Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 共同教育中心
  3. 統計碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79129
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張淑惠
dc.contributor.authorYu-Sheng Huangen
dc.contributor.author黃宇生zh_TW
dc.date.accessioned2021-07-11T15:46:19Z-
dc.date.available2023-08-14
dc.date.copyright2018-08-14
dc.date.issued2018
dc.date.submitted2018-08-07
dc.identifier.citationAndersen, P. K. & Gill, R. D. (1982). Cox's regression model for counting processes: a large sample study. Ann. Statist., 10, 1100-1120.
Breslow, N. E. & Day, N. E. (1980). Statistical Models in Cancer Research, 1, The Design and Analysis of Case-Control Studies. Lyon: IARC.
Breslow, N. E. & Day, N. E. (1987). Statistical Methods in Cancer Research, 2, The Design and Analysis of Cohort Studies. Lyon: IARC.
Boruvka, A. & Cook R. J. (2015). A Cox-Aalen model for interval-censored data. Scand J Statist, 42, 414–426.
Cox, D. R. (1972). Regression models and life-tables. J. R. Statist. Soc. B 34, 187-220.
Cox, D. R. & Oakes, D. (1984). Analysis of Survival Data. London: Chapman & Hall.
Finkelstein, D. M. & Wolfe, R. A. (1985). A semiparametric model for regression analysis of interval-censored failure time data. Biometrics, 1, 993-1045.
Finkelstein, D. M. (1986). A proportional hazards model for interval-censored failure time data. Biometrics, 42, 845-854.
Groeneboom, P. & Wellner, J. A. (1992). Information bounds and nonparametric maximum likelihood estimation. Birkhauser, Basel.
Goetghebeur, E. & Ryan, L. (2000). Semiparametric regression analysis of interval-censored Data. Biometrics, 56, 1139-1144.
Hoel, D. G. & Walburg, H. E. (1972). Statistical analysis of survival experiments. Journal of National Cancer Institute, 49, 361-372.
Law, C. G. & Brookmeyer, R. (1992). Effect of Mid-point imputation on the analysis of doubly censored data. Statistics in Medicine, 11, 1569-1578.
Lin, D. Y. & Ying, Z. (1994). Semiparametric analysis of the additive risk model. Biometrika, 81,61-71.
Lin, D. Y. ,Oakes, D. & Ying, Z. (1998). Additive hazards regression with current status data. Biometrika, 85, 289-298.
Lin, D. Y. ,Wei, L. J. ,Yang, I. & Ying, Z. (2000). Semiparametric regression for the mean and rate functions of recurrent events. J. R. Statist. Soc. B 62, 711-730.
Martinussen, T. & Scheike, T. H. (2002). Efficient estimation in additive hazards regression with current status data. Biometrika , 89, 649–658.
Huang, J. (1996). Efficient estimation for the proportional hazards model with interval censoring. The Annals of Statistics, 24, 540-568.
Huang, J. & Wellner, J. A. (1997). Interval censored survival data: A review of recent progress. Proceedings of the first Seattle symposium in biostatistics: survival analysis, springer.
Myron, S. ,Cohen, M. D. & Ying, Q. (2011). Prevention of HIV-1 Infection with Early Antiretroviral Therapy. N Engl J Med, 365, 493-505.
Mao, L. ,Lin, D. Y. & Zeng, D. (2017). Semiparametric regression analysis of interval-censored competing risks data. Biometrics, 73, 857–865.
Scheike, T. H. & Zhang, M. J. (2002). An additive-multiplicative Cox-Aalen regression model. Scand J Statist, 29, 75-88.
Turnbull, B. W. (1976). The empirical distribution with arbitrarily grouped censored and truncated data. Journal of the Royal Statistical Society, B 38, 290-295.
Thomas, D. C. (1986). Use of auxiliary information in fitting nonproportional hazards models. In Modern Statistical Methods in Chronic Disease Epidemiology, Ed. S. H. Moolgavkar and R. L. Prentice, 197-210.
Hsieh, Y. T., Yang, C. M. & Chang, S. H. (2017). Bevacizumab and Panretinal photocoagulation protect against ocular hypertension after posterior subtenon injection of triamcinolone acetonide for diabetic macular edema. Journal of the Formosan Medical Association, 116 , 599-605.
Wang, L. ,Sun, J. & Tong, X. (2010). Regression analysis of case II interval-censored Failure Time Date with the additive hazards model. Statistica Sinica, 20, 1709-1723.
謝易庭 (2017) 相依性重複事件與中止事件的間隔時間資料之聯合模式。國立台灣大學公共衛生學院流行病與預防醫學研究所生物統計組博士論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79129-
dc.description.abstract許多臨床及流行病學研究中,研究個體經常受到多次監測並記錄其主要事件狀態,該類型研究的資料蒐集方式即形成序列監測資料。一般來說,該種監測過程下主要事件的發生時間會受到區間設限,而區間設限資料在計算上較為複雜且費時,並且沒有辦法完整運用到監測訊息。因此,本研究目的即為在序列監測資料下發展一半參數的回歸分析。本研究推廣單次監測資料下的現時狀態資料估計方法(Lin, Oakes和Ying, 1998)以運用到更完整的監測訊息,並彙總監測過程的收集的一系列現時狀態資料提出二階段估計法對半參數加法風險模型的迴歸係數進行估計。本研究也對估計值的近似分布性質進行探討,並同時提出近似變異數的模型假設下及穩健估計。進一步對多種設限率及監測次數條件下進行模擬分析,以探討該方法在不同情況下的表現。zh_TW
dc.description.abstractMany clinical and epidemiology studies often monitor the study subjects more than one time during the follow-up period and record their statuses of the event of interest at each monitoring time. The data collected from such studies are called the sequential monitoring data. Typically, the time to event of interest is subject to interval censoring under the monitoring process. The computation of interval censored data is complicated and time-consuming. However, the analysis of interval censored data does not fully utilize all the monitoring information. Therefore, this study is to develop a semiparametric estimation method for regression analysis based on the sequential monitoring data In this study, we extend the estimation method for current status data under a single monitoring time (Lin, Oakes, and Ying, 1998) to utilize the comprehensive monitoring information. We propose a two-stage estimation procedure by pooling the sequence of the current status data at monitoring times to estimate the regression coefficients in the semiparametric additive hazard model. The asymptotic properties of the proposed estimators are established and the model-based and robust estimates of the asymptotic variance are also provided. We conduct extensive simulation studies with various censoring rates and monitoring frequencies to investigate the performance of the proposed methods.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:46:19Z (GMT). No. of bitstreams: 1
ntu-107-R05h41007-1.pdf: 1335047 bytes, checksum: 87c414597f4a510d6837ef9a8862c58f (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 i
中文摘要 iii
英文摘要 iv
第一章 序論 1
1.1前言 1
1.2 研究動機與目的 3
第二章 文獻回顧 5
2.1右設限資料加法模型的迴歸分析方法 5
2.2現時狀態資料加法模型的迴歸分析方法 6
2.3重複事件過程的乘法模型迴歸分析方法 8
2.4區間設限迴歸分析方法 9
第三章 方法 12
3.1 符號定義 12
3.2 模式 16
第四章 模擬 21
4.1資料生成 21
4.2模擬結果 22
第五章 結果與討論 42
參考文獻 45
附錄 49
A1 鞅證明 49
dc.language.isozh-TW
dc.subject現時狀態zh_TW
dc.subject二階段估計zh_TW
dc.subject半參數方法zh_TW
dc.subject序列監測資料zh_TW
dc.subject重複事件過程zh_TW
dc.subject監測時間zh_TW
dc.subjectcurrent statusen
dc.subjecttwo-stage estimationen
dc.subjectsemiparametric methoden
dc.subjectsequential monitoring dataen
dc.subjectrecurrent event processen
dc.subjectmonitoring timeen
dc.title序列監測下現時狀態資料之半參數迴歸模型分析zh_TW
dc.titleSemiparametric regression analysis of current status data under sequential monitoringen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee戴政,蔡政安,丘政民
dc.subject.keyword現時狀態,監測時間,重複事件過程,序列監測資料,半參數方法,二階段估計,zh_TW
dc.subject.keywordcurrent status,monitoring time,recurrent event process,sequential monitoring data,semiparametric method,two-stage estimation,en
dc.relation.page49
dc.identifier.doi10.6342/NTU201802137
dc.rights.note有償授權
dc.date.accepted2018-08-07
dc.contributor.author-college共同教育中心zh_TW
dc.contributor.author-dept統計碩士學位學程zh_TW
dc.date.embargo-lift2023-08-14-
顯示於系所單位:統計碩士學位學程

文件中的檔案:
檔案 大小格式 
ntu-107-R05h41007-1.pdf
  未授權公開取用
1.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved