Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79131
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳穎練zh_TW
dc.contributor.author柯皓達zh_TW
dc.contributor.authorHao-Tai Koen
dc.date.accessioned2021-07-11T15:46:29Z-
dc.date.available2024-08-06-
dc.date.copyright2018-08-16-
dc.date.issued2018-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] Chang YL, Yu SJ, Heitman J, Wellington M, Chen YL. New facets of antifungal therapy. Virulence. 2017;8:222-36.
[2] Denning DW, Bromley MJ. Infectious Disease. How to bolster the antifungal pipeline. Science (New York, NY). 2015;347:1414-6.
[3] Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. Hidden killers: human fungal infections. Science translational medicine. 2012;4:165rv13.
[4] Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS (London, England). 2009;23:525-30.
[5] Idnurm A, Bahn YS, Nielsen K, Lin X, Fraser JA, Heitman J. Deciphering the model pathogenic fungus Cryptococcus neoformans. Nature reviews Microbiology. 2005;3:753-64.
[6] Fang W, Fa Z, Liao W. Epidemiology of Cryptococcus and cryptococcosis in China. Fungal genetics and biology : FG & B. 2015;78:7-15.
[7] Chowdhary A, Rhandhawa HS, Prakash A, Meis JF. Environmental prevalence of Cryptococcus neoformans and Cryptococcus gattii in India: an update. Critical reviews in microbiology. 2012;38:1-16.
[8] Springer DJ, Billmyre RB, Filler EE, Voelz K, Pursall R, Mieczkowski PA, et al. Cryptococcus gattii VGIII isolates causing infections in HIV/AIDS patients in Southern California: identification of the local environmental source as arboreal. PLoS pathogens. 2014;10:e1004285.
[9] McDonald T, Wiesner DL, Nielsen K. Cryptococcus. Current biology : CB. 2012;22:R554-5.
[10] May RC, Stone NR, Wiesner DL, Bicanic T, Nielsen K. Cryptococcus: from environmental saprophyte to global pathogen. Nature reviews Microbiology. 2016;14:106-17.
[11] Perfect JR. The antifungal pipeline: a reality check. Nat Rev Drug Discov. 2017;16:603-16.
[12] Krysan DJ. Toward improved anti-cryptococcal drugs: Novel molecules and repurposed drugs. Fungal genetics and biology : FG & B. 2015;78:93-8.
[13] Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the Infectious Diseases Society of America. Clinical infectious diseases. 2010;50:291-322.
[14] Sun N, Li D, Zhang Y, Killeen K, Groutas W, Calderone R. Repurposing an inhibitor of ribosomal biogenesis with broad anti-fungal activity. Scientific reports. 2017;7:17014.
[15] Ogundeji AO, Pohl CH, Sebolai OM. The Repurposing of Anti-Psychotic Drugs, Quetiapine and Olanzapine, as Anti-Cryptococcus Drugs. Frontiers in microbiology. 2017;8:815.
[16] Hsu LH, Wang HF, Sun PL, Hu FR, Chen YL. The antibiotic polymyxin B exhibits novel antifungal activity against Fusarium species. Int J Antimicrob Agents. 2017;49:740-8.
[17] Ogundeji AO, Pohl CH, Sebolai OM. Repurposing of Aspirin and Ibuprofen as Candidate Anti-Cryptococcus Drugs. Antimicrobial agents and chemotherapy. 2016;60:4799-808.
[18] Swinney DC, Anthony J. How were new medicines discovered? Nat Rev Drug Discov. 2011;10:507-19.
[19] Zhai B, Wu C, Wang L, Sachs MS, Lin X. The antidepressant sertraline provides a promising therapeutic option for neurotropic cryptococcal infections. Antimicrobial agents and chemotherapy. 2012;56:3758-66.
[20] Rhein J, Morawski BM, Hullsiek KH, Nabeta HW, Kiggundu R, Tugume L, et al. Efficacy of adjunctive sertraline for the treatment of HIV-associated cryptococcal meningitis: an open-label dose-ranging study. The Lancet Infectious diseases. 2016;16:809-18.
[21] Rossato L, Loreto ES, Zanette RA, Chassot F, Santurio JM, Alves SH. In vitro synergistic effects of chlorpromazine and sertraline in combination with amphotericin B against Cryptococcus neoformans var. grubii. Folia microbiologica. 2016;61:399-403.
[22] Cheng G. Eltrombopag, a thrombopoietin- receptor agonist in the treatment of adult chronic immune thrombocytopenia: a review of the efficacy and safety profile. Therapeutic advances in hematology. 2012;3:155-64.
[23] Townsley DM, Scheinberg P, Winkler T, Desmond R, Dumitriu B, Rios O, et al. Eltrombopag Added to Standard Immunosuppression for Aplastic Anemia. The New England journal of medicine. 2017;376:1540-50.
[24] McHutchison JG, Dusheiko G, Shiffman ML, Rodriguez-Torres M, Sigal S, Bourliere M, et al. Eltrombopag for thrombocytopenia in patients with cirrhosis associated with hepatitis C. The New England journal of medicine. 2007;357:2227-36.
[25] de-Souza-Silva CM, Guilhelmelli F, Zamith-Miranda D, de Oliveira MA, Nosanchuk JD, Silva-Pereira I, et al. Broth Microdilution In Vitro Screening: An Easy and Fast Method to Detect New Antifungal Compounds. Journal of visualized experiments : JoVE. 2018.
[26] Robledo-Leal E, Elizondo-Zertuche M, Gonzalez GM. Susceptibility of Dermatophytes to Thiabendazole Using CLSI Broth Macrodilution. ISRN dermatology. 2012;2012:351842.
[27] Chen YL, Lehman VN, Averette AF, Perfect JR, Heitman J. Posaconazole exhibits in vitro and in vivo synergistic antifungal activity with caspofungin or FK506 against Candida albicans. PloS one. 2013;8:e57672.
[28] Odds FC. Synergy, antagonism, and what the chequerboard puts between them. The Journal of antimicrobial chemotherapy. 2003;52:1.
[29] Martinez LR, Casadevall A. Cryptococcus neoformans biofilm formation depends on surface support and carbon source and reduces fungal cell susceptibility to heat, cold, and UV light. Appl Environ Microbiol. 2007;73:4592-601.
[30] Joffe LS, Schneider R, Lopes W, Azevedo R, Staats CC, Kmetzsch L, et al. The Anti-helminthic Compound Mebendazole Has Multiple Antifungal Effects against Cryptococcus neoformans. Frontiers in microbiology. 2017;8:535.
[31] Eisenman HC, Chow S-K, Tsé KK, McClelland E, Casadevall A. The effect of L-DOPA onCryptococcus neoformansgrowth and gene expression. Virulence. 2014;2:329-36.
[32] Martinez LR, Ntiamoah P, Gacser A, Casadevall A, Nosanchuk JD. Voriconazole inhibits melanization in Cryptococcus neoformans. Antimicrobial agents and chemotherapy. 2007;51:4396-400.
[33] Florio AR, Ferrari S, De Carolis E, Torelli R, Fadda G, Sanguinetti M, et al. Genome-wide expression profiling of the response to short-term exposure to fluconazole in Cryptococcus neoformans serotype A. BMC microbiology. 2011;11:97.
[34] Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome biology. 2010;11:R14.
[35] Cruz MC, Del Poeta M, Wang P, Wenger R, Zenke G, Quesniaux VF, et al. Immunosuppressive and nonimmunosuppressive cyclosporine analogs are toxic to the opportunistic fungal pathogen Cryptococcus neoformans via cyclophilin-dependent inhibition of calcineurin. Antimicrobial agents and chemotherapy. 2000;44:143-9.
[36] Jo Siu WJ, Tatsumi Y, Senda H, Pillai R, Nakamura T, Sone D, et al. Comparison of in vitro antifungal activities of efinaconazole and currently available antifungal agents against a variety of pathogenic fungi associated with onychomycosis. Antimicrobial agents and chemotherapy. 2013;57:1610-6.
[37] Onyewu C, Blankenship JR, Del Poeta M, Heitman J. Ergosterol biosynthesis inhibitors become fungicidal when combined with calcineurin inhibitors against Candida albicans, Candida glabrata, and Candida krusei. Antimicrobial agents and chemotherapy. 2003;47:956-64.
[38] Larsen RA, Bauer M, Thomas AM, Graybill JR. Amphotericin B and fluconazole, a potent combination therapy for cryptococcal meningitis. Antimicrobial agents and chemotherapy. 2004;48:985-91.
[39] Alspaugh JA. “Virulence Mechanisms and Cryptococcus neoformans pathogenesis”. Fungal genetics and biology : FG & B. 2015;78:55-8.
[40] Johnston SA, May RC. Cryptococcus interactions with macrophages: evasion and manipulation of the phagosome by a fungal pathogen. Cellular microbiology. 2013;15:403-11.
[41] Wang Y, Aisen P, Casadevall A. Cryptococcus neoformans melanin and virulence: mechanism of action. Infection and immunity. 1995;63:3131-6.
[42] Tkach JM, Yimit A, Lee AY, Riffle M, Costanzo M, Jaschob D, et al. Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nature cell biology. 2012;14:966-76.
[43] Ambroziak J, Henry SA. INO2 and INO4 gene products, positive regulators of phospholipid biosynthesis in Saccharomyces cerevisiae, form a complex that binds to the INO1 promoter. The Journal of biological chemistry. 1994;269:15344-9.
[44] Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, et al. Global analysis of protein localization in budding yeast. Nature. 2003;425:686-91.
[45] Kornmann B, Currie E, Collins SR, Schuldiner M, Nunnari J, Weissman JS, et al. An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science (New York, NY). 2009;325:477-81.
[46] Ricarte F, Menjivar R, Chhun S, Soreta T, Oliveira L, Hsueh T, et al. A genome-wide immunodetection screen in S. cerevisiae uncovers novel genes involved in lysosomal vacuole function and morphology. PloS one. 2011;6:e23696.
[47] Del Poeta M, Cruz MC, Cardenas ME, Perfect JR, Heitman J. Synergistic antifungal activities of bafilomycin A(1), fluconazole, and the pneumocandin MK-0991/caspofungin acetate (L-743,873) with calcineurin inhibitors FK506 and L-685,818 against Cryptococcus neoformans. Antimicrobial agents and chemotherapy. 2000;44:739-46.
[48] Esher SK, Zaragoza O, Alspaugh JA. Cryptococcal pathogenic mechanisms: a dangerous trip from the environment to the brain. Memorias do Instituto Oswaldo Cruz. 2018;113:e180057.
[49] Perfect JR. Fungal virulence genes as targets for antifungal chemotherapy. Antimicrobial agents and chemotherapy. 1996;40:1577-83.
[50] Hast MA, Nichols CB, Armstrong SM, Kelly SM, Hellinga HW, Alspaugh JA, et al. Structures of Cryptococcus neoformans protein farnesyltransferase reveal strategies for developing inhibitors that target fungal pathogens. The Journal of biological chemistry. 2011;286:35149-62.
[51] Mor V, Rella A, Farnoud AM, Singh A, Munshi M, Bryan A, et al. Identification of a New Class of Antifungals Targeting the Synthesis of Fungal Sphingolipids. mBio. 2015;6:e00647.
[52] Chaudhari R, Tan Z, Huang B, Zhang S. Computational polypharmacology: a new paradigm for drug discovery. Expert opinion on drug discovery. 2017;12:279-91.
[53] Perfect J, Ketabchi N, Cox G, Ingram C, Beiser C. Karyotyping of Cryptococcus neoformans as an epidemiological tool. Journal of clinical microbiology. 1993;31:3305-9.
[54] Fraser JA, Giles SS, Wenink EC, Geunes-Boyer SG, Wright JR, Diezmann S, et al. Same-sex mating and the origin of the Vancouver Island Cryptococcus gattii outbreak. Nature. 2005;437:1360.
[55] Kidd SE, Guo H, Bartlett KH, Xu J, Kronstad JW. Comparative gene genealogies indicate that two clonal lineages of Cryptococcus gattii in British Columbia resemble strains from other geographical areas. Eukaryotic Cell. 2005;4:1629-38.
[56] Gillum AM, Tsay EY, Kirsch DR. Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Molecular and General Genetics MGG. 1984;198:179-82.
[57] Butler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S, Munro CA, et al. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature. 2009;459:657-62.
[58] Pfaller MA, Bale M, Buschelman B, Lancaster M, Espinel-Ingroff A, Rex JH, et al. Selection of candidate quality control isolates and tentative quality control ranges for in vitro susceptibility testing of yeast isolates by National Committee for Clinical Laboratory Standards proposed standard methods. J Clin Microbiol. 1994;32:1650-3.
[59] Crowley S, Mahony J, Morrissey JP, van Sinderen D. Transcriptomic and morphological profiling of Aspergillus fumigatus Af293 in response to antifungal activity produced by Lactobacillus plantarum 16. Microbiology (Reading, England). 2013;159:2014-24.
[60] Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, et al. Genome evolution in yeasts. Nature. 2004;430:35-44.
[61] Reuss O, Vik A, Kolter R, Morschhauser J. The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene. 2004;341:119-27.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79131-
dc.description.abstract全世界預估約有12億人口遭受真菌性感染,新型隱球菌(Cryptococcus neoformans)和格特隱球菌(Cryptococcus gattii)可造成人類隱球菌症(cryptococcosis),是一種每年可造成約60萬人口死亡的人體伺機性病原。然而,治療策略卻十分侷限,因為傳統藥物開發的時程緩慢,加上抗藥性菌株有逐年增加的趨勢,因此,研發創新、有效且低毒性的抗真菌藥物為論文研究之目標。透過快速且大量篩選1,018種美國食品藥物管理局核准之藥物,我們從中發現一種過去用來治療自體免疫性血小板減少性紫斑症的藥物eltrombopag在最低抑制濃度0.125至 0.5 μg/mL下具有抑制隱球菌、光滑念珠菌及皮癬菌的效果。進一步實驗結果發現,eltrombopag與鈣調磷酸酶抑制劑 FK506具有協同作用(synergistic effect)。另外也發現此藥物可以顯著干擾隱球菌重要的致病因子,例如生物膜的形成、莢膜的形成、黑色素的合成與生長於37 ºC。掃描式電子顯微鏡的結果顯示隱球菌細胞表面出現許多破碎殘體,推測施用eltrombopag可能會破壞部分細胞表面結構,此結果可能與eltrombopag為抑菌而非殺菌的特性有關係。透過RNA測序(RNA sequencing)及基因功能分類分析(Gene ontology analysis),結果顯示受藥物處理的大部分基因群和脂質生合成、跨膜運輸及細胞膜的組成有很大的關聯,即時反轉錄聚合酶鏈式反應的結果也證實受藥物處理後的樣本,其基因表現與對照組的有顯著性差異。為了證明eltormbopag確實對隱球菌之細胞膜造成受損,我們使用propidium iodide (PI)染色方法來評估受eltrombopag處理過後的細胞膜對PI染劑的滲透性。動物模式的結果顯示1 mg/kg/day eltrombopag可以顯著降低隱球菌在小鼠腦部的菌落數,但在存活率的數據上並無顯著差異。本研究是第一篇發現eltrombopag具有抗隱球菌活性的藥物,上述研究成果認為eltrombopag除了原本對紫斑病的治療,另外也具有潛力並開發應用於臨床上治療隱球菌症。zh_TW
dc.description.abstractAbout 1.2 billion people worldwide are estimated to suffer from fungal infections. Cryptococcus neoformans and Cryptococcus gattii are the major opportunistic pathogens that cause cryptococcosis and responsible for approximately 600,000 deaths annually on a global scale. However, treatments remain challenging due to limited therapeutic options, rapidly emerging drug-resistant isolates and time-consuming research and development of new drugs. In this study, our objective is to discover compounds with low toxicity but exhibit novel antifungal activity. We identified eltrombopag, a medication that had been approved for the treatment of immune thrombocytopenia (ITP), via screening a compound library containing 1,018 FDA-approved drugs. Eltrombopag is firstly demonstrated to exhibit antifungal activity against fungal pathogens, such as Cryptococcus species with minimum inhibitory concentration (MIC) at 0.125 μg/mL, Candidia glabrata at 0.25 μg/mL, and Trichophyton rubrum at 0.5 μg/mL. Meanwhile, eltrombopag showed synergistic effect with a calcineurin inhibitor FK506 against Cryptococcus species. Furthermore, we showed that eltrombopag affected cryptococcal virulence factors such as biofilm formation, capsule formation, melanin production and growth ability at 37 ºC. Assisted by scanning electron microscopy, we observed impaired cryptococcal cell surface after eltrombopag treatment which may be associated with the fungistatic effect of eltrombopag against Cryptococcus species. RNA sequencing experiments revealed that many genes involved in lipid biogenesis, membrane components and transmembrane transporter were regulated by eltrombopag and confirmed by real time RT-PCR. To validate that the function of cell membrane was impaired, we assessed membrane permeability by propidium iodide staining. In the murine model of cryptococcosis, the results of fungal burden revealed that 1 mg/kg/day eltrombopag could significantly reduce cryptococcal colony formation units (CFU) in the brains, but the studies of survival rate did not show any difference in all treatments. Our data suggests that eltrombopag may be a promising antifungal agent against cryptococcal infections in addition to its original treatment of ITP.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:46:29Z (GMT). No. of bitstreams: 1
ntu-107-R05633014-1.pdf: 3278041 bytes, checksum: 642e74de03480270c013ce8dc5e34654 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsTable of Contents
口試委員會審議書 i
誌謝 ii
摘要 iii
Abstract iv
Table of Contents vi
List of Figures viii
List of Tables ix
1. Introduction 1
1.1 Fungal infection: Cryptococcosis 1
1.2 Antifungal drug research and development 2
1.3 Drug repurposing 3
1.4 FDA-approved drug: Eltrombopag 4
2. Materials and methods 5
2.1 Strains, growth media and drugs 5
2.2 Drug library screening 5
2.3 Determination of minimum inhibitory and fungicidal concentrations 6
2.4 Determination of fractional inhibitory concentration indices 6
2.5 Growth kinetics assays 7
2.6 Disk diffusion assays 8
2.7 XTT-reduction assay for biofilm formation 8
2.8 Effect of eltrombopag on capsule formation 8
2.9 Melanization assays 9
2.10 Effect of eltrombopag on cellular ultrastructure 9
2.11 RNA-sequencing experiments 10
2.12 Quantitative real-time RT-PCR 11
2.13 Effect of eltrombopag on cell membrane function 12
2.14 In vivo model of systemic cryotococcosis and antifungal treatment 12
3. Results 14
3.1 Screening results of compound libraries 14
3.2 Eltrombopag exhibits novel antifungal activity against Cryptococcus species 14
3.3 Eltrombopag is fungistatic against C. neoformans and more efficient at elevated temperature 15
3.4 Eltrombopag displays synergy with the calcineurin inhibitor FK506 against Cryptococcus species 15
3.5 Eltrombopag impairs biofilm formation of C. neoformans 16
3.6 Eltrombopag reduces capsule formation of Cryptococcus species 17
3.7 Eltrombopag inhibits melanization of C. neoformans 18
3.8 Effect of eltrombopag on cellular ultrastructure of Cryptococcus species 18
3.9 Hypothetical mode of action of eltrombopag 19
3.10 Effect of eltromboapg on cell membrane integrity of Cryptococcus species 20
3.11 Eltrombopag displays promising antifungal activity in a murine model of systemic cryptococcosis 20
4. Discussion 22
4.1 Eltrombopag serves as a promising anti-Cryptococcus agent 22
4.2 The combination therapy between eltrombopag and calcineurin inhibitor offers potential therapeutic strategy for cryptococcal infections 22
4.3 The proposed antifungal mechanisms of eltrombopag 23
4.4 Safety issues and potential use of eltrombopag in treating cryptococcosis 25
5. Conclusion 26
6. References 48
7. Appendix 54

List of Figures
Figure 1. Growth kinetics of Cryptococcus species was dose-dependent and temperature sensitive in the presence of eltrombopag.. 27
Figure 2. Eltrombopag exhibits synergistic effects with FK506 against C. neoformans H99 and C. gattii R265 28
Figure 3. Eltrombopag reduced cryptococcal biofilm formation 29
Figure 4. Capsule formation defects of C. neoformans H99 and C. gattii R265 cells after eltrombopag treatment 30
Figure 5. Eltrombopag inhibits melanization of C. neoformans H99 31
Figure 6. The effect of eltrombopag on the ultrastructure of C. neoformans H99 and C. gattii R265 32
Figure 7. Genes up- and downregulated after eltrombopag treatment in C. neoformans H99 33
Figure 8. Real-time RT PCR was used to confirm genes after eltrombopag treatment in C. neoformans H99 34
Figure 9. Eltrombopag disrupts the cell membran permeability of Cryptococcus species. 35
Figure 10. Eltrombopag at the dose of 1 mg/kg reduces the fungal burden in the brain organs but exhibits limited anti-cryptococcal activity in survival curve 36
Figure S1. RNA sequencing data were uploaded to Gene Expression Omnibus and the accession number GSE115570 was obtained 37

List of Tables
Table 1. Fungal strains used in this study. 38
Table 2. MICs and MFCs of eltrombopag for multiple fungal pathogens. 39
Table 3. Eltrombopag exhibited synergistic antifungal activity with FK506 against Cryptococcus species. 40
Table 4. Genes regulated by eltrombopag in Cryptococcus neoformans H99 41
Table S1. The antifungal screening list of 60 FDA-approved drugs from drug libraries. 44
Table S2. Oligonucleotide primers used in this study. 47
-
dc.language.isoen-
dc.subjectEltrombopagzh_TW
dc.subject舊藥新用zh_TW
dc.subject抑菌作用zh_TW
dc.subject隱球菌zh_TW
dc.subject鈣調磷酸?抑制劑zh_TW
dc.subjectantifungalen
dc.subjectCryptococcusen
dc.subjectEltrombopagen
dc.subjectcalcineurin inhibitoren
dc.subjectdrug repurposingen
dc.title血小板生成素受體致效劑eltrombopag之新穎抗隱球菌活性zh_TW
dc.titleThe thrombopoietin receptor agonist eltrombopag exhibits novel anti-Cryptococcus activityen
dc.typeThesis-
dc.date.schoolyear106-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳宜君;曾祥洸;蕭崇瑋zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keywordEltrombopag,舊藥新用,抑菌作用,隱球菌,鈣調磷酸?抑制劑,zh_TW
dc.subject.keywordEltrombopag,drug repurposing,antifungal,Cryptococcus,calcineurin inhibitor,en
dc.relation.page69-
dc.identifier.doi10.6342/NTU201802416-
dc.rights.note未授權-
dc.date.accepted2018-08-07-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept植物病理與微生物學系-
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-106-2.pdf
  未授權公開取用
3.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved