, DC (United States); American Chemical Society; None. M., C., 1995. Encyclopedia of chemical technology (4th edition). Edited by J. I. Kroschwitz, Wiley, New York, 1993, xxviii + 1092 pp., price £185.00. ISBN 0 471 52674 6. Journal of Chemical Technology & Biotechnology 62, 104-104. MacKay, A.A., Gschwend, P.M., 2000. Sorption of Monoaromatic Hydrocarbons to Wood. Environmental Science & Technology 34, 839-845. Mackay, D., Boethling, R.S., 2000. Handbook of Property Estimation Methods for Chemicals: Environmental Health Sciences. CRC Press. Madikizela, L.M., Tavengwa, N.T., Chimuka, L., 2017. Status of pharmaceuticals in African water bodies: Occurrence, removal and analytical methods. Journal of Environmental Management 193, 211-220. Maeng, S.K., Sharma, S.K., Abel, C.D.T., Magic-Knezev, A., Amy, G.L., 2011. Role of biodegradation in the removal of pharmaceutically active compounds with different bulk organic matter characteristics through managed aquifer recharge: Batch and column studies. Water Research 45, 4722-4736. Martin, Y.C., 1996. Exploring QSAR: Hydrophobic, Electronic, and Steric Constants C. Hansch, A. Leo, and D. Hoekman. American Chemical Society, Washington, DC. 1995. Xix + 348 pp. 22 × 28.5 cm. Exploring QSAR: Fundamentals and Applications in Chemistry and Biology. C. Hansch and A. Leo. American Chemical Society, Washington, DC. 1995. Xvii + 557 pp. 18.5 × 26 cm. ISBN 0-8412-2993-7 (set). $99.95 (set). Journal of Medicinal Chemistry 39, 1189-1190. Martínez-Hernández, V., Meffe, R., Herrera López, S., de Bustamante, I., 2016. The role of sorption and biodegradation in the removal of acetaminophen, carbamazepine, caffeine, naproxen and sulfamethoxazole during soil contact: A kinetics study. Science of The Total Environment 559, 232-241. Mazioti, A.A., Stasinakis, A.S., Psoma, A.K., Thomaidis, N.S., Andersen, H.R., 2017. Hybrid Moving Bed Biofilm Reactor for the biodegradation of benzotriazoles and hydroxy-benzothiazole in wastewater. Journal of Hazardous Materials 323, 299-310. Mohanty, S.K., Cantrell, K.B., Nelson, K.L., Boehm, A.B., 2014. Efficacy of biochar to remove Escherichia coli from stormwater under steady and intermittent flow. Water Research 61, 288-296. Nakada, N., Tanishima, T., Shinohara, H., Kiri, K., Takada, H., 2006. Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment. Water Research 40, 3297-3303. Onesios, K.M., Yu, J.T., Bouwer, E.J., 2009. Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: a review. Biodegradation 20, 441-466. Pereira, A.M.P.T., Silva, L.J.G., Laranjeiro, C.S.M., Meisel, L.M., Lino, C.M., Pena, A., 2017. Human pharmaceuticals in Portuguese rivers: The impact of water scarcity in the environmental risk. Science of The Total Environment 609, 1182-1191. Petrie, B., Barden, R., Kasprzyk-Hordern, B., 2015. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Research 72, 3-27. Radjenovic, J., Petrovic, M., Barceló, D., 2007. Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor. Analytical and Bioanalytical Chemistry 387, 1365-1377. Reis, P.J.M., Reis, A.C., Ricken, B., Kolvenbach, B.A., Manaia, C.M., Corvini, P.F.X., Nunes, O.C., 2014. Biodegradation of sulfamethoxazole and other sulfonamides by Achromobacter denitrificans PR1. Journal of Hazardous Materials 280, 741-749. Rizzo, L., Fiorentino, A., Grassi, M., Attanasio, D., Guida, M., 2015. Advanced treatment of urban wastewater by sand filtration and graphene adsorption for wastewater reuse: Effect on a mixture of pharmaceuticals and toxicity. Journal of Environmental Chemical Engineering 3, 122-128. Roberts, P.H., Thomas, K.V., 2006. The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment. Science of The Total Environment 356, 143-153. Robertson, W.D., Blowes, D.W., Ptacek, C.J., Cherry, J.A., 2000. Long-Term Performance of In Situ Reactive Barriers for Nitrate Remediation. Ground Water 38, 689-695. Robertson, W.D., Vogan, J.L., Lombardo, P.S., 2008. Nitrate Removal Rates in a 15‐Year‐Old Permeable Reactive Barrier Treating Septic System Nitrate. Groundwater Monitoring & Remediation 28, 65-72. Rodriguez-Cruz, S., Andrades, M., Sanchez-Camazano, M., Sánchez-Martín, M., 2007. Relationship between The Adsorption Capacity of Pesticides by Wood Residues and The Properties of Woods and Pesticides. Schipper, L.A., Barkle, G.F., Vojvodic-Vukovic, M., 2005. Maximum Rates of Nitrate Removal in a Denitrification Wall. Journal of Environmental Quality 34, 1270-1276. Schipper, L.A., Robertson, W.D., Gold, A.J., Jaynes, D.B., Cameron, S.C., 2010. Denitrifying bioreactors—An approach for reducing nitrate loads to receiving waters. Ecological Engineering 36, 1532-1543. Schmitt, H., van Beelen, P., Tolls, J., van Leeuwen, C.L., 2004. Pollution-Induced Community Tolerance of Soil Microbial Communities Caused by the Antibiotic Sulfachloropyridazine. Environmental Science & Technology 38, 1148-1153. Sharrer, K.L., Christianson, L.E., Lepine, C., Summerfelt, S.T., 2016. Modeling and mitigation of denitrification ‘woodchip’ bioreactor phosphorus releases during treatment of aquaculture wastewater. Ecological Engineering 93, 135-143. Shukla, A., Zhang, Y.-H., Dubey, P., Margrave, J.L., Shukla, S.S., 2002. The role of sawdust in the removal of unwanted materials from water. Journal of Hazardous Materials 95, 137-152. Sims, G.K., Cupples, A.M., 1999. Factors controlling degradation of pesticides in soil. Pesticide Science 55, 598-601. Snyder, S.A., Leising, J., Westerhoff, P., Yoon, Y., Mash, H., Vanderford, B., 2004. Biological and Physical Attenuation of Endocrine Disruptors and Pharmaceuticals: Implications for Water Reuse. Groundwater Monitoring & Remediation 24, 108-118. Spongberg, A.L., Witter, J.D., Acuña, J., Vargas, J., Murillo, M., Umaña, G., Gómez, E., Perez, G., 2011. Reconnaissance of selected PPCP compounds in Costa Rican surface waters. Water Research 45, 6709-6717. Suarez, S., Lema, J.M., Omil, F., 2010. Removal of Pharmaceutical and Personal Care Products (PPCPs) under nitrifying and denitrifying conditions. Water Research 44, 3214-3224. Subedi, B., Balakrishna, K., Joshua, D.I., Kannan, K., 2017. Mass loading and removal of pharmaceuticals and personal care products including psychoactives, antihypertensives, and antibiotics in two sewage treatment plants in southern India. Chemosphere 167, 429-437. Swann, R.L., Laskowski, D.A., McCall, P.J., Vander Kuy, K., Dishburger, H.J., 1983. A rapid method for the estimation of the environmental parameters octanol/water partition coefficient, soil sorption constant, water to air ratio, and water solubility. Springer New York, New York, NY, pp. 17-28. Ternes, T.A., Meisenheimer, M., McDowell, D., Sacher, F., Brauch, H.-J., Haist-Gulde, B., Preuss, G., Wilme, U., Zulei-Seibert, N., 2002. Removal of Pharmaceuticals during Drinking Water Treatment. Environmental Science & Technology 36, 3855-3863. Teuber, M., 2001. Veterinary use and antibiotic resistance. Current Opinion in Microbiology 4, 493-499. Thiele-Bruhn, S., Seibicke, T., Schulten, H.-R., Leinweber, P., 2004. Sorption of Sulfonamide Pharmaceutical Antibiotics on Whole Soils and Particle-Size Fractions. Journal of Environmental Quality 33, 1331-1342. Tixier, C., Singer, H.P., Oellers, S., Müller, S.R., 2003. Occurrence and Fate of Carbamazepine, Clofibric Acid, Diclofenac, Ibuprofen, Ketoprofen, and Naproxen in Surface Waters. Environmental Science & Technology 37, 1061-1068. Vetter, W., Lorenz, J., 2013. Determination of benzotriazoles in dishwasher tabs from Germany and estimation of the discharge into German waters. Environmental Science and Pollution Research 20, 4435-4440. Vignola, M., Werner, D., Wade, M.J., Meynet, P., Davenport, R.J., 2018. Medium shapes the microbial community of water filters with implications for effluent quality. Water Research 129, 499-508. von Ahnen, M., Pedersen, P.B., Dalsgaard, J., 2016. Start-up performance of a woodchip bioreactor operated end-of-pipe at a commercial fish farm—A case study. Aquacultural Engineering 74, 96-104. Wang, J., Wang, S., 2016. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review. Journal of Environmental Management 182, 620-640. Westerhoff, P., Yoon, Y., Snyder, S., Wert, E., 2005. Fate of Endocrine-Disruptor, Pharmaceutical, and Personal Care Product Chemicals during Simulated Drinking Water Treatment Processes. Environmental Science & Technology 39, 6649-6663. Wolf, L., Zwiener, C., Zemann, M., 2012. Tracking artificial sweeteners and pharmaceuticals introduced into urban groundwater by leaking sewer networks. Science of The Total Environment 430, 8-19. Xu, Y., Luo, F., Pal, A., Gin, K.Y.-H., Reinhard, M., 2011. Occurrence of emerging organic contaminants in a tropical urban catchment in Singapore. Chemosphere 83, 963-969. Yamamoto, H., Nakamura, Y., Moriguchi, S., Nakamura, Y., Honda, Y., Tamura, I., Hirata, Y., Hayashi, A., Sekizawa, J., 2009. Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: Laboratory photolysis, biodegradation, and sorption experiments. Water Research 43, 351-362. Yu, B., Zhang, Y., Shukla, A., Shukla, S.S., Dorris, K.L., 2001. The removal of heavy metals from aqueous solutions by sawdust adsorption — removal of lead and comparison of its adsorption with copper. Journal of Hazardous Materials 84, 83-94. Yu, C.-P., Chu, K.-H., 2009. Occurrence of pharmaceuticals and personal care products along the West Prong Little Pigeon River in east Tennessee, USA. Chemosphere 75, 1281-1286. Yu, Y., Liu, Y., Wu, L., 2013. Sorption and degradation of pharmaceuticals and personal care products (PPCPs) in soils. Environmental Science and Pollution Research 20, 4261-4267. Zhang, S., Courtois, S., Gitungo, S., Raczko, R.F., Dyksen, J.E., Li, M., Axe, L., 2018. Microbial community analysis in biologically active filters exhibiting efficient removal of emerging contaminants and impact of operational conditions. Science of The Total Environment 640-641, 1455-1464. Zhang, S., Gitungo, S.W., Axe, L., Raczko, R.F., Dyksen, J.E., 2017. Biologically active filters – An advanced water treatment process for contaminants of emerging concern. Water Research 114, 31-41. Zwiener, C., Glauner, T., Frimmel, F.H., 2000. Biodegradation of Pharmaceutical Residues Investigated by SPE‐GC/ITD‐MS and On‐Line Derivatization. Journal of High Resolution Chromatography 23, 474-478. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79152 | - |
dc.description.abstract | 營養鹽(氮、磷)過量是21世紀環境的一個重要課題,而木屑反應系統,是用來處理硝酸鹽氮的一個自然且便宜的系統,也已開始被實際操作在去除農業污水上。除了過量的營養鹽之外,環境中同時也存在著許多微量有機污染物。因此,為了瞭解這些潛在危害物質在木屑反應系統內的宿命,本研究主要目的為研究八種在自然水體易被檢測到或檢測濃度較高的新興污染物通過木片生物反應系統的宿命並調查八種藥物在木屑反應系統中的去除機制,以及不同條件下,對於藥物去除效果之影響。木屑系統中八種化合物的去除率與化合物密切相關:acetaminophen (ACE, 幾乎完全去除)、caffeine (CAFF, 60-80%)、sulfathiazole (SFZ, 60-80%)、5-methyl-1-H-benzotriazole (TT, 55-80%)、benzotriazole (BT, 35-80%)、carbamazepine (CBZ, 40-60%)、lincomycin (LIN, < 30%)以及ibuprofen (IBU, <10%)。
研究結果顯示,木屑反應系統中,藥物去除機制主要以生物降解及吸附為主。生物降解是ACE去除的主要途徑,而吸附是SFZ,TT,BT和CBZ(分別為Kd = 145.2、35.5、35.6和36.6)在木片生物反應系統中去除的主要機制。以陰離子形式的化合物(如IBU)最不易被吸附,而以中性分子形式存在的化合物(CAFF、ACE、CBZ、TT、BT和LIN)吸附能力隨其KOC值增加而增加。然而,當八種目標化合物同時存在於水相時,會產生競爭吸附,並且所有目標化合物Kd值降低。由於CAFF在木片反應系統中同時具有吸附作用(Kd = 120.9)和顯著的生物降解作用,因此它具有第二高的去除效率。 此外,為了瞭解木屑系統的穩定性及再現性,我們在不同條件下進行管柱實驗;分別改變了初始濃度、操作時間、流速及季節、地區、木屑種類。以上操作條件皆不會影響木屑系統對於目標化合物的去除,然而硝酸鹽去除效果則會受到流速提升而明顯降低。由於木屑系統主要以脫硝為主要目的,因此在設計參數時要以脫硝效果為優先考量。 總體結果表明,木屑反應系統是一個很好的屏障,可降低地表及地下水受新興污染物污染的風險,並且擁有良好的穩定性以及再現性。 | zh_TW |
dc.description.abstract | The woodchip bioreactor is a natural and inexpensive solution to nutrient pollution, which has become a growing concern in recent years. However, in addition to nutrients, emerging contaminants have also been detected. This study investigates the fate of eight commonly detected emerging contaminants though the woodchip bioreactor. The removal efficiency of the eight compounds in the woodchip system is heavily compound dependent: acetaminophen (ACE, completely removed), caffeine (CAFF, 60-80%), sulfathiazole (SFZ, 60-80%), 5-methyl-1-H-benzotriazole (TT, 55-80%), benzotriazole (BT, 35-80%), carbamazepine (CBZ, 40-60%), lincomycin (LIN, < 30%), and ibuprofen (IBU, <10%).
Biodegradation is the dominant degradation mechanism for ACE removal, while sorption is the main mechanism for removing SFZ, TT, BT and CBZ (Kd = 145.2, 35.5, 35.6, and 36.6, respectively) through the woodchip bioreactor. Compounds in anionic forms (such as IBU) are least likely to be adsorbed, while the sorbability of compounds in their nonpolar, neutral forms (CAFF, ACE, CBZ, TT, BT, and LIN) increases with their KOC values. However, when all eight target compounds are present in artificial stormwater, competitive adsorption is observed, and all target compound Kd values decrease. Because CAFF undergoes both sorption (Kd = 120.9) and biodegradation in the woodchip bioreactor, it has the second highest removal efficiency. The woodchip bioreactor is very stable because the removal of the target compounds is unaffected by compound initial concentrations (100 and 1000 μg/L), flow rates (1 and 5 mL/min), or operation times (15 to 40 days or more). Furthermore, changes in season (June to February), region (California and Taipei), and woodchip source (American and Taiwanese) have no effect on removal efficiencies, demonstrating the system’s performance reproducibility. The overall results suggest that the woodchip bioreactor is an effective method to reduce the risks of emerging contaminants. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:48:19Z (GMT). No. of bitstreams: 1 ntu-107-R05541101-1.pdf: 2074549 bytes, checksum: d5e88c65375f8967cdc3045f61520474 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract v Contents vii List of Figures ix List of Tables xi Chapter 1: Introduction 1 1.1 Occurrence of contaminants of emerging concern 1 1.2 The woodchip bioreactor 3 Chapter 2: Materials and Methods 5 2.1 Chemicals 5 2.2 Column design 5 2.3 Column experiment 9 2.4 Biodegradation experiments 9 2.5 Sorption experiment 10 2.6 Sorption isotherm 12 2.7 Chemical analysis 13 Chapter 3: Results and Discussion 16 3.1 Transport though woodchip bioreactor 16 3.2 Biodegradation studies 20 3.3 Sorption studies 24 3.4 Engineering considerations 34 Chapter 4: Conclusions 39 Reference 41 | |
dc.language.iso | en | |
dc.title | 利用木屑去除藥物以及防腐物質 | zh_TW |
dc.title | Harnessing woodchips to remove pharmaceuticals and anticorrosive substances | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 童心欣,林逸彬,康佩群 | |
dc.subject.keyword | 木屑,藥物與個人保健用品,新興污染物,防腐物質,吸附,生物降解, | zh_TW |
dc.subject.keyword | woodchip,pharmaceuticals and personal care products,emerging contaminants,anticorrosive substances,sorption,biodegradation, | en |
dc.relation.page | 48 | |
dc.identifier.doi | 10.6342/NTU201802349 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-01 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
dc.date.embargo-lift | 2023-08-07 | - |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-R05541101-1.pdf 目前未授權公開取用 | 2.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。