Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79130
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴飛羆
dc.contributor.authorSeng-I Chanen
dc.contributor.author陳勝怡zh_TW
dc.date.accessioned2021-07-11T15:46:24Z-
dc.date.available2023-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-06
dc.identifier.citation1. Calandra, T., et al., Diagnosis and management of invasive candidiasis in the ICU: an updated approach to an old enemy. Critical Care, 2016. 20(1): p. 125.
2. Chen, P.-Y., et al., Comparison of epidemiology and treatment outcome of patients with candidemia at a teaching hospital in Northern Taiwan, in 2002 and 2010. Journal of Microbiology, Immunology and Infection, 2014. 47(2): p. 95-103.
3. Sheng, W.-H., et al., Comparative impact of hospital-acquired infections on medical costs, length of hospital stay and outcome between community hospitals and medical centres. Journal of Hospital Infection, 2005. 59(3): p. 205-214.
4. Kullberg, B.J. and M.C. Arendrup, Invasive candidiasis. New England Journal of Medicine, 2015. 373(15): p. 1445-1456.
5. Taur, Y., et al., Effect of antifungal therapy timing on mortality in cancer patients with candidemia. Antimicrobial agents and chemotherapy, 2010. 54(1): p. 184-190.
6. Safdar, N. and D.G. Maki, The commonality of risk factors for nosocomial colonization and infection with antimicrobial-resistant Staphylococcus aureus, enterococcus, gram-negative bacilli, Clostridium difficile, and Candida. Annals of Internal Medicine, 2002. 136(11): p. 834-844.
7. Morrell, M., V.J. Fraser, and M.H. Kollef, Delaying the empiric treatment of Candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality. Antimicrobial agents and chemotherapy, 2005. 49(9): p. 3640-3645.
8. Leroy, O., et al., Systemic antifungal therapy for proven or suspected invasive candidiasis: the AmarCAND 2 study. Annals of intensive care, 2016. 6(1): p. 2.
9. Sipsas, N.V. and D.P. Kontoyiannis, Invasive fungal infections in patients with cancer in the Intensive Care Unit. International journal of antimicrobial agents, 2012. 39(6): p. 464-471.
10. Hermsen, E.D., et al., Validation and comparison of clinical prediction rules for invasive candidiasis in intensive care unit patients: a matched case-control study. Critical Care, 2011. 15(4): p. R198.
11. Tseng, S.-H., et al., Combating antimicrobial resistance: antimicrobial stewardship program in Taiwan. Journal of Microbiology, Immunology and Infection, 2012. 45(2): p. 79-89.
12. Wisplinghoff, H., et al., Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clinical infectious diseases, 2004. 39(3): p. 309-317.
13. Arendrup, M.C., Epidemiology of invasive candidiasis. Current opinion in critical care, 2010. 16(5): p. 445-452.
14. Colombo, A.L., et al., Prognostic factors and historical trends in the epidemiology of candidemia in critically ill patients: an analysis of five multicenter studies sequentially conducted over a 9-year period. Intensive care medicine, 2014. 40(10): p. 1489-1498.
15. Asmundsdottir, L.R., H. Erlendsdottir, and M. Gottfredsson, Nationwide study of candidemia, antifungal use, and antifungal drug resistance in Iceland, 2000 to 2011. Journal of clinical microbiology, 2013. 51(3): p. 841-848.
16. Slavin, M., et al., Burden of hospitalization of patients with Candida and Aspergillus infections in Australia. International journal of infectious diseases, 2004. 8(2): p. 111-120.
17. Clancy, C.J. and M.H. Nguyen, The end of an era in defining the optimal treatment of invasive candidiasis. 2012, Oxford University Press.
18. Garey, K.W., et al., Time to initiation of fluconazole therapy impacts mortality in patients with candidemia: a multi-institutional study. Clinical infectious diseases, 2006. 43(1): p. 25-31.
19. Clancy, C.J. and M.H. Nguyen, Non-culture diagnostics for invasive candidiasis: Promise and unintended consequences. Journal of Fungi, 2018. 4(1): p. 27.
20. Presterl, E., et al., Invasive fungal infections and (1, 3)-β-D-glucan serum concentrations in long-term intensive care patients. International Journal of Infectious Diseases, 2009. 13(6): p. 707-712.
21. Nguyen, M.H., et al., Performance of Candida real-time polymerase chain reaction, β-D-glucan assay, and blood cultures in the diagnosis of invasive candidiasis. Clinical infectious diseases, 2012. 54(9): p. 1240-1248.
22. Cuenca‐Estrella, M., et al., ESCMID guideline for the diagnosis and management of Candida diseases 2012: diagnostic procedures. Clinical Microbiology and Infection, 2012. 18(s7): p. 9-18.
23. Cruciani, M., F. de Lalla, and C. Mengoli, Prophylaxis of Candida infections in adult trauma and surgical intensive care patients: a systematic review and meta-analysis. Intensive care medicine, 2005. 31(11): p. 1479-1487.
24. Playford, E.G., et al., Antifungal agents for preventing fungal infections in non-neutropenic critically ill and surgical patients: systematic review and meta-analysis of randomized clinical trials. Journal of Antimicrobial Chemotherapy, 2006. 57(4): p. 628-638.
25. Gupta, P., et al., Evaluation of Candida scoring systems to predict early candidemia: A prospective and observational study at a tertiary care hospital, Uttarakhand. Indian journal of critical care medicine: peer-reviewed, official publication of Indian Society of Critical Care Medicine, 2017. 21(12): p. 830.
26. Ahmed, A., et al., External validation of risk prediction scores for invasive candidiasis in a medical/surgical intensive care unit: An observational study. Indian journal of critical care medicine: peer-reviewed, official publication of Indian Society of Critical Care Medicine, 2017. 21(8): p. 514.
27. Ruiz, G.O., et al., Risk factors for candidemia in non-neutropenic critical patients in Colombia. Medicina Intensiva (English Edition), 2016. 40(3): p. 139-144.
28. Shahin, J., et al., Predicting invasive fungal disease due to Candida species in non-neutropenic, critically ill, adult patients in United Kingdom critical care units. BMC infectious diseases, 2016. 16(1): p. 480.
29. Zylberfajn, C., et al., Risk Factors of Candidemia in Cirrhotic Patient Hospitalized in a Non Transplant Hepatology-Oriented Intensive Care Unit. Journal of Hepatology, 2016. 64(2): p. S255.
30. Falcone, M., et al., Assessment of risk factors for candidemia in non-neutropenic patients hospitalized in Internal Medicine wards: A multicenter study. European journal of internal medicine, 2017. 41: p. 33-38.
31. O’Halloran, J., et al. Risk Factors Predicting Candida glabrata Bloodstream Infection. in Open forum infectious diseases. 2017. Oxford University Press.
32. Li, D., et al., Evaluation of candidemia in epidemiology and risk factors among cancer patients in a cancer center of China: an 8-year case-control study. BMC infectious diseases, 2017. 17(1): p. 536.
33. Umberger, R., et al., The utility of the Candida Score in patients with sepsis. Dimensions of Critical Care Nursing, 2016. 35(2): p. 92-98.
34. Carr, A., et al. Evaluating predictors of invasive candidiasis in patients with and without candidemia on micafungin. in Baylor University Medical Center Proceedings. 2018. Taylor & Francis.
35. Paphitou, N.I., L. Ostrosky-Zeichner, and J.H. Rex, Rules for identifying patients at increased risk for candidal infections in the surgical intensive care unit: approach to developing practical criteria for systematic use in antifungal prophylaxis trials. Medical mycology, 2005. 43(3): p. 235-243.
36. León, C., et al., A bedside scoring system (“Candida score”) for early antifungal treatment in nonneutropenic critically ill patients with Candida colonization. Critical care medicine, 2006. 34(3): p. 730-737.
37. León, C., et al., Usefulness of the “Candida score” for discriminating between Candida colonization and invasive candidiasis in non-neutropenic critically ill patients: a prospective multicenter study. Critical care medicine, 2009. 37(5): p. 1624-1633.
38. Ostrosky-Zeichner, L., et al., Multicenter retrospective development and validation of a clinical prediction rule for nosocomial invasive candidiasis in the intensive care setting. European Journal of Clinical Microbiology & Infectious Diseases, 2007. 26(4): p. 271-276.
39. Shorr, A.F., et al., Candidemia on presentation to the hospital: development and validation of a risk score. Critical Care, 2009. 13(5): p. R156.
40. Playford, E.G., et al., Assessment of clinical risk predictive rules for invasive candidiasis in a prospective multicentre cohort of ICU patients. Intensive care medicine, 2009. 35(12): p. 2141.
41. Pittet, D., et al., Candida colonization and subsequent infections in critically ill surgical patients. Annals of surgery, 1994. 220(6): p. 751.
42. Fisher, B.T., et al., Failure to validate a multivariable clinical prediction model to identify pediatric intensive care unit patients at high risk for candidemia. Journal of the Pediatric Infectious Diseases Society, 2015. 5(4): p. 458-461.
43. Wah, Y.B., et al. Handling imbalanced dataset using SVM and k-NN approach. in AIP Conference Proceedings. 2016. AIP Publishing.
44. Chang, Y.-J., et al., Predicting hospital-acquired infections by scoring system with simple parameters. PloS one, 2011. 6(8): p. e23137.
45. Mao, Q., et al., Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU. BMJ open, 2018. 8(1): p. e017833.
46. Charlson, M.E., et al., A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. Journal of chronic diseases, 1987. 40(5): p. 373-383.
47. Sundararajan, V., et al., New ICD-10 version of the Charlson comorbidity index predicted in-hospital mortality. Journal of clinical epidemiology, 2004. 57(12): p. 1288-1294.
48. Kalpana, B., V. Saravanan, and K. Vivekanandan, A review of feature selection models for classification. 2011.
49. Liu, H. and L. Yu, Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on knowledge and data engineering, 2005. 17(4): p. 491-502.
50. Nelder, J.A. and R.J. Baker, Generalized linear models. 1972: Wiley Online Library.
51. Habibzadeh, F., P. Habibzadeh, and M. Yadollahie, On determining the most appropriate test cut-off value: the case of tests with continuous results. Biochemia medica: Biochemia medica, 2016. 26(3): p. 297-307.
52. Robin, X., et al., pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC bioinformatics, 2011. 12(1): p. 77.
53. Friedl, M.A. and C.E. Brodley, Decision tree classification of land cover from remotely sensed data. Remote sensing of environment, 1997. 61(3): p. 399-409.
54. Ripley, B. and M.B. Ripley, Package ‘tree’. Classification and Regression Trees. Version, 2018: p. 1.0-36.
55. Liaw, A. and M. Wiener, Classification and regression by randomForest. R news, 2002. 2(3): p. 18-22.
56. Brieman, L., Breiman and Cutler’s random forests for classification and regression. 2011, CRAN-R.
57. Cortes, C. and V. Vapnik, Support-vector networks. Machine learning, 1995. 20(3): p. 273-297.
58. Williams, C.K., et al., Package ‘caret’. 2018.
59. Hsu, C.-W., C.-C. Chang, and C.-J. Lin, A practical guide to support vector classification. 2003.
60. Cao, H., T. Naito, and Y. Ninomiya. Approximate RBF kernel SVM and its applications in pedestrian classification. in The 1st International Workshop on Machine Learning for Vision-based Motion Analysis-MLVMA'08. 2008.
61. Peterson, L.E., K-nearest neighbor. Scholarpedia, 2009. 4(2): p. 1883.
62. Rish, I. An empirical study of the naive Bayes classifier. in IJCAI 2001 workshop on empirical methods in artificial intelligence. 2001. IBM.
63. Meyer, D., et al., e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien, 2015. R package version, 2015: p. 1.6-7.
64. Pedersen, A.B., et al., Missing data and multiple imputation in clinical epidemiological research. Clinical Epidemiology, 2017. 9: p. 157.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79130-
dc.description.abstract念珠菌是一種伺機性病原菌,是造成醫療照護相關感染的重要病原菌,在免疫系統受損的宿主會引發危及生命的侵襲性感染,而且會造成高致死率、高併發症 及額外的醫療費用和住院天數。現行診斷工具有其限制,以菌血症為例,血液培養為念珠菌菌血症的唯一診斷方法,然而敏感度(21-71%)不理想,而且檢驗時程有其限制。然而醫療照護相關感染中,侵襲性念珠菌感染與多重抗藥性細菌引起的感染臨床表現不易區分,且危險因子大多相同。對侵襲性念珠菌感染的推測性治療或經驗治療的決定是有困難的,其治療策略難以獲得驗證。加上高危險病人反覆感染,藥物選擇決策困難,然而延遲治療可能影響病人預後。此外,目前採取經驗性治療策略常常導致過度使用藥物。念珠菌菌血症等侵襲性念珠菌感染及早適當的藥物治療很重要,而即時且正確診斷是醫療尚待解決之挑戰,牽涉病人安全以及醫療經濟。醫療資訊利用巨量資料探勘以發掘深層價值是全世界強調的新趨勢,也是國家發展重點。建立預測模型客觀的系統性風險評估,可以主動反覆評估,而不會增加資源消耗。此研究針對念珠菌菌血症建立預測模型,作為建構念珠菌菌血症醫療決策輔助系統的基礎,以達到血液培養確診之前評估念珠菌菌血症之風險,其預測結果可讓醫師在決定治療藥物選擇時作參考。
本研究以台大醫院2016年01月01日至2017年12月31日病人資料,針對初次發生菌血症且單菌菌血症的病人,比較個案(念珠菌菌血症)與對照病人(細菌菌血症),以多變數分析之危險因子建立預測模型並進行內部驗證。病人資料包含基本資料、住院資料、手術等處置資料、血液培養等檢驗資料、抗生素等藥物使用資料等,使用五種資料探勘算法建立模型,包括支援向量機、決策樹、隨機森林、k最近鄰居法和單純貝氏分類器,同時以廣義線性模型作為比較基準。由於念珠菌菌血症病人數遠少於細菌菌血症,我們使用兩種抽樣技術,包括隨機下採樣和隨機上採樣,去處理病例對照研究的不平衡資料。隨機下採樣樣本建立的單純貝氏分類器,敏感度和平衡準確率最高而特異性和準確率在可接受範圍內,是最佳的預測模型。此研究主要貢獻為應用資料探勘算法處理複雜的醫療資料,針對菌血症病人預測念珠菌菌血症的初步結果。
zh_TW
dc.description.abstractCandida species are among top four pathogens causing healthcare-associated infections in critically ill patients which are associated with considerable morbidity and mortality, additional length of hospital stay and extra costs. Culture is currently the only diagnostic method. The sensitivity of blood cultures is only 21 to 71%. Blood cultures are further limited by slow turn-around times. Nosocomial colonization and infection with multiple drug resistant organism and Candida species share many common clinical signs and risk factors. Presumptive or empirical treatment of patients with invasive candidiasis is difficult, as such strategies have not been validated. Although delayed initiation of antifungal therapy is associated with increased mortality, overuse of antifungals may lead to the emergence of drug-resistant Candida species. Therefore, prediction rules have been developed and validated in order to identify those patients at high risk for invasive candidiasis and likely to benefit from early treatment.
This case-control study analyzed comprehensive data of hospitalized patients with candidemia (case) or bacteremia (control) to identify risk factors independently associated with candidemia and implemented data mining techniques to develop and internal validate a candidemia prediction model for patients with first episode of bloodstream infections. Among complicated patient data, 5 variables were used as input of the algorithm. We used five data mining algorithms including support vector machine (SVM), decision tree (DT), random forest, k-Nearest Neighbors (k-NN) and Naive Bayes while a generalized linear model (GLM) was set as the baseline. We used two sampling techniques, i.e., random undersampling (RUS) and random oversampling (ROS), to handle the imbalanced datasets. The most parsimonious model was Naïve Bayes with RUS sample with sensitivity (71.9%), specificity (65.1%), positive predictive value (8.9%), negative predictive value (98.0%), accuracy (65.4%), balanced accuracy (68.5%) and F1 score (15.8%), and achieves an area under the receiver operating characteristic curve of 0.817. In conclusion, this data mining-based algorithms using only 5 variables generated in routine practice from heterogeneous patient population to discriminate patients with a high risk of candidemia among hospitalized patients with positive blood cultures, illustrating the potential value and feasibility of personalizing candidemia treatment.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:46:24Z (GMT). No. of bitstreams: 1
ntu-107-R05945043-1.pdf: 1427510 bytes, checksum: e8839bd48f2d47428dd769d508116a34 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Contents vi
List of Figures viii
List of Tables ix
List of Appendixes x
Chapter 1 Introduction 1
1.1 Epidemiology of Invasive Candidiasis 1
1.2 Diagnostic Tests for Invasive Candidiasis 1
1.3 Antifungal Strategy 3
1.4 Candida Infection Researches in Recent Years 3
1.5 Handling Imbalanced Dataset 4
1.6 Data Mining Technology 5
1.7 The Study Objective 5
Chapter 2 Methods 6
2.1 Hospital Setting 6
2.2 Data Collection and Preprocessing 6
2.2.1 Case and Control Definitions 6
2.2.2 Clinical Features Definitions 9
2.3 Prediction Model Establishment 13
2.3.1 Sampling Techniques 13
2.3.2 Feature Selection Algorithms 14
2.3.3 Classification Models 15
2.4 Evaluation Methods 18
Chapter 3 Results 19
Chapter 4 Discussion 31
4.1 Principal Results 31
4.2 Limitations 33
Chapter 5 Conclusion and Future Work 35
5.1 Conclusion 35
5.2 Future Work 35
References 37
Appendixes 41
dc.language.isoen
dc.subject念珠菌菌血症zh_TW
dc.subject資料探勘zh_TW
dc.subject預測模型zh_TW
dc.subject侵襲性念珠菌感染zh_TW
dc.subject念珠菌zh_TW
dc.subjectInvasive candidiasisen
dc.subjectPrediction modelsen
dc.subjectData miningen
dc.subjectCandidaen
dc.subjectCandidemiaen
dc.title念珠菌菌血症預測模型之建構:病例對照研究zh_TW
dc.titleDevelopment of Candidemia Prediction Models: a case-control studyen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee汪大暉,曾意儒,陳俊良,郭律成
dc.subject.keyword念珠菌菌血症,念珠菌,侵襲性念珠菌感染,資料探勘,預測模型,zh_TW
dc.subject.keywordCandidemia,Candida,Invasive candidiasis,Data mining,Prediction models,en
dc.relation.page53
dc.identifier.doi10.6342/NTU201802584
dc.rights.note有償授權
dc.date.accepted2018-08-07
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
dc.date.embargo-lift2023-08-21-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-R05945043-1.pdf
  未授權公開取用
1.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved