請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79137完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林水龍朱宗信 | zh_TW |
| dc.contributor.advisor | Shuei-Liong LinTzong-Shinn Chu | en |
| dc.contributor.author | 潘思宇 | zh_TW |
| dc.contributor.author | Szu-Yu Pan | en |
| dc.date.accessioned | 2021-07-11T15:46:58Z | - |
| dc.date.available | 2024-02-28 | - |
| dc.date.copyright | 2018-10-11 | - |
| dc.date.issued | 2018 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int Suppl 2013;3:1-150.
2. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 2002;39:S1-266. 3. Levey AS, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 2006;145:247-54. 4. Levey AS, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009;150:604-12. 5. Jha V, et al. Chronic kidney disease: global dimension and perspectives. The Lancet 2013;382:260-72. 6. United States Renal Data System. 2016 USRDS annual data report: An overview of the epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD. 2016. 7. Wen CP, et al. All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462 293 adults in Taiwan. Lancet 2008;371:2173-82. 8. Go AS, et al. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004;351:1296-305. 9. United States Renal Data System. 2015 USRDS annual data report: An overview of the epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD. 2015. 10. Annual Report on Kidney Disease in Taiwan. The National Health Research Institutes and the Taiwan Society of Nephrology. 2014 11. Kidney Disease: Improving Global Outcomes (KDIGO) Anemia Work Group: KDIGO Clinical Practice Guideline for Anemia in Chronic Kidney Disease. Kidney Int Suppl 2012;2:279–335. 12. Astor BC, et al. Association of kidney function with anemia: the Third National Health and Nutrition Examination Survey (1988-1994). Arch Intern Med 2002;162:1401-8. 13. Dzierzak E, et al. Erythropoiesis: development and differentiation. Cold Spring Harb Perspect Med 2013;3:a011601. 14. Koury MJ, et al. Anaemia in kidney disease: harnessing hypoxia responses for therapy. Nat Rev Nephrol 2015;11:394-410. 15. Chasis JA, et al. Erythroblastic islands: niches for erythropoiesis. Blood 2008;112:470-8. 16. Dame C, et al. Erythropoietin mRNA expression in human fetal and neonatal tissue. Blood 1998;92:3218-25. 17. Obara N, et al. Repression via the GATA box is essential for tissue-specific erythropoietin gene expression. Blood 2008;111:5223-32. 18. Asada N, et al. Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice. J Clin Invest 2011;121:3981-90. 19. Chang YT, et al. DNA methyltransferase inhibition restores erythropoietin production in fibrotic murine kidneys. J Clin Invest 2016;126:721-31. 20. Pan SY, et al. Microvascular pericytes in healthy and diseased kidneys. Int J Nephrol Renovasc Dis 2014;7:39-48. 21. Humphreys BD, et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 2010;176:85-97. 22. Lin SL, et al. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol 2008;173:1617-27. 23. Fabian SL, et al. Hedgehog-Gli pathway activation during kidney fibrosis. Am J Pathol 2012;180:1441-53. 24. Kramann R, et al. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell stem cell 2015;16:51-66. 25. Thompson CB. Into Thin Air: How We Sense and Respond to Hypoxia. Cell 2016;167:9-11. 26. Semenza GL, et al. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 1992;12:5447-54. 27. Wang GL, et al. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 1995;270:1230-7. 28. Huang LE, et al. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem 1996;271:32253-9. 29. Jaakkola P, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001;292:468-72. 30. Ivan M, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 2001;292:464-8. 31. Bruick RK, et al. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 2001;294:1337-40. 32. Epstein AC, et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 2001;107:43-54. 33. Yu F, et al. HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc Natl Acad Sci U S A 2001;98:9630-5. 34. Huang LE, et al. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A 1998;95:7987-92. 35. Maxwell PH, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999;399:271-5. 36. Kewley RJ, et al. The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. Int J Biochem Cell Biol 2004;36:189-204. 37. Wenger RH, et al. Integration of oxygen signaling at the consensus HRE. Sci STKE 2005;2005:re12. 38. Tojo Y, et al. Hypoxia Signaling Cascade for Erythropoietin Production in Hepatocytes. Mol Cell Biol 2015;35:2658-72. 39. Zhang P, et al. Hypoxia-inducible factor 3 is an oxygen-dependent transcription activator and regulates a distinct transcriptional response to hypoxia. Cell reports 2014;6:1110-21. 40. Cramer T, et al. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 2003;112:645-57. 41. Dang EV, et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 2011;146:772-84. 42. Hu CJ, et al. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol 2003;23:9361-74. 43. Gruber M, et al. Acute postnatal ablation of Hif-2alpha results in anemia. Proc Natl Acad Sci U S A 2007;104:2301-6. 44. Takeda K, et al. Regulation of adult erythropoiesis by prolyl hydroxylase domain proteins. Blood 2008;111:3229-35. 45. Gerl K, et al. Erythropoietin production by PDGFR-beta(+) cells. Pflugers Arch 2016;468:1479-87. 46. Maxwell PH, et al. HIF prolyl hydroxylase inhibitors for the treatment of renal anaemia and beyond. Nat Rev Nephrol 2016;12:157-68. 47. Besarab A, et al. Roxadustat (FG-4592): Correction of Anemia in Incident Dialysis Patients. J Am Soc Nephrol 2016;27:1225-33. 48. Holdstock L, et al. Four-Week Studies of Oral Hypoxia-Inducible Factor-Prolyl Hydroxylase Inhibitor GSK1278863 for Treatment of Anemia. J Am Soc Nephrol 2016;27:1234-44. 49. Pergola PE, et al. Vadadustat, a novel oral HIF stabilizer, provides effective anemia treatment in nondialysis-dependent chronic kidney disease. Kidney Int 2016;90:1115-22. 50. Souma T, et al. Plasticity of renal erythropoietin-producing cells governs fibrosis. J Am Soc Nephrol 2013;24:1599-616. 51. de Seigneux S, et al. Increased Synthesis of Liver Erythropoietin with CKD. J Am Soc Nephrol 2016;27:2265-9. 52. Mercadal L, et al. Timing and determinants of erythropoietin deficiency in chronic kidney disease. Clin J Am Soc Nephrol 2012;7:35-42. 53. Fehr T, et al. Interpretation of erythropoietin levels in patients with various degrees of renal insufficiency and anemia. Kidney Int 2004;66:1206-11. 54. Ganz T. Hepcidin and iron regulation, 10 years later. Blood 2011;117:4425-33. 55. Nemeth E, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004;306:2090-3. 56. Palmer SC, et al. Home versus in-centre haemodialysis for end-stage kidney disease. Cochrane Database Syst Rev 2014:Cd009535. 57. Poon CK, et al. Effect of alternate night nocturnal home hemodialysis on anemia control in patients with end-stage renal disease. Hemodialysis international International Symposium on Home Hemodialysis 2015;19:235-41. 58. Chertow GM, et al. In-center hemodialysis six times per week versus three times per week. N Engl J Med 2010;363:2287-300. 59. Jacobs K, et al. Isolation and characterization of genomic and cDNA clones of human erythropoietin. Nature 1985;313:806-10. 60. Lin FK, et al. Cloning and expression of the human erythropoietin gene. Proc Natl Acad Sci U S A 1985;82:7580-4. 61. Eschbach JW, et al. Recombinant human erythropoietin in anemic patients with end-stage renal disease. Results of a phase III multicenter clinical trial. Ann Intern Med 1989;111:992-1000. 62. Canadian Erythropoietin Study Group: Association between recombinant human erythropoietin and quality of life and exercise capacity of patients receiving haemodialysis. BMJ 1990;300:573-8. 63. Besarab A, et al. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N Engl J Med 1998;339:584-90. 64. Drueke TB, et al. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N Engl J Med 2006;355:2071-84. 65. Singh AK, et al. Correction of anemia with epoetin alfa in chronic kidney disease. N Engl J Med 2006;355:2085-98. 66. Pfeffer MA, et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N Engl J Med 2009;361:2019-32. 67. Szczech LA, et al. Secondary analysis of the CHOIR trial epoetin-alpha dose and achieved hemoglobin outcomes. Kidney Int 2008;74:791-8. 68. Solomon SD, et al. Erythropoietic response and outcomes in kidney disease and type 2 diabetes. N Engl J Med 2010;363:1146-55. 69. Koulouridis I, et al. Dose of erythropoiesis-stimulating agents and adverse outcomes in CKD: a metaregression analysis. Am J Kidney Dis 2013;61:44-56. 70. Choukroun G, et al. Correction of postkidney transplant anemia reduces progression of allograft nephropathy. J Am Soc Nephrol 2012;23:360-8. 71. Gouva C, et al. Treating anemia early in renal failure patients slows the decline of renal function: a randomized controlled trial. Kidney Int 2004;66:753-60. 72. US Food and Drug Administration. FDA Drug Safety Communication: Modified Dosing Recommendations to Improve the Safe Use of Erythropoiesis-Stimulating Agents (ESAs) in Chronic Kidney Disease. 2011. http://www.fda.gov/drugs/drugsafety/ucm259639.htm. Accessed Febuary 7, 2016. 73. National Institute for Health and Care Excellence: Anaemia management in chronic kidney disease: update 2015. (Clinical guideline ng8.) http://www.nice.org.uk/guidance/ng8 Accessed Apr 18, 2015. 74. Winkelmayer WC, et al. Trends in anemia care in older patients approaching end-stage renal disease in the United States (1995-2010). JAMA Intern Med 2014;174:699-707. 75. Regidor D, et al. Changes in erythropoiesis-stimulating agent (ESA) dosing and haemoglobin levels in US non-dialysis chronic kidney disease patients between 2005 and 2009. Nephrol Dial Transplant 2011;26:1583-91. 76. Yeh PY, et al. Is the renoprotective effect of erythropoietin in chronic kidney disease a myth? J Formos Med Assoc 2013;112:655-6. 77. Bahlmann FH, et al. Low-dose therapy with the long-acting erythropoietin analogue darbepoetin alpha persistently activates endothelial Akt and attenuates progressive organ failure. Circulation 2004;110:1006-12. 78. Menne J, et al. The continuous erythropoietin receptor activator affects different pathways of diabetic renal injury. J Am Soc Nephrol 2007;18:2046-53. 79. Chen X, et al. The administration of erythropoietin attenuates kidney injury induced by ischemia/reperfusion with increased activation of Wnt/beta-catenin signaling. J Formos Med Assoc 2015;114:430-7. 80. Cassis P, et al. Erythropoietin, but not the correction of anemia alone, protects from chronic kidney allograft injury. Kidney Int 2012;81:903-18. 81. Bahlmann FH, et al. Erythropoietin and renoprotection. Curr Opin Nephrol Hypertens 2009;18:15-20. 82. Coldewey SM, et al. Erythropoietin attenuates acute kidney dysfunction in murine experimental sepsis by activation of the beta-common receptor. Kidney Int 2013;84:482-90. 83. Robb L, et al. Hematopoietic and lung abnormalities in mice with a null mutation of the common beta subunit of the receptors for granulocyte-macrophage colony-stimulating factor and interleukins 3 and 5. Proc Natl Acad Sci U S A 1995;92:9565-9. 84. Garcia DL, et al. Anemia lessens and its prevention with recombinant human erythropoietin worsens glomerular injury and hypertension in rats with reduced renal mass. Proc Natl Acad Sci U S A 1988;85:6142-6. 85. Brochu E, et al. Differential effects of endothelin-1 antagonists on erythropoietin-induced hypertension in renal failure. J Am Soc Nephrol 1999;10:1440-6. 86. Lebel M, et al. Antihypertensive and renal protective effects of renin-angiotensin system blockade in uremic rats treated with erythropoietin. Am J Hypertens 2006;19:1286-92. 87. Lafferty HM, et al. Anemia ameliorates progressive renal injury in experimental DOCA-salt hypertension. J Am Soc Nephrol 1991;1:1180-5. 88. Wagner M, et al. Endogenous erythropoietin and the association with inflammation and mortality in diabetic chronic kidney disease. Clin J Am Soc Nephrol 2011;6:1573-9. 89. Belonje AM, et al. Endogenous erythropoietin and outcome in heart failure. Circulation 2010;121:245-51. 90. Molnar MZ, et al. Serum erythropoietin level and mortality in kidney transplant recipients. Clin J Am Soc Nephrol 2011;6:2879-86. 91. Chen PM, et al. Multidisciplinary care program for advanced chronic kidney disease: reduces renal replacement and medical costs. Am J Med 2015;128:68-76. 92. World Health Organization (WHO) Collaborating Centre for Drug Statistics Methodology. http://www.whocc.no/ Accessed Apr 18, 2015. 93. Cox DR. Regression Models and Life-Tables. Journal of the Royal Statistical Society Series B (Methodological) 1972;34:187-220. 94. Chen X. Score Test of Proportionality Assumption for Cox Models. Proceedings of Western Users of SAS Software 2008. 95. Feil R, et al. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 1997;237:752-7. 96. Madisen L, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 2010;13:133-40. 97. WHO expert consultation: Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004;363:157-63. 98. Ruzankina Y, et al. Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell stem cell 2007;1:113-26. 99. Chen K, et al. Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis. Proc Natl Acad Sci U S A 2009;106:17413-8. 100. Leist M, et al. Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 2004;305:239-42. 101. Sharples EJ, et al. Erythropoietin protects the kidney against the injury and dysfunction caused by ischemia-reperfusion. J Am Soc Nephrol 2004;15:2115-24. 102. Eto N, et al. Podocyte protection by darbepoetin: preservation of the cytoskeleton and nephrin expression. Kidney Int 2007;72:455-63. 103. Hu MC, et al. The erythropoietin receptor is a downstream effector of Klotho-induced cytoprotection. Kidney Int 2013;84:468-81. 104. McCullough PA, et al. Cardiovascular toxicity of epoetin-alfa in patients with chronic kidney disease. Am J Nephrol 2013;37:549-58. 105. Tapolyai M, et al. r.hu-erythropoietin (EPO) treatment of pre-ESRD patients slows the rate of progression of renal decline. BMC Nephrol 2003;4:3. 106. Cody JD, et al. Recombinant human erythropoietin versus placebo or no treatment for the anaemia of chronic kidney disease in people not requiring dialysis. Cochrane Database Syst Rev 2016:CD003266. 107. Chiu YL, et al. Outcomes of stage 3-5 chronic kidney disease before end-stage renal disease at a single center in Taiwan. Nephron Clin Pract 2008;109:c109-18. 108. Nishikawa K, et al. Influence of chronic kidney disease on hospitalization, chronic dialysis, and mortality in Japanese men: a longitudinal analysis. Clin Exp Nephrol 2016. 109. Tsubakihara Y, et al. 2008 Japanese Society for Dialysis Therapy: guidelines for renal anemia in chronic kidney disease. Ther Apher Dial 2010;14:240-75. 110. Goodkin DA, et al. Association of comorbid conditions and mortality in hemodialysis patients in Europe, Japan, and the United States: the Dialysis Outcomes and Practice Patterns Study (DOPPS). J Am Soc Nephrol 2003;14:3270-7. 111. Yang WC, et al. Incidence, prevalence and mortality trends of dialysis end-stage renal disease in Taiwan from 1990 to 2001: the impact of national health insurance. Nephrol Dial Transplant 2008;23:3977-82. 112. United States Renal Data System. 2014 USRDS annual data report: An overview of the epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD. 2014. 113. Masakane I, et al. An Overview of Regular Dialysis Treatment in Japan (As of 31 December 2013). Ther Apher Dial 2015;19:540-74. 114. Hwang SJ, et al. Impact of the clinical conditions at dialysis initiation on mortality in incident haemodialysis patients: a national cohort study in Taiwan. Nephrol Dial Transplant 2010;25:2616-24. 115. Cooper BA, et al. A randomized, controlled trial of early versus late initiation of dialysis. N Engl J Med 2010;363:609-19. 116. Rosansky SJ, et al. Early start of hemodialysis may be harmful. Arch Intern Med 2011;171:396-403. 117. Susantitaphong P, et al. GFR at initiation of dialysis and mortality in CKD: a meta-analysis. Am J Kidney Dis 2012;59:829-40. 118. Regidor DL, et al. Associations between changes in hemoglobin and administered erythropoiesis-stimulating agent and survival in hemodialysis patients. J Am Soc Nephrol 2006;17:1181-91. 119. Forsblom C, et al. Competing-risk analysis of ESRD and death among patients with type 1 diabetes and macroalbuminuria. J Am Soc Nephrol 2011;22:537-44. 120. Li L, et al. Longitudinal progression trajectory of GFR among patients with CKD. Am J Kidney Dis 2012;59:504-12. 121. Kobayashi H, et al. Hypoxia-inducible factor prolyl-4-hydroxylation in FOXD1 lineage cells is essential for normal kidney development. Kidney Int 2017;92:1370-83. 122. Gerl K, et al. Activation of Hypoxia Signaling in Stromal Progenitors Impairs Kidney Development. Am J Pathol 2017;187:1496-511. 123. Dholakia U, et al. Determination of RBC Survival in C57BL/6 and C57BL/6-Tg(UBC-GFP) Mice. Comp Med 2015;65:196-201. 124. Brodsky I, et al. Normal mouse erythropoiesis. I. The role of the spleen in mouse erythropoiesis. Cancer Res 1966;26:198-201. 125. Chow A, et al. CD169(+) macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat Med 2013;19:429-36. 126. Heideveld E, et al. Glucocorticoids induce differentiation of monocytes towards macrophages that share functional and phenotypical aspects with erythroblastic island macrophages. Haematologica 2018;103:395-405. 127. Heideveld E, et al. CD14+ cells from peripheral blood positively regulate hematopoietic stem and progenitor cell survival resulting in increased erythroid yield. Haematologica 2015;100:1396-406. 128. Beguin Y. Erythropoietin and platelet production. Haematologica 1999;84:541-7. 129. Meng X, et al. Hypoxia-inducible factor-1alpha is a critical transcription factor for IL-10-producing B cells in autoimmune disease. Nat Commun 2018;9:251. 130. Taylor CT, et al. Regulation of immunity and inflammation by hypoxia in immunological niches. Nat Rev Immunol 2017;17:774-85. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79137 | - |
| dc.description.abstract | 慢性腎臟病(chronic kidney disease, CKD)在全世界廣為盛行,而貧血(anemia)又是慢性腎臟病患者的常見共病症。在健康成人,正常的紅血球生成(erythropoiesis)是由紅血球生成素(erythropoietin, EPO)所促成;而紅血球生成素是接受第二型低氧誘導因子(hypoxia-inducible factor-2, HIF-2)調控,由腎臟內的血管周邊細胞(pericyte)與纖維母細胞(fibroblast)所製造。當腎臟發生纖維化(fibrosis)現象時,腎臟裡的血管周邊細胞會轉變為成肌纖維細胞(myofibroblast),同時喪失製造紅血球生成素的能力。當紅血球生成素製造減少,合併鐵代謝異常(disturbance of iron homeostasis)與尿毒環境(uremic milieu)影響時,將會造成慢性腎臟病患者的貧血現象。紅血球生成刺激劑(erythropoiesis-stimulating agent, ESA)包括有基因重組人類紅血球生成素(recombinant human EPO)與紅血球生成類似物(EPO analogues),是目前治療慢性腎臟病貧血的主要藥物。然而,近年來的大型臨床試驗證實了使用高劑量紅血球生成刺激劑治療會帶來死亡與心血管疾病的風險;觀察性研究也顯示高濃度的內生性紅血球生成素與糖尿病患者、心衰竭患者、腎臟移植病患的死亡有相關。但許多動物實驗卻顯示使用低劑量紅血球生成刺激劑治療對腎臟有保護效果。我們提出假說來解釋上述現象。我們認為紅血球生成刺激劑的劑量與體內紅血球生成素濃度是決定病患接受治療後預後(outcome)的關鍵因子。明確而言我們認為,在體內紅血球生成素濃度過低(absolute EPO deficiency)的病患使用低劑量紅血球生成刺激劑治療,可以改善腎臟預後(renal outcome);而高劑量紅血球生成刺激劑治療與過度提升體內紅血球生成素濃度會導致不良預後。為了驗證這個假說,首先我們設計臨床實驗來分析紅血球生成刺激劑的劑量與腎臟預後的關係,接下來我們建立體內具有高濃度紅血球生成素的動物模型(animal models)來檢視紅血球生成素濃度對於預後的影響。在我們的臨床實驗中,總共有423位病患追蹤了約1.37年時間,有使用紅血球生成刺激劑的病患(ESA user)接受了平均每個月9,600 ± 5,500 U的劑量治療。有使用紅血球生成刺激劑的病患血色素(hemoglobin)的變化為每年下降0.29 ± 2.19 g/dL;而沒有使用紅血球生成刺激劑的病患則是每年下降0.99 ± 2.46 g/dL,兩者差距達統計意義(P = 0.038)。而平均估計腎絲球過濾率(estimated glomerular filtration rate, eGFR)的每年下降程度則無統計差異。為了檢視紅血球生成刺激劑與預後的關係,我們建置了時間相依共變數迴歸模型(time-dependent Cox regression model),以校正每個月的平均估計腎絲球過濾率、每個月的血色素、以及其他重要變項。經過校正後,紅血球生成刺激劑的使用與透析延緩(deferred dialysis initiation)開始有關(hazard ratio 0.63, 95% confidence interval 0.42-0.93, P = 0.021)。當把每個月的紅血球生成刺激劑劑量也考慮在模型中,依然可以得到相同結論。在我們的動物實驗中,我們建立了可以在特定時間後(inducible),於全身(non-selective)或特定於血管周邊細胞上(pericyte-specific),進行低氧誘導因子的穩定表現(stabilization)的動物模型。在Tg(UBC-CreERT2);VhlFlox/Flox 與Tg(UBC-CreERT2);Phd2Flox/Flox這兩個全身低氧誘導因子穩定表現的小鼠品系,給予三苯甲氨(tamoxifen)後可以觀察到體內紅血球生成素濃度大量提升的現象。在Tg(UBC-CreERT2);Phd2Flox/Flox小鼠,腎臟內的血管周邊細胞與纖維母細胞可能是主要製造紅血球生成素的細胞;而在Tg(UBC-CreERT2);VhlFlox/Flox 小鼠可以觀察到死亡、體重減輕、與脾臟進行大量紅血球生成(severe splenic erythropoiesis)現象。在血管周邊細胞上低氧誘導因子穩定表現的小鼠品系,Gli1CreERT2/+;VhlFlox/Flox這個品系可以在給予三苯甲氨10週後,觀察到體重逐漸下降、脾臟大量進行紅血球生成、以及腎臟肝臟肺臟等多個器官充血(congestion)現象;而在Gli1CreERT2/+;Phd2Flox/Flox這個品系則可以觀察到類似Tg(UBC-CreERT2);VhlFlox/Flox 小鼠的紅血球增多(polycythemia)與脾臟紅血球生成現象。總結而言,我們的臨床分析顯示保守的低劑量使用紅血球生成刺激劑與延緩透析開始有關,而我們的動物實驗則顯示大量提升體內紅血球生成素濃度與死亡及體重減輕有關。然而,因為我們的臨床分析是回顧性研究,動物實驗結果無法完全推論適用於臨床,故本研究結論尚未完全確認不宜過度解釋。未來如果有臨床隨機對照試驗(randomized control trial),可以設計來分析紅血球生成刺激劑的劑量與體內紅血球生成素濃度對於預後的影響,也許可以進一步提供慢性腎臟病貧血患者除了血色素外更好的治療標的(treatment targets)與指引。 | zh_TW |
| dc.description.abstract | Chronic kidney disease (CKD) incurs a heavy disease burden globally and anemia is highly prevalent in patients with CKD. In the healthy adult, normal erythropoiesis is stimulated by erythropoietin (EPO). The EPO is produced by renal pericytes and fibroblasts under the control of hypoxia-inducible factor (HIF)-2. In the fibrotic kidney, renal pericytes may transform into myofibroblasts and lose the ability of EPO production. Decreased EPO production, together with disturbance of iron homeostasis and uremic milieu, contribute to the development of anemia in CKD. Erythropoiesis-stimulating agents (ESAs), including recombinant human EPO and EPO analogues, are the mainstay of treatment for anemia in CKD. However, recent clinical trials revealed the risks for death and adverse cardiovascular outcomes with high dose ESA treatment. On the contrary, plenty animal studies suggested the renoprotective effects with low dose ESA treatment. In addition, observational studies showed association between elevated endogenous EPO level and mortality in diabetes, heart failure, and renal transplant patients. We hypothesized that the dose of ESA and the level of serum EPO may be critical factors determining outcomes. Specifically, low dose ESA treatment may provide benefits for renal outcomes in CKD patients with absolute EPO deficiency. High dose ESA treatment and inappropriately elevated serum EPO level may result in adverse outcomes. To test the hypothesis, we first designed a clinical study to analyze the association between the doses of ESA and renal outcomes. Second, we created animal models with highly elevated serum EPO levels to exam the outcomes. In the clinical study, totally 423 patients were followed up for a median of 1.37 year. The standardized monthly ESA dose (per person) in ESA users was 9,600 ± 5,500 U of epoetin beta. Annual changes of hemoglobin were –0.29 ± 2.19 and –0.99 ± 2.46 g/dL in ESA users and ESA non-users, respectively (P = 0.038). However, annual estimated glomerular filtration rate (eGFR) decline rates were not different between ESA users and non-users. A time-dependent Cox regression model, adjusted for monthly levels of eGFR and hemoglobin, was constructed to investigate the association between ESA and outcome. After adjustment, ESA use was associated with deferred dialysis initiation (hazard ratio 0.63, 95% confidence interval 0.42-0.93, P = 0.021). The protective effect remained when the monthly ESA doses were incorporated. In the animal study, we created animal models of inducible non-selective HIF stabilization or inducible pericyte-specific HIF stabilization. We confirmed that in non-selective HIF stabilization mice strains, Tg(UBC-CreERT2);VhlFlox/Flox and Tg(UBC-CreERT2);Phd2Flox/Flox, highly elevated serum EPO levels developed after tamoxifen induction. Renal pericyes or fibroblasts might be the major source of EPO producing cells in Tg(UBC-CreERT2);Phd2Flox/Flox mice. Mortality developed in Tg(UBC-CreERT2);VhlFlox/Flox mice, along with progressive body weight loss and severe splenic erythropoiesis. In pericyte-specific HIF stabilization mice strains, Gli1CreERT2/+;VhlFlox/Flox mice developed progressive body weight loss, severe splenic erythropoiesis, and congestion in the kidney, liver, and lung 10 weeks after tamoxifen induction. Gli1CreERT2/+;Phd2Flox/Flox mice developed polycythemia and splenic erythropoiesis similar to Tg(UBC-CreERT2);VhlFlox/Flox mice. In conclusion, restricted use of ESA was shown to be associated with deferred dialysis initiation in our clinical study, while highly elevated serum EPO level was associated with mortality and body weight loss in our animal study. However, retrospective design of the clinical study and the difference between human and mice weakened the robustness of the conclusion. Future randomized control trials designed to test the effects of ESA dose and serum EPO level on outcomes may be considered to find better treatment targets other than hemoglobin level for CKD patients with anemia. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:46:58Z (GMT). No. of bitstreams: 1 ntu-107-D04441002-1.pdf: 5564819 bytes, checksum: c527d7b5c4707157b3308f1941dd793e (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract vi Table of Contents ix List of Figures xii List of Tables xiv Chapter 1. Introduction 1 1.1 Definition, epidemiology, and outcome of chronic kidney disease (CKD) 1 1.2 Anemia in CKD 2 1.2.1 Definition and diagnosis of anemia in CKD 2 1.2.2 Epidemiology of anemia in CKD 3 1.3 Erythropoiesis in healthy adults and CKD patients 3 1.3.1 Erythropoiesis in healthy adults 4 1.3.2 Hypoxia-inducible factor and regulation of erythropoietin (EPO) production 5 1.3.3 Abnormal erythropoiesis in CKD patients 8 1.4 Erythropoiesis stimulating agent (ESA) treatment for anemia in CKD 9 1.4.1 Clinical studies on ESA treatment in CKD 10 1.4.2 Basic studies on ESA treatment in CKD 11 1.5 Hypothesis, aim, and design of the study 12 1.5.1 Hypothesis 14 1.5.2 Aim 14 1.5.3 Design of the study 14 Chapter 2. Material and Method 16 2.1 Clinical study 16 2.1.1 Patients 16 2.1.2 ESA administration 17 2.1.3 Laboratory tests 18 2.1.4 Statistical analysis 19 2.2 Animal study 22 2.2.1 Mice and tamoxifen induction 22 2.2.2 Complete blood count, biochemistry analysis, and EPO assay 24 2.2.3 Real-time quantitative polymerase chain reaction (RT-qPCR) 25 2.2.4 Autopsy and immunohistochemistry 25 2.2.5 Microscopy 26 2.2.6 Flow cytometry 26 2.2.7 Statistical analysis 27 Chapter 3. Result 28 3.1 Clinical study 28 3.1.1 Baseline characteristics of patients and ESA administration 28 3.1.2 The levels and annual decline rates of hemoglobin (Hb) and estimated glomerular filtration rate (eGFR) in ESA users and non-users 29 3.1.3 Association between ESA use and dialysis initiation in a time-dependent Cox regression model 30 3.1.4 Sensitivity analysis and subgroup analysis 31 3.2 Animal study 32 3.2.1 Establishment of animal models of elevated serum EPO level 32 3.2.2 The kidney is the major source of EPO in Tg(UBC-CreERT2);Phd2Flox/Flox mice 34 3.2.3 Tg(UBC-CreERT2);VhlFlox/Flox mice had increased mortality and splenic erythropoiesis 35 3.2.4 Gli1CreERT2/+;VhlFlox/Flox mice had polycythemia and decreased body weight 38 3.2.5 Gli1CreERT2/+;Phd2Flox/Flox mice had polycythemia and similar splenic erythropoiesis with Tg(UBC-CreERT2);VhlFlox/Flox mice 38 Chapter 4. Discussion 40 4.1 Clinical study 40 4.2 Animal study 47 Chapter 5. Conclusion and Future Perspective 52 Figures 53 Tables 86 Reference 98 Supplementary information 110 | - |
| dc.language.iso | en | - |
| dc.subject | 血管周邊細胞 | zh_TW |
| dc.subject | 慢性腎臟病 | zh_TW |
| dc.subject | 紅血球生成刺激劑 | zh_TW |
| dc.subject | 紅血球生成素 | zh_TW |
| dc.subject | 低氧誘導因子 | zh_TW |
| dc.subject | erythropoiesis-stimulating agent | en |
| dc.subject | chronic kidney disease | en |
| dc.subject | erythropoietin | en |
| dc.subject | hypoxia-inducible factor | en |
| dc.subject | pericyte | en |
| dc.title | 適量的使用紅血球生成刺激劑與延緩末期腎病變患者開始透析有關 | zh_TW |
| dc.title | Restricted Use of Erythropoiesis-Stimulating Agent is Associated with Deferred Dialysis Initiation in Stage 5 Chronic Kidney Disease | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 106-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 陳永銘;吳明修;姜文智 | zh_TW |
| dc.contributor.oralexamcommittee | ;; | en |
| dc.subject.keyword | 慢性腎臟病,紅血球生成刺激劑,紅血球生成素,低氧誘導因子,血管周邊細胞, | zh_TW |
| dc.subject.keyword | chronic kidney disease,erythropoiesis-stimulating agent,erythropoietin,hypoxia-inducible factor,pericyte, | en |
| dc.relation.page | 115 | - |
| dc.identifier.doi | 10.6342/NTU201802489 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2018-08-06 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 生理學研究所 | - |
| dc.date.embargo-lift | 2028-08-03 | - |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-2.pdf 未授權公開取用 | 5.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
