請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79145完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 梁文傑(Man-kit Leung) | |
| dc.contributor.author | Yu-Chieh Cheng | en |
| dc.contributor.author | 鄭雨潔 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:47:42Z | - |
| dc.date.available | 2023-08-21 | |
| dc.date.copyright | 2018-08-21 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-02 | |
| dc.identifier.citation | 1. 陳金鑫; 黃孝文., OLED有機電致發光材料與器件. 2007.
2. A. Bernanose., Pharmacie,Electroluminescence of organic compounds. British Journal of Applied Physics 1950, 6, S54−S56. 3. Pope, M.; Kallmann, H. P.; Magnante, P., Electroluminescence in Organic Crystals. The Journal of Chemical Physics 1963, 38 (8), 2042−2043. 4. Tang, C. W.; VanSlyke, S. A.; Chen, C. H., Electroluminescence of doped organic thin films. Journal of Applied Physics 1989, 65 (9), 3610−3616. 5. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B., Light-emitting diodes based on conjugated polymers. Nature 1990, 347, 539−541. 6. Chihaya, A.; Shizuo, T.; Tetsuo, T.; Shogo, S., Organic Electroluminescent Device with a Three-Layer Structure. Japanese Journal of Applied Physics 1988, 27 (4A), L713−L715. 7. Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R., Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 1998, 395 (6698), 151−154. 8. O’Brien, D. F.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R., Improved energy transfer in electrophosphorescent devices. Applied Physics Letters 1999, 74 (3), 442−444. 9. Holmes, R. J.; Forrest, S. R.; Tung, Y. J.; Kwong, R. C.; Brown, J. J.; Garon, S.; Thompson, M. E., Blue organic electrophosphorescence using exothermic host–guest energy transfer. Applied Physics Letters 2003, 82 (15), 2422−2424. 10. Jeon, W. S.; Park, T. J.; Kim, S. Y.; Pode, R.; Jang, J.; Kwon, J. H., Ideal host and guest system in phosphorescent OLEDs. Organic Electronics 2009, 10 (2), 240−246. 11. Suzuki, H.; Hoshino, S., Effects of doping dyes on the electroluminescent characteristics of multilayer organic light‐emitting diodes. Journal of Applied Physics 1996, 79 (11), 8816−8822. 12. Dexter, D. L.: A Theory of Sensitized Luminescence in Solids. Journal of Chemical Physics 1953, 21 (5), 836−850. 13. Förster, T.: 10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation. Discussions of the Faraday Society 1959, 27, 7−17. 14. Baldo, M. A.; Adachi, C.; Forrest, S. R., Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation. Physical Review B 2000, 62 (16), 10967−10977. 15. Rachford, T.; N. Castellano, F., Photon upconversion based on sensitized triplet–triplet annihilation. Coordination Chemistry Reviews 2010, 254, 2560−2573. 16. Reineke, S.; Walzer, K.; Leo, K., Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters. Physical Review B 2007, 75 (12), 125328. 17. Ishida, T.; Kobayashi, H.; Nakato, Y., Structures and properties of electron‐beam‐evaporated indium tin oxide films as studied by x‐ray photoelectron spectroscopy and work‐function measurements. Journal of Applied Physics 1993, 73 (9), 4344−4350. 18. Løvvik, O. M.; Diplas, S.; Romanyuk, A.; Ulyashin, A., Initial stages of ITO/Si interface formation: In situ x-ray photoelectron spectroscopy measurements upon magnetron sputtering and atomistic modelling using density functional theory. Journal of Applied Physics 2014, 115 (8), 083705. 19. Shirota, Y.; Kuwabara, Y.; Inada, H.; Wakimoto, T.; Nakada, H.; Yonemoto, Y.; Kawami, S.; Imai, K., Multilayered organic electroluminescent device using a novel starburst molecule, 4,4’,4‘‐tris(3‐methylphenylphenylamino)triphenylamine, as a hole transport material. Applied Physics Letters 1994, 65 (7), 807−809. 20. Sun, K.; Zhang, S.; Li, P.; Xia, Y.; Zhang, X.; Du, D.; Isikgor, F. H.; Ouyang, J., Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices. Journal of Materials Science: Materials in Electronics 2015, 26 (7), 4438−4462. 21. O'Brien, D. F.; Burrows, P. E.; Forrest, S. R.; Koene, B. E.; Loy, D. E.; Thompson, M. E., Hole Transporting Materials with High Glass Transition Temperatures for Use in Organic Light‐Emitting Devices. Advanced Materials 1998, 10 (14), 1108−1112. 22. Kraft, A.; Grimsdale, A. C.; Holmes, A. B., Electroluminescent Conjugated Polymers—Seeing Polymers in a New Light. Angewandte Chemie International Edition 1998, 37 (4), 402−428. 23. Van Slyke, S. A.; Tang, C. W., US Patent 5 1991, 061, 569. 24. Shirota, Y., Organic materials for electronic and optoelectronic devices. Journal of Materials Chemistry 2000, 10 (1), 1−25. 25. Wakimoto, T.; Fukuda, Y.; Nagayama, K.; Yokoi, A.; Nakada, H.; Tsuchida, M., Organic EL Cells Using Alkaline Metal Compounds as Electron Injection Materials. IEEE Transactions on Electron Devices 1997, 44(8), 1245−1248. 26. Adachi, C.; Tsutsui, T.; Saito, S., Organic electroluminescent device having a hole conductor as an emitting layer. Applied Physics Letters 1989, 55 (15), 1489−1491. 27. Shi, J.; Tang, C. W.; Chen, C. H., US Patent 5 1997, 646, 948. 28. Junji, K.; Chikau, O.; Kenichi, H.; Katsuro, O.; Katsutoshi, N., 1,2,4-Triazole Derivative as an Electron Transport Layer in Organic Electroluminescent Devices. Japanese Journal of Applied Physics 1993, 32(7A), L917−L920. 29. Adachi, C.; Kwong, R. C.; Djurovich, P.; Adamovich, V.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R., Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials. Applied Physics Letters 2001, 79 (13), 2082−2084. 30. Lee, J.-H.; Huang, C.-L.; Hsiao, C.-H.; Leung, M.-K.; Yang, C.-C.; Chao, C.-C., Blue phosphorescent organic light-emitting device with double emitting layer. Applied Physics Letters 2009, 94 (22), 223301. 31. Lee, J.-H.; Tsai, H.-H.; Leung, M.-K.; Yang, C.-C.; Chao, C.-C., Phosphorescent organic light-emitting device with an ambipolar oxadiazole host. Applied Physics Letters 2007, 90 (24), 243501. 32. Leung, M.-k.; Yang, C.-C.; Lee, J.-H.; Tsai, H.-H.; Lin, C.-F.; Huang, C.-Y.; Su, Y. O.; Chiu, C.-F., The Unusual Electrochemical and Photophysical Behavior of 2,2‘-Bis(1,3,4-oxadiazol-2-yl)biphenyls, Effective Electron Transport Hosts for Phosphorescent Organic Light Emitting Diodes. Organic Letters 2007, 9 (2), 235−238. 33. Li, Y.; Liu, J.-Y.; Zhao, Y.-D.; Cao, Y.-C., Recent advancements of high efficient donor–acceptor type blue small molecule applied for OLEDs. Materials Today 2017, 20 (5), 258−266. 34. Huang, J. J.; Leung, M. K.; Chiu, T. L.; Chuang, Y. T.; Chou, P. T.; Hung, Y. H., Novel benzimidazole derivatives as electron-transporting type host to achieve highly efficient sky-blue phosphorescent organic light-emitting diode (PHOLED) device. Organic Letters 2014, 16 (20), 5398−401. 35. Kim, M.; Lee, J. Y., Engineering the Substitution Position of Diphenylphosphine Oxide at Carbazole for Thermal Stability and High External Quantum Efficiency Above 30% in Blue Phosphorescent Organic Light-Emitting Diodes. Advanced Functional Materials 2014, 24 (26), 4164−4169. 36. Liu, K.; Li, X.-L.; Liu, M.; Chen, D.; Cai, X.; Wu, Y.-C.; Lo, C.-C.; Lien, A.; Cao, Y.; Su, S.-J., 9,9-Diphenyl-thioxanthene derivatives as host materials for highly efficient blue phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C 2015, 3 (38), 9999−10006. 37. Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C., Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492 (7428), 234−238. 38. Li, S. W.; Yu, C. H.; Ko, C. L.; Chatterjee, T.; Hung, W. Y.; Wong, K. T., Cyanopyrimidine-Carbazole Hybrid Host Materials for High-Efficiency and Low-Efficiency Roll-Off TADF OLEDs. ACS Applied Materials & Interfaces 2018, 10 (15), 12930−12936. 39. Dou, Q.; Jiang, L.; Kai, D.; Owh, C.; Loh, X. J., Bioimaging and biodetection assisted with TTA-UC materials. Drug Discovery Today 2017, 22 (9), 1400−1411. 40. Wu, C.-L.; Chang, C.-H.; Chang, Y.-T.; Chen, C.-T.; Chen, C.-T.; Su, C.-J., High efficiency non-dopant blue organic light-emitting diodes based on anthracene-based fluorophores with molecular design of charge transport and red-shifted emission proof. Journal of Materials Chemistry C 2014, 2 (35), 7188−7200. 41. Yook, K. S.; Lee, J. Y., Bipolar Host Materials for Organic Light-Emitting Diodes. The Chemical Record 2016, 16 (1), 159−172. 42. Huang, H.; Yang, X.; Pan, B.; Wang, L.; Chen, J.; Ma, D.; Yang, C., Benzimidazole–carbazole-based bipolar hosts for high efficiency blue and white electrophosphorescence applications. Journal of Materials Chemistry 2012, 22 (26). 13223−132230. 43. Pan, B.; Wang, B.; Wang, Y.; Xu, P.; Wang, L.; Chen, J.; Ma, D., A simple carbazole-N-benzimidazole bipolar host material for highly efficient blue and single layer white phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C 2014, 2 (14), 2466−2469. 44. Wang, F.; Liu, D.; Li, J.; Ma, M., Modulation of n-Type Units in Bipolar Host Materials toward High-Performance Phosphorescent OLEDs. ACS Applied Materials & Interfaces 2017, 9 (43), 37888−37897. 45. 張書昀, 咔唑與苯并咪唑碳氮連接之雙極性衍生物之合成、性質探討以及在有機發光二極體之應用. 國立台灣大學碩士論文, 2016. 46. Yu, L.-F.; Ge, C.-W.; Wang, J.-T.; Xiang, X.; Li, W.-S., Modification of a donor-acceptor photovoltaic polymer by integration of optoelectronic moieties into its side chains. Polymer 2015, 59, 57−66. 47. Muangpaisal, R.; Hung, W.-I.; Lin, J. T.; Ting, S.-Y.; Chen, L.-Y., Binaphthalene bridged bipolar transporting materials for blue electroluminescence: toward high EL efficiency via molecular tuning. Tetrahedron 2014, 70 (18), 2992−2998. 48. Youn, S. W.; Lee, E. M., Metal-Free One-Pot Synthesis of N,N′-Diarylamidines and N-Arylbenzimidazoles from Arenediazonium Salts, Nitriles, and Free Anilines. Organic Letters 2016, 18 (21), 5728−5731. 49. Wharton, S. I.; Henry, J. B.; McNab, H.; Mount, A. R., The production and characterisation of novel conducting redox-active oligomeric thin films from electrooxidised indolo[3,2,1-jk]carbazole. Chemistry 2009, 15 (22), 5482−5490. 50. Würth, C.; Grabolle, M.; Pauli, J.; Spieles, M.; Resch-Genger, U., Relative and absolute determination of fluorescence quantum yields of transparent samples. Nature Protocols 2013, 8, 1535−1550. 51. He, J.; Liu, H.; Dai, Y.; Ou, X.; Wang, J.; Tao, S.; Zhang, X.; Wang, P.; Ma, D., Nonconjugated Carbazoles: A Series of Novel Host Materials for Highly Efficient Blue Electrophosphorescent OLEDs. The Journal of Physical Chemistry C 2009, 113 (16), 6761−6767. 52. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R., Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. Journal of the Chemical Society, Perkin Transactions 2 1987, 0, S1−S19. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79145 | - |
| dc.description.abstract | 近年來,有機發光二極體元件中雙極主體(bipolar host) 發光層系統的研究正蓬勃發展,而提升電子與電洞在發光層的結合率是首要課題。因此在材料分子的設計上,期盼主體分子結構能夠整合電子與電洞傳導基團,使材料同時具備電子及電洞傳導特性。本篇論文利用三咔唑(Tricarbazole,3cbz)基團修飾在苯并咪唑(Benzimidazole)之C1-苯環及N1-苯環合成兩系列化合物。其中,在此雙偶極(bipolar)系統中,三咔唑(Tricarbazole,3cbz)具有高三重態能階之外,也具備傳電洞特性,而苯并咪唑(Benzimidazole)基團,則具備良好的電子注入特性。在分子設計上,使用碳-氮鍵結,能有更佳的電子雲正交分布效果,維持高三重態能階。我們也針對化合物的熱性質、光物理性質及電化學性質進行討論,結果顯示兩系列化合物均具有高玻璃轉換溫度(Tg>175 °C)和出色的三重態能階(Et>2.83 eV)。此外,也透過X-Ray單晶繞射進行晶體結構排列研究與探討。以三咔唑苯并咪唑化合物作為主發光體材料,摻混FIrpic應用在藍色磷光有機發光二極體元件製作。在元件初步優化後,測量結果顯示,化合物4-3cbzBIZ其在電荷密度為20 mA/cm2時驅動電壓為7.14 V、最大亮度為15220 cd/m2、電流效率為57.26 cd/A以及外部量子產率高達27.73 %。 | zh_TW |
| dc.description.abstract | Charge recombination efficiency of holes and electrons in an emitting layer of OLED is a critical factor that strongly determines the performance of the device. Therefore, integration of appropriate hole- and electron-transporting units in one molecule to form an ambipolar host becomes an important topic to study. In the present thesis, two series of ambipolar compounds based on tricarbazole (3cbz) substituted benzimidazole have been synthesized, in which the tricarbazole is C1- or N1-linked to the benzimidazole unit at different location. Tricarbazole is a well-known good hole-transporting moiety while the benzimidazole unit plays an important role in electron transporting materials. In this ambipolar system, perhaps due to the steric hindrance reasons, the hole-transporting tricarbazole (3cbz) and electron-transporting benzimidazole are expected to be orthogonally linked to each other so that their triplet energy can stay high in most of the molecules. Furthermore, their thermal properties, photophysical properties, and electrochemical properties have been carefully evaluated. Our results show that all of these compounds display not only a high glass transition temperature (Tg>175 °C), but also a high triplet energy level (Et>2.83 eV). We have utilized these molecules as the host materials for FIrpic-doped blue PhOLED devices. The compound 4-3cbzBIZ exhibits excellent performances with the turn on voltage of 7.14 V, a maximum luminance of 15220 cd/m2, a maximum current efficiency of 57.26 cd/A, and a maximum external quantum efficiency of 27.73 % after optimizing. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:47:42Z (GMT). No. of bitstreams: 1 ntu-107-R05223153-1.pdf: 10477551 bytes, checksum: 4ecd162b30c5bf5dafa5f7cfe947e78d (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 目錄 I
摘要 III Abstract IV 化合物結構式與編號 V 圖目錄 VIII 表目錄 XI 流程目錄 XIII 第1章 緒論 1 1.1 前言 1 1.2 有機發光二極體發展歷史 2 1.3 有機發光二極體工作原理 3 1.3.1 發光機制 3 1.3.2 元件架構與工作機制 4 1.3.3 主客摻混磷光發光系統之能量轉移與淬熄 6 1.4 有機發光二極體各層材料 9 1.4.1 陽極材料 9 1.4.2 陰極材料 9 1.4.3 電洞注入材料 9 1.4.4 電洞傳導材料 10 1.4.5 電子注入材料 11 1.4.6 電子傳導材料 11 1.4.7 發光材料 12 1.5 近期有機發光二極體發展 13 1.5.1 藍色磷光主客發光材料系統 13 1.5.2 熱活化延遲螢光及三重態-三重態消滅光子上轉換發光系統 15 第2章 結果與討論 18 2.1 分子設計 18 2.2 合成方法 23 2.3 X-Ray 晶體結構分析 31 2.4 熱性質分析 40 2.5 光物理性質分析 44 2.6 電化學性質分析 50 2.7 能量轉移 55 2.8 有機電激發光元件表現 58 第3章 結論 74 第4章 實驗內容 75 4.1 實驗儀器與試劑 75 4.2 合成步驟 77 參考文獻 102 附錄一 化合物TGA圖譜 109 附錄二 化合物X-ray晶體參數表、鍵長與鍵角數據 110 附錄三 化合物氫核磁共振光譜與碳核磁共振光譜 191 | |
| dc.language.iso | zh-TW | |
| dc.subject | 磷光有機發光二極體 | zh_TW |
| dc.subject | 雙極系統 | zh_TW |
| dc.subject | 主發光材料 | zh_TW |
| dc.subject | 苯并咪唑 | zh_TW |
| dc.subject | 三?唑 | zh_TW |
| dc.subject | PhOLED | en |
| dc.subject | benzimidazole | en |
| dc.subject | host material | en |
| dc.subject | bipolar | en |
| dc.subject | tricarbazole | en |
| dc.title | 三咔唑與苯并咪唑雙極材料之合成、性質探討以及在磷光有機發光二極體之應用 | zh_TW |
| dc.title | Synthesis and Characterization of Tricarbazole-N-Benzimidazole Bipolar Materials and the Applications in PhOLEDs | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 邱天隆(Tien-Lung Chiu) | |
| dc.subject.keyword | 三?唑,苯并咪唑,主發光材料,雙極系統,磷光有機發光二極體, | zh_TW |
| dc.subject.keyword | tricarbazole,benzimidazole,host material,bipolar,PhOLED, | en |
| dc.relation.page | 220 | |
| dc.identifier.doi | 10.6342/NTU201802287 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-02 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-08-21 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-R05223153-1.pdf 未授權公開取用 | 10.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
