請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7911完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖秀娟 | |
| dc.contributor.author | Jun-Yi Liu | en |
| dc.contributor.author | 劉俊毅 | zh_TW |
| dc.date.accessioned | 2021-05-19T17:58:20Z | - |
| dc.date.available | 2026-08-05 | |
| dc.date.available | 2021-05-19T17:58:20Z | - |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-05 | |
| dc.identifier.citation | Abbas, S., and Wink, M. (2009). Epigallocatechin gallate from green tea (Camellia sinensis) increases lifespan and stress resistance in Caenorhabditis elegans. Planta Med 75, 216-221.
An, J.H., and Blackwell, T.K. (2003). SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev 17, 1882-1893. Andrikopoulos, N.K., Giannakis, I.G., and Tzamtzis, V. (2001). Analysis of olive oil and seed oil triglycerides by capillary gas chromatography as a tool for the detection of the adulteration of olive oil. J Chromatogr Sci 39, 137-145. Antebi, A. (2013). Regulation of longevity by the reproductive system. Exp Gerontol 48, 596-602. Arantes-Oliveira, N., Apfeld, J., Dillin, A., and Kenyon, C. (2002). Regulation of life-span by germ-line stem cells in Caenorhabditis elegans. Science 295, 502-505. Arya, U., Das, C.K., and Subramaniam, J.R. (2010). Caenorhabditis elegans for preclinical drug discovery. Curr Sci India 99, 1669-1680. Avery, L., and You, Y.J. (2012). C. elegans feeding. WormBook, 1-23. Bakthisaran, R., Tangirala, R., and Rao, C.M. (2015). Small heat shock proteins: Role in cellular functions and pathology. Biochim Biophys Acta 1854, 291-319. Bass, T.M., Weinkove, D., Houthoofd, K., Gems, D., and Partridge, L. (2007). Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech Ageing Dev 128, 546-552. Baumeister, R., Schaffitzel, E., and Hertweck, M. (2006). Endocrine signaling in Caenorhabditis elegans controls stress response and longevity. J Endocrinol 190, 191-202. Blackwell, T.K., Steinbaugh, M.J., Hourihan, J.M., Ewald, C.Y., and Isik, M. (2015). SKN-1/Nrf, stress responses, and aging in Caenorhabditis elegans. Free Radic Bio Med 88, 290-301. Blum, J., and Fridovich, I. (1983). Superoxide, hydrogen peroxide, and oxygen toxicity in two free-living nematode species. Arch Biochem Biophys 222, 35-43. Bolanowski, M.A., Russell, R.L., and Jacobon, L.A. (1981). Quantitative measures of aging in the nematode Caenorhabditis elegans. 1. population and longitudinal-studies of 2 behavioral parameters. Mech Ageing Dev 15, 279-295. Branicky, R., and Hekimi, S. (2006). What keeps C. elegans regular: the genetics of defecation. Trends Genet 22, 571-579. Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94. Brown, M.K., Evans, J.L., and Luo, Y. (2006). Beneficial effects of natural antioxidants EGCG and alpha-lipoic acid on life span and age-dependent behavioral declines in Caenorhabditis elegans. Pharmacol Biochem Be 85, 620-628. Canuelo, A., Gilbert-Lopez, B., Pacheco-Linan, P., Martinez-Lara, E., Siles, E., and Miranda-Vizuete, A. (2012). Tyrosol, a main phenol present in extra virgin olive oil, increases lifespan and stress resistance in Caenorhabditis elegans. Mech Ageing Dev 133, 563-574. Cao, Z.M., Wu, Y.J., Curry, K., Wu, Z.X., Christen, Y., and Luo, Y. (2007). Ginkgo biloba extract EGb 761 and Wisconsin ginseng delay sarcopenia in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 62, 1337-1345. Chen, W., Sudji, I.R., Wang, E., Joubert, E., van Wyk, B.E., and Wink, M. (2013). Ameliorative effect of aspalathin from rooibos (Aspalathus linearis) on acute oxidative stress in Caenorhabditis elegans. Phytomedicine 20, 380-386. Cheng, S.C., Li, W.H., Shi, Y.C., Yen, P.L., Lin, H.Y., Liao, V.H.C., and Chang, S.T. (2014a). Antioxidant activity and delayed aging effects of hot water extract from Chamaecyparis obtusa var. formosana leaves. J Agric Food Chem 62, 4159-4165. Cheng, Y.T., Wu, S.L., Ho, C.Y., Huang, S.M., Cheng, C.L., and Yen, G.C. (2014b). Beneficial effects of Camellia Oil (Camellia oleifera Abel.) on ketoprofen-induced gastrointestinal mucosal damage through upregulation of HO-1 and VEGF. J Agric Food Chem 62, 642-650. Chow, D.K., Glenn, C.F., Johnston, J.L., Goldberg, I.G., and Wolkow, C.A. (2006). Sarcopenia in the Caenorhabditis elegans pharynx correlates with muscle contraction rate over lifespan. Exp Gerontol 41, 252-260. Coburn, C., Allman, E., Mahanti, P., Benedetto, A., Cabreiro, F., Pincus, Z., Matthijssens, F., Araiz, C., Mandel, A., Vlachos, M., et al. (2013). Anthranilate fluorescence marks a calcium-propagated necrotic wave that promotes organismal death in C. elegans. Plos Biol 11(7), e1001613. Collins, J.J., Huang, C., Hughes, S., and Kornfeld, K. (2008). The measurement and analysis of age-related changes in Caenorhabditis elegans. WormBook, 1-21. De Castro, E., De Castro, S.H., and Johnson, T.E. (2004). Isolation of long-lived mutants in Caenorhabditis elegans using selection for resistance to juglone. Free Radic Bio Med 37, 139-145. Feas, X., Estevinho, L.M., Salinero, C., Vela, P., Sainz, M.J., Vazquez-Tato, M.P., and Seijas, J.A. (2013). Triacylglyceride, antioxidant and antimicrobial features of virgin Camellia oleifera, C. reticulata and C. sasanqua Oils. Molecules 18, 4573-4587. Fernandez del Rio, L., Gutierrez-Casado, E., Varela-Lopez, A., and Villalba, J.M. (2016). Olive oil and the hallmarks of aging. Molecules 21. Finkel, T., and Holbrook, N.J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature 408, 239-247. Flatt, T., Min, K.J., D'Alterio, C., Villa-Cuesta, E., Cumbers, J., Lehmann, R., Jones, D.L., and Tatar, M. (2008). Drosophila, germ-line modulation of insulin signaling and lifespan. Proc Natl Acad Sci U S A 105, 6368-6373. Fridovich, I. (1995). Superoxide radical and superoxide dismutases. Annu Rev Biochem 64, 97-112. Friedman, D.B., and Johnson, T.E. (1988). A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118, 75-86. Garigan, D., Hsu, A.L., Fraser, A.G., Kamath, R.S., Ahringer, J., and Kenyon, C. (2002). Genetic analysis of tissue aging in Caenorhabditis elegans: A role for heat-shock factor and bacterial proliferation. Genetics 161, 1101-1112. Gerstbrein, B., Stamatas, G., Kollias, N., and Driscoll, M. (2005). In vivo spectrofluorimetry reveals endogenous biomarkers that report healthspan and dietary restriction in Caenorhabditis elegans. Aging Cell 4, 127-137. Goudeau, J., Bellemin, S., Toselli-Mollereau, E., Shamalnasab, M., Chen, Y.Q., and Aguilaniu, H. (2011). Fatty acid desaturation links germ cell loss to longevity through NHR-80/HNF4 in C. elegans. Plos Biol 9(3), e1000599. Gruber, J., Tang, S.Y., and Halliwell, B. (2007). Evidence for a trade-off between survival and fitness caused by resveratrol treatment of Caenorhabditis elegans. Ann Ny Acad Sci 1100, 530-542. Guarente, L., and Kenyon, C. (2000). Genetic pathways that regulate ageing in model organisms. Nature 408, 255-262. Harman, D. (1956). Aging - a theory based on free-radical and radiation-chemistry. J Gerontol 11, 298-300. Henderson, S.T., and Johnson, T.E. (2001). daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr Biol 11, 1975-1980. Herndon, L.A., Schmeissner, P.J., Dudaronek, J.M., Brown, P.A., Listner, K.M., Sakano, Y., Paupard, M.C., Hall, D.H., and Driscoll, M. (2002). Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419, 808-814. Honda, Y., Tanaka, M., and Honda, S. (2008). Modulation of longevity and diapause by redox regulation mechanisms under the insulin-like signaling control in Caenorhabditis elegans. Exp Gerontol 43, 520-529. Horikawa, M., and Sakamoto, K. (2009). Fatty-acid metabolism is involved in stress-resistance mechanisms of Caenorhabditis elegans. Biochem Biophys Res Commun 390, 1402-1407. Hsin, H., and Kenyon, C. (1999). Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399, 362-366. Huang, C., Xiong, C.J., and Kornfeld, K. (2004). Measurements of age-related changes of physiological processes that predict lifespan of Caenorhabditis elegans. Proc Natl Acad Sci U S A 101, 8084-8089. Inoue, H., Hisamoto, N., An, J.H., Oliveira, R.P., Nishida, E., Blackwell, T.K., and Matsumoto, K. (2005). The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. Genes Dev 19, 2278-2283. Kaletta, T., and Hengartner, M.O. (2006). Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov 5, 387-398. Kampkotter, A., Nkwonkam, C.G., Zurawski, R.F., Timpel, C., Chovolou, Y., Watjen, W., and Kahl, R. (2007a). Effects of the flavonoids kaempferol and fisetin on thermotolerance, oxidative stress and FoxO transcription factor DAF-16 in the model organism Caenorhabditis elegans. Arch Toxicol 81, 849-858. Kampkotter, A., Nkwonkam, C.G., Zurawski, R.F., Timpel, C., Chovolou, Y., Watjen, W., and Kahl, R. (2007b). Investigations of protective effects of the flavonoids quercetin and rutin on stress resistance in the model organism Caenorhabditis elegans. Toxicology 234, 113-123. Kampkotter, A., Timpel, C., Zurawski, R.F., Ruhl, S., Chovolou, Y., Proksch, P., and Watjen, W. (2008). Increase of stress resistance and lifespan of Caenorhabditis elegans by quercetin. Comp Biochem Phys B 149, 314-323. Kenyon, C., Chang, J., Gensch, E., Rudner, A., and Tabtiang, R. (1993). A C. elegans mutant that lives twice as long as wild-type. Nature 366, 461-464. Kenyon, C.J. (2010). The genetics of ageing. Nature 464, 504-512. Keowkase, R., Aboukhatwa, M., and Luo, Y.A. (2010). Fluoxetine protects against amyloid-beta toxicity, in part via daf-16 mediated cell signaling pathway, in Caenorhabditis elegans. Neuropharmacology 59, 358-365. Keys, A., Menotti, A., Karvonen, M.J., Aravanis, C., Blackburn, H., Buzina, R., Djordjevic, B.S., Dontas, A.S., Fidanza, F., Keys, M.H., et al. (1986). The diet and 15-year death rate in the 7 countries study. Am J Epidemiol 124, 903-915. Kiso, Y. (2004). Antioxidative roles of sesamin, a functional lignan in sesame seed, and it's effect on lipid- and alcohol-metabolism in the liver: A DNA microarray study. BioFactors 21, 191-196. Kleinveld, H.A., Naber, A.H.J., Stalenhoef, A.F.H., and Demacker, P.N.M. (1993). Oxidation resistance, oxidation rate, and extent of oxidation of human low-density-lipoprotein depend on the ratio of oleic acid content to linoleic acid content studies in vitamin E deficient subjects. Free Radic Bio Med 15, 273-280. Knoops, K.T.B., de Groot, L.C.P.G.M., Kromhout, D., Perrin, A.E., Moreiras-Varela, O., Menotti, A., and van Staveren, W.A. (2004). Mediterranean diet, lifestyle factors, and 10-year mortality in elderly European men and women - The HALE project. Jama-J Am Med Assoc 292, 1433-1439. Krishnan, K., Mathew, L.E., Vijayalakshmi, N.R., and Helen, A. (2014). Anti-inflammatory potential of β-amyrin, a triterpenoid isolated from Costus igneus. Inflammopharmacology 22, 373-385. Kuwabara, P.E., and O'Neil, N. (2001). The use of functional genomics in C. elegans for studying human development and disease. J Inherit Metab Dis 24, 127-138. Lai, C.H., Chou, C.Y., Ch'ang, L.Y., Liu, C.S., and Lin, W.C. (2000). Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res 10, 703-713. Lee, C.P., Shih, P.H., Hsu, C.L., and Yen, G.C. (2007). Hepatoprotection of tea seed oil (Camellia oleifera Abel.) against CCl4-induced oxidative damage in rats. Food Cheml Toxicol 45, 888-895. Lee, C.P., and Yen, G.C. (2006). Antioxidant activity and bioactive compounds of tea seed (Camellia oleifera Abel.) oil. J Agric Food Chem 54, 779-784. Li, W.H., Chang, C.H., Huang, C.W., Wei, C.C., and Liao, V.H.C. (2014a). Selenite enhances immune response against Pseudomonas aeruginosa PA14 via SKN-1 in Caenorhabditis elegans. PloS one 9(8), e105810. Li, W.H., Shi, Y.C., Chang, C.H., Huang, C.W., and Liao, V.H.C. (2014b). Selenite protects Caenorhabditis elegans from oxidative stress via DAF-16 and TRXR-1. Mol Nutr Food Res 58, 863-874. Liao, V.H.C., Yu, C.W., Chu, Y.J., Li, W.H., Hsieh, Y.C., and Wang, T.T. (2011). Curcumin-mediated lifespan extension in Caenorhabditis elegans. Mech Ageing Dev 132, 480-487. Lithgow, G.J., White, T.M., Melov, S., and Johnson, T.E. (1995). Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal-stress. Proc Natl Acad Sci U S A 92, 7540-7544. Lopez-Miranda, J., Perez-Jimenez, F., Ros, E., De Caterina, R., Badimon, L., Covas, M.I., Escrich, E., Ordovas, J.M., Soriguer, F., Abia, R., et al. (2010). Olive oil and health: Summary of the II international conference on olive oil and health consensus report, Jaen and Cordoba (Spain) 2008. Nutr Metab Cardiovas 20, 284-294. McColl, G., Roberts, B.R., Pukala, T.L., Kenche, V.B., Roberts, C.M., Link, C.D., Ryan, T.M., Masters, C.L., Barnham, K.J., Bush, A.I., et al. (2012). Utility of an improved model of amyloid-beta (Aβ1-42) toxicity in Caenorhabditis elegans for drug screening for Alzheimer's disease. Mol Neurodegener 7, 57. Melov, S., Coskun, P., Patel, M., Tuinstra, R., Cottrell, B., Jun, A.S., Zastawny, T.H., Dizdaroglu, M., Goodman, S.I., Huang, T.T., et al. (1999). Mitochondrial disease in superoxide dismutase 2 mutant mice. Proc Natl Acad Sci U S A 96, 846-851. Moreno, J.J. (2003). Effect of olive oil minor components on oxidative stress and arachidonic acid mobilization and metabolism by macrophages RAW 264.7. Free Radical Bio Med 35, 1073-1081. Munoz, M.J., and Riddle, D.L. (2003). Positive selection of Caenorhabditis elegans mutants with increased stress resistance and longevity. Genetics 163, 171-180. Murphy, C.T. (2006). The search for DAF-16/FOXO transcriptional targets: Approaches and discoveries. Exp Gerontol 41, 910-921. Nakai, M., Harada, M., Nakahara, K., Akimoto, K., Shibata, H., Miki, W., and Kiso, Y. (2003). Novel antioxidative metabolites in rat liver with ingested sesamin. J Agric Food Chem 51, 1666-1670. Nass, R., Hall, D.H., Miller, D.M., and Blakely, R.D. (2002). Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proc Natl Acad Sci U S A 99, 3264-3269. Nass, R., Merchant, K.M., and Ryan, T. (2008). Caenorhabditis elegans in Parkinson's disease drug discovery: addressing an unmet medical need. Mol Interv 8, 284-293. O'Reilly, L.P., Luke, C.J., Perlmutter, D.H., Silverman, G.A., and Pak, S.C. (2014). C. elegans in high-throughput drug discovery. Adv Drug Deliver Rev 69, 247-253. Paniagua-Perez, R., Madrigal-Bujaidar, E., Reyes-Cadena, S., Alvarez-Gonzalez, I., Sanchez-Chapul, L., Perez-Gallaga, J., Hernandez, N., Flores-Mondragon, G., and Velasco, O. (2008). Cell protection induced by beta-sitosterol: inhibition of genotoxic damage, stimulation of lymphocyte production, and determination of its antioxidant capacity. Arch Toxicol 82, 615-622. Papp, D., Csermely, P., and Soti, C. (2012). A role for SKN-1/Nrf in pathogen resistance and immunosenescence in Caenorhabditis elegans. PLoS Pathog 8(4), e1002673. Parthasarathy, S., Khoo, J.C., Miller, E., Barnett, J., Witztum, J.L., and Steinberg, D. (1990). Low-density-lipoprotein rich in oleic-acid is protected against oxidative modification - implications for dietary prevention of atherosclerosis. Proc Natl Acad Sci U S A 87, 3894-3898. Pietsch, K., Saul, N., Menzel, R., Sturzenbaum, S.R., and Steinberg, C.E.W. (2009). Quercetin mediated lifespan extension in Caenorhabditis elegans is modulated by age-1, daf-2, sek-1 and unc-43. Biogerontology 10, 565-578. Raizen, D., Song, B.-m., Trojanowski, N., and You, Y.-J. (2005). Methods for measuring pharyngeal behaviors. WormBook, 1-13. Sales-Campos, H., de Souza, P.R., Peghini, B.C., da Silva, J.S., and Cardoso, C.R. (2013). An overview of the modulatory effects of oleic acid in health and disease. Mini-Rev Med Chem 13, 201-210. Saul, N., Pietsch, K., Menzel, R., and Steinberg, C.E.W. (2008). Quercetin-mediated longevity in Caenorhabditis elegans: Is DAF-16 involved? Mech Ageing Dev 129, 611-613. Saul, N., Pietsch, K., Menzel, R., Sturzenbaum, S.R., and Steinberg, C.E.W. (2009). Catechin induced longevity in C. elegans: From key regulator genes to disposable soma. Mech Ageing Dev 130, 477-486. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat Methods 9, 676-682. Shi, Y.C., Yu, C.W., Liao, V.H.C., and Pan, T.M. (2012). Monascus-fermented dioscorea enhances oxidative stress resistance via DAF-16/FOXO in Caenorhabditis elegans. PloS one 7(6), e39515. Sonnhammer, E.L.L., and Durbin, R. (1997). Analysis of protein domain families in Caenorhabditis elegans. Genomics 46, 200-216. Steinbaugh, M.J., Narasimhan, S.D., Robida-Stubbs, S., Mazzeo, L.E.M., Dreyfuss, J.M., Hourihan, J.M., Raghavan, P., Operana, T.N., Esmaillie, R., and Blackwell, T.K. (2015). Lipid-mediated regulation of SKN-1/Nrf in response to germ cell absence. Elife 4. Strayer, A., Wu, Z.X., Christen, Y., Link, C.D., and Luo, Y. (2003). Expression of the small heat-shock protein HSP-16.2 in Caenorhabditis elegans is suppressed by Ginkgo biloba extract EGb 761. Faseb J 17(15), 2305-2307. Su, M.H., Shih, M.C., and Lin, K.H. (2014). Chemical composition of seed oils in native Taiwanese Camellia species. Food Chem 156, 369-373. Sulston, J. and Hodgkin, J. (1988). Methods. In: Wood., W.B. (Ed.) The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory Press, New York, pp. 587-606. Sunil, C., Irudayaraj, S.S., Duraipandiyan, V., Al-Dhabi, N.A., Agastian, P., and Ignacimuthu, S. (2014). Antioxidant and free radical scavenging effects of β-amyrin isolated from S. cochinchinensis Moore. leaves. Ind Crop Prod 61, 510-516. Tawe, W.N., Eschbach, M.L., Walter, R.D., and Henkle-Duhrsen, K. (1998). Identification of stress-responsive genes in Caenorhabditis elegans using RT-PCR differential display. Nucleic Acids Res 26, 1621-1627. Teres, S., Barcelo-Coblijn, G., Benet, M., Alvarez, R., Bressani, R., Halver, J.E., and Escriba, P.V. (2008). Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proc Natl Acad Sci U S A 105, 13811-13816. Terman, A., and Brunk, U.T. (2004). Lipofuscin. Int J Biochem Cell B 36, 1400-1404. Thimmulappa, R.K., Mai, K.H., Srisuma, S., Kensler, T.W., Yamamato, M., and Biswal, S. (2002). Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res 62, 5196-5203. Tullet, J.M.A., Hertweck, M., An, J.H., Baker, J., Hwang, J.Y., Liu, S., Oliveira, R.P., Baumeister, R., and Blackwell, T.K. (2008). Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 132, 1025-1038. Van Gilst, M.R., Hadjivassiliou, H., Jolly, A., and Yamamoto, K.R. (2005). Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans. Plos Biol 3, 301-312. Vassiliou, E.K., Gonzalez, A., Garcia, C., Tadros, J.H., Chakraborty, G., and Toney, J.H. (2009). Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-alpha both in vitro and in vivo systems. Lipids Health Dis 8. Viswanathan, M., Kim, S.K., Berdichevsky, A., and Guarente, L. (2005). A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev Cell 9, 605-615. Vivancos, M., and Moreno, J.J. (2005). Beta-sitosterol modulates antioxidant enzyme response in RAW 264.7 macrophages. Free Radical Bio Med 39, 91-97. Voss, P., and Siems, W. (2006). Clinical oxidation parameters of aging. Free Radic Res 40, 1339-1349. Wang, M.C., O'Rourke, E.J., and Ruvkun, G. (2008). Fat metabolism links germline stem cells and longevity in C. elegans. Science 322, 957-960. Wei, C. C., Yen, P. L., Chang, S. T., Cheng, P. L., Lo, Y. C., and Liao, V.H.C. (2016). Antioxidative activities of both oleic acid and Camellia tenuifolia seed oil are regulated by the transcription factor DAF-16/FOXO in Caenorhabditis elegans. PloS one, 11(6), e0157195. Willett, W.C., Sacks, F., Trichopoulou, A., Drescher, G., Ferroluzzi, A., Helsing, E., and Trichopoulos, D. (1995). Mediterranean diet pyramid - a cultural model for healthy eating. Am J Clin Nutr 61, 1402s-1406s. Wilson, M.A., Shukitt-Hale, B., Kalt, W., Ingram, D.K., Joseph, J.A., and Wolkow, C.A. (2006). Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans. Aging Cell 5, 59-68. Witztum, J.L., and Steinberg, D. (1991). Role of oxidized low-density-lipoprotein in atherogenesis. J Clin Invest 88, 1785-1792. Wood, J.G., Rogina, B., Lavu, S., Howitz, K., Helfand, S.L., Tatar, M., and Sinclair, D. (2004). Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430, 686-689. Wu, Z.X., Smith, J.V., Paramasivam, V., Butko, P., Khan, I., Cypser, J.R., and Luo, Y. (2002). Ginkgo biloba extract EGb 761 increases stress resistance and extends life span of Caenorhabditis elegans. Cell Mol Biol 48, 725-731. Yaguchi, Y., Komura, T., Kashima, N., Tamura, M., Kage-Nakadai, E., Saeki, S., Terao, K., and Nishikawa, Y. (2014). Influence of oral supplementation with sesamin on longevity of Caenorhabditis elegans and the host defense. Eur J Nutr 53, 1659-1668. Yu, C.W., How, C.M., and Liao, V.H.C. (2016). Arsenite exposure accelerates aging process regulated by the transcription factor DAF-16/FOXO in Caenorhabditis elegans. Chemosphere 150, 632-638. Zhang, J.L., Lu, L.L., and Zhou, L.J. (2015). Oleanolic acid activates DAF-16 to increase lifespan in Caenorhabditis elegans. Biochem Biophys Res Commun 468, 843-849. Zhang, L.Z., Jie, G.L., Zhang, J.J., and Zhao, B.L. (2009). Significant longevity-extending effects of EGCG on Caenorhabditis elegans under stress. Free Radic Bio Med 46, 414-421. Zuo, Y.Y., Peng, C., Liang, Y.T., Ma, K.Y., Chan, H.Y.E., Huang, Y., and Chen, Z.Y. (2013). Sesamin extends the mean lifespan of fruit flies. Biogerontology 14, 107-119. 何孟穎, 劉兆坤, 王川銘, 蘇矢立 (2009). 當糖尿病患者遇到油脂酸敗時應有的認知. 中華民國糖尿病衛教學會會訊 5, 35-38. 張同吳 (2014). 臺灣油茶產業概況. 花蓮區農業專訊 89, 14-17. 謝明哲, 劉珍芳, 郭鈺安, 施純光 (2002). 食物學原理與實驗. 行政院農業委員會農業試驗所 (2015). 苦茶油保健功效之研究. Research of healthy bioactivity of Camellia oil. 計畫編號104農科-18.3.1-農C2. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7911 | - |
| dc.description.abstract | 苦茶油乃源自於油茶樹的種籽經榨取而得,為亞洲國家傳統常用之食用油品,即使具有傳統的療效,然而對於苦茶油的研究仍缺乏充足的科學證據予以佐證。因此本研究利用模式生物秀麗隱桿線蟲(Caenorhabditis elegans)探討小果種苦茶油對生物體的延緩老化作用,並進一步研究其參與的調控機制。研究結果顯示,C. elegans經小果種苦茶油餵食後,能顯著提升體內抗氧化力且延長在氧化壓力下的壽命;同時在一般培養條件下,亦能顯著延長C. elegans平均壽命達12.3 % (p < 0.001)。此外,小果種苦茶油也能延緩C. elegans老化相關行為如pharyngeal pumping rate及defecation cycle的退化,並且顯著降低C. elegans體內老化指標脂褐素的累積量,若是利用小果種苦茶油中等量的油酸進行實驗,則發現其結果類似。研究結果進一步顯示,小果種苦茶油對C. elegans的延緩老化功效可能透過提升轉錄因子DAF-16/FOXO在氧化壓力下進入細胞核的反應,同時提高1.3倍daf-16 基因表現量(p = 0.079)及其下游抗氧化蛋白例如SOD-3基因表達增加;此外,亦可能透過提升轉錄因子SKN-1/Nrf進入細胞核的反應,同時提高1.31倍skn-1及1.45倍其下游抗氧化基因gcs-1 基因表現量(p = 0.002; p < 0.001),以提升C. elegans體內抗氧化力。總結來說,本研究顯示小果種苦茶油對生物體具有提升生物體內抗氧化力、延緩老化相關行為,以及延長平均壽命之保健功效,而此保健功效可藉由其脂肪酸組成中含量最高的成分油酸達成。本研究結果提供小果種苦茶油保健功效的科學數據,因此小果種苦茶油對人類健康具有進一步研究及推廣的優勢,並進一步促進台灣農業發展。 | zh_TW |
| dc.description.abstract | Tea seed oil from the seeds of Camellia trees is commonly used as edible oil in Asia. Despite its traditional medical effects, there is insufficient scientific data to support the beneficial effects of tea seed oil to human beings. In this study, the model organism Caenorhabditis elegans was applied to investigate the in vivo delayed aging effects by Camellia tenuifolia seed oil and its underlying mechanisms. The results showed that C. tenuifolia seed oil significantly enhanced the antioxidant activity and extended the longevity in C. elegans under juglone-induced oxidative stress. In addition, C. tenuifolia seed oil significantly increased the lifespan of C. elegans by 12.3 % under normal condition (p < 0.001). Furthermore, the degeneration of age-related behaviors, such as pharyngeal pumping rate and defecation cycle, were significantly attenuated and the accumulation of lipofuscin was significantly decreased during aging process in C. elegans treated with C. tenuifolia seed oil. When C. elegans was pretreated with oleic acid using the concentration corresponding to the content in C. tenuifolia seed oil, the results were similar to aforementioned results in C. tenuifolia seed oil. We further showed that C. tenuifolia seed oil enhanced the translocation of the transcription factor DAF-16/FOXO and increased 1.3-fold mRNA level of daf-16 (p = 0.079), thereby triggering the downstream gene SOD-3 expression. Moreover, the other transcription factor SKN-1/Nrf was shown to translocate to nuclear upon C. tenuifolia seed oil pretreatment, further increasing 1.31-fold mRNA level of skn-1 and 1.45-fold mRNA level of downstream gene gcs-1 to enhance the antioxidant activity (p = 0.002; p < 0.001). In conclusion, our study demonstrated that C. tenuifolia seed oil increased the in vivo antioxidant activity, increased longevity, delayed aging effects, and extended lifespan in C. elegans and oleic acid plays a critical role in the beneficial effects of C. tenuifolia seed oil. Results from this study provide scientific evidence for the health effects of C. tenuifolia seed oil. Therefore, it is suggested that C. tenuifolia seed oil worth further investigation for human health and promoting the agriculture in Taiwan. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:58:20Z (GMT). No. of bitstreams: 1 ntu-105-R03622003-1.pdf: 1563640 bytes, checksum: c44f952ee9ff9666e9fc3c3cf3fa67f3 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II ABSTRACT III Graphic Abstract V Highlights VI 目錄 VII 圖次 X 表次 XI 縮寫表 XII 一、研究動機 1 二、文獻回顧 2 2.1 苦茶油 (Tea seed oil) 2 2.1.1 油酸 (Oleic acid) 2 2.1.2 苦茶油的研究現況 3 2.2 老化 (Aging) 4 2.2.1 老化機制 4 2.2.2 植物天然代謝物應用於老化之研究 5 2.2.3 地中海飲食 (Mediterranean diet) 5 2.3 秀麗隱桿線蟲 (Caenorhabditis elegans) 6 2.3.1 基本背景 6 2.3.2 C. elegans於老化研究之探討 7 三、研究目的 10 四、材料與方法 11 4.1 實驗架構流程圖 11 4.2 實驗藥品及小果種苦茶油樣品 12 4.3 C. elegans及培養 12 4.4 氧化壓力下的壽命延長試驗 12 4.5 C. elegans壽命延長試驗 13 4.6 C. elegans老化相關行為試驗 13 4.6.1 Pharyngeal pumping rate 14 4.6.2 Defecation cycle 14 4.7 C. elegans體內脂褐素(lipofuscin)自體螢光分析 14 4.8基因轉殖C. elegans綠色螢光蛋白分析 14 4.9 DAF-16 localization試驗 15 4.10 SKN-1 localization試驗 15 4.11 即時定量反轉錄聚合酶連鎖反應(Real-time Quantitative RT-PCR)分析 16 4.12 統計分析 17 五、結果 19 5.1 氧化壓力(oxidative stress)下的壽命延長(longevity)測試 19 5.2 一般培養條件下小果種苦茶油及油酸對C. elegans壽命延長(lifespan extension)之影響 22 5.3 小果種苦茶油及油酸對C. elegans老化相關行為之影響 25 5.4 小果種苦茶油及油酸對C. elegans體內脂褐素累積之影響 28 5.5 小果種苦茶油及油酸對C. elegans體內超氧化物歧化酶(SOD-3)之影響 30 5.6 小果種苦茶油及油酸對C. elegans體內DAF-16 localization之影響 32 5.7 小果種苦茶油及油酸對C. elegans體內DAF-16及其下游基因表達之影響 34 5.8 小果種苦茶油及油酸對C. elegans體內SKN-1 localization之影響 36 5.9 小果種苦茶油及油酸對C. elegans體內SKN-1及其下游基因表達之影響 39 六、討論 42 6.1 小果種苦茶油對C. elegans延長壽命之效應 42 6.2 小果種苦茶油對C. elegans延緩老化之效應 43 6.3 小果種苦茶油對C. elegans體內之調控機制 45 七、結論 47 八、建議 48 九、參考文獻 49 十、附錄 58 | |
| dc.language.iso | zh-TW | |
| dc.title | 以秀麗隱桿線蟲為模式生物探討小果種苦茶油在生物體內的延緩老化功效 | zh_TW |
| dc.title | Effects of delayed aging by seed oil from Camellia tenuifolia in Caenorhabditis elegans | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 何元順,潘敏雄,羅翊禎 | |
| dc.subject.keyword | 秀麗隱桿線蟲,小果種苦茶油,生物體內抗氧化,老化,油酸,DAF-16,SKN-1, | zh_TW |
| dc.subject.keyword | Caenorhabditis elegans,C. tenuifolia seed oil,in vivo antioxidant activity,aging,oleic acid,DAF-16,SKN-1, | en |
| dc.relation.page | 60 | |
| dc.identifier.doi | 10.6342/NTU201602026 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2016-08-08 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-08-05 | - |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 此日期後於網路公開 2026-08-05 | 1.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
