Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79115
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾秀如zh_TW
dc.contributor.author張宇揚zh_TW
dc.contributor.authorYu-yang Changen
dc.date.accessioned2021-07-11T15:45:08Z-
dc.date.available2024-02-28-
dc.date.copyright2018-10-09-
dc.date.issued2018-
dc.date.submitted2002-01-01-
dc.identifier.citation1 Weidel, W. & Pelzer, H. Bagshaped Macromolecules--a New Outlook on Bacterial Cell Walls. Adv Enzymol Relat Subj Biochem 26, 193-232 (1964).
2 Singh, S. K., SaiSree, L., Amrutha, R. N. & Reddy, M. Three redundant murein endopeptidases catalyse an essential cleavage step in peptidoglycan synthesis of Escherichia coli K12. Mol Microbiol 86, 1036-1051, doi:10.1111/mmi.12058 (2012).
3 Schleifer, K. H. & Kandler, O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36, 407-477 (1972).
4 Glauner, B., Holtje, J. V. & Schwarz, U. The Composition of the Murein of Escherichia-Coli. J Biol Chem 263, 10088-10095 (1988).
5 van Heijenoort, J. Assembly of the monomer unit of bacterial peptidoglycan. Cell Mol Life Sci 54, 300-304, doi:DOI 10.1007/s000180050155 (1998).
6 Neuhaus, F. C. & Struve, W. G. Enzymatic Synthesis of Analogs of the Cell-Wall Precursor. I. Kinetics and Specificity of Uridine DipH ospH o-N-Acetylmuramyl-L-Alanyl-D-Glutamyl-L-Lysine:D-Alanyl-D-Alanine Ligase (Adenosine DipH ospH ate) from Streptococcus Faecalis R. Biochemistry 4, 120-131 (1965).
7 Anderson, J. S. & Strominger, J. L. Isolation and utilization of pH ospH olipid intermediates in cell wall glycopeptide synthesis. Biochem BiopH ys Res Commun 21, 516-521 (1965).
8 Ha, S., Walker, D., Shi, Y. & Walker, S. The 1.9 A crystal structure of Escherichia coli MurG, a membrane-associated glycosyltransferase involved in peptidoglycan biosynthesis. Protein Sci 9, 1045-1052, doi:10.1110/ps.9.6.1045 (2000).
9 Ruiz, N. Bioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase in Escherichia coli. Proc Natl Acad Sci U S A 105, 15553-15557, doi:10.1073/pnas.0808352105 (2008).
10 Ghuysen, J. M. Serine Beta-Lactamases and Penicillin-Binding Proteins. Annu Rev Microbiol 45, 37-67, doi:DOI 10.1146/annurev.mi.45.100191.000345 (1991).
11 Vollmer, W. & Bertsche, U. Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. Bba-Biomembranes 1778, 1714-1734, doi:10.1016/j.bbamem.2007.06.007 (2008).
12 De Boer, W. R., Kruyssen, F. J. & Wouters, J. T. Cell wall turnover in batch and chemostat cultures of Bacillus subtilis. J Bacteriol 145, 50-60 (1981).
13 Goodell, E. W. & Schwarz, U. Cleavage and resynthesis of peptide cross bridges in Escherichia coli murein. J Bacteriol 156, 136-140 (1983).
14 Goodell, E. W. & Schwarz, U. Release of Cell-Wall Peptides into Culture-Medium by Exponentially Growing Escherichia-Coli. Journal of Bacteriology 162, 391-397 (1985).
15 Goodell, E. W. Recycling of Murein by Escherichia-Coli. Journal of Bacteriology 163, 305-310 (1985).
16 Pooley, H. M. Turnover and spreading of old wall during surface growth of Bacillus subtilis. J Bacteriol 125, 1127-1138 (1976).
17 Holtje, J. V. From growth to autolysis: the murein hydrolases in Escherichia coli. Arch Microbiol 164, 243-254 (1995).
18 van Heijenoort, J. Peptidoglycan Hydrolases of Escherichia coli. Microbiol Mol Biol R 75, 636-+, doi:10.1128/Mmbr.00022-11 (2011).
19 Aramini, J. M. et al. Solution NMR structure of the NlpC/P60 domain of lipoprotein Spr from Escherichia coli: structural evidence for a novel cysteine peptidase catalytic triad. Biochemistry 47, 9715-9717, doi:10.1021/bi8010779 (2008).
20 Singh, S. K., Parveen, S., SaiSree, L. & Reddy, M. Regulated proteolysis of a cross-link-specific peptidoglycan hydrolase contributes to bacterial morpH ogenesis. P Natl Acad Sci USA 112, 10956-10961, doi:10.1073/pnas.1507760112 (2015).
21 Rawlings, N. D., O'Brien, E. & Barrett, A. J. MEROPS: the protease database. Nucleic Acids Res 30, 343-346 (2002).
22 Liao, D. I., Qian, J., Chisholm, D. A., Jordan, D. B. & Diner, B. A. Crystal structures of the pH otosystem II D1 C-terminal processing protease. Nat Struct Biol 7, 749-753, doi:10.1038/78973 (2000).
23 Mastny, M. et al. CtpB assembles a gated protease tunnel regulating cell-cell signaling during spore formation in Bacillus subtilis. Cell 155, 647-658, doi:10.1016/j.cell.2013.09.050 (2013).
24 Su, M. Y. et al. Structural basis of adaptor-mediated protein degradation by the tail-specific PDZ-protease Prc. Nat Commun 8, 1516, doi:10.1038/s41467-017-01697-9 (2017).
25 Harris, B. Z. & Lim, W. A. Mechanism and role of PDZ domains in signaling complex assembly. J Cell Sci 114, 3219-3231 (2001).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79115-
dc.description.abstract細菌的生長與形態變化受限於肽聚醣的擴張。肽聚醣是由多糖鏈與短肽鏈組成的聚合物,為組成真細菌細胞壁的主要成分之一。肽聚醣的擴張需要肽聚醣水解酶的幫助,在大腸桿菌中,DD-內肽酶MepS功能為水解肽聚醣中肽橋 (cross-link),打斷固有的鍵結後,插入新合成之結構單元並擴張肽聚醣囊膜。然而過多或過少的肽聚醣水解酶都會對細菌細胞壁造成致死性的損傷,顯然這些水解酶在細胞內被良好的調控。先前的研究發現,MepS在細胞內受到週質蛋白酶Prc以及脂蛋白NlpI的共同調控。NlpI作為連接蛋白分別與MepS及Prc結合,由Prc將MepS降解為小片段分子。在結構上,我們的合作者透過X射線蛋白質晶體繞射解出了解析度2.30 Å的NlpI-Prc複合物晶體結構。另外在先前研究中MepS截短後 (胺基酸37-162) 的結構透過核磁共振 (NMR) 被解出,其中截短的N端序列被認為是沒有結構的區域。除此之外目前沒有其他結構上的證據解釋MepS和NlpI-Prc複合物之間的交互作用。為了瞭解MepS在細胞中如何受到蛋白酶系統調控,進而說明細胞壁擴張的機制,我們使用生物物理和生物化學方法來研究蛋白質之間的交互作用。首先利用大腸桿菌大量表現重組蛋白,透過鎳離子親和性層析與膠體過濾層析等方式純化,將重組蛋白用於結構與功能上的分析。我們使用等溫滴定微量量熱法 (ITC) 檢測了NlpI,Prc和MepS之間的交互作用,發現MepS與NlpI結合作用之間具有放熱反應。但我們無法觀察到Meps與Prc之間的任何熱量變化。另外我們亦嘗試透過X射線蛋白質晶體繞射解析MepS-NlpI複合物的晶體結構,並成功培養出NlpI-Meps複合體的晶體,然而在該X射線繞射數據中由於電子密度過於破碎,無法計算出MepS的結構。基於合作者所建構的MepS分子對接模型,我們透過突變可能的結合位點胺基酸來驗證此結合模型。從等溫滴定微量量熱法實驗得知,MepS確實會透過N端螺旋區域與NlpI產生交互作用。另外為了探討N端非結構區域 (胺基酸1-36) 在NlpI結合中扮演的角色,我們將MepS之N端截短後,透過等溫滴定微量量熱法、核磁共振、表面電漿共振等生物物理實驗,偵測與NlpI之間的交互作用。相比於全長MepS,N端截短MepS與NlpI的親和力變得十分微弱,並且在細胞外降解實驗中較難受到NlpI-Prc複合物的降解。綜合以上結果,本篇論文透過突變後親和力分析確定了MepS和NlpI之間的交互作用區域,間接地證實MepS對接模型。另外也發現MepS之非結構N端區域在MepS的調控過程中扮演了重要的角色。zh_TW
dc.description.abstractBacterial growth and morpH ogenesis are intimately coupled to expansion of peptidoglycan (PG), a polymer consisting of sugars and amino acids and forming the cell wall. In Escherichia coli, expansion of PG requiring murein hydrolase MepS that cleaves the cross-links for insertion of new materials and resynthesis of cross-links. It is critical that such cleavage needs to be well regulated to avoid lethal damage of the PG sacculus. In recent study, it has showed that murein hydrolase MepS is specific modulated by the periplasmic protease Prc and the lipoprotein NlpI. NlpI acts as an adaptor to bring MepS and Prc together, and then Prc degrades MepS into small fragments. Our collaborator solved the crystal structure of NlpI-Prc complex at 2.30 Å resolution by X-ray Diffraction. The solution structure of N-terminal truncated MepS (residues 37-162) is determined by NMR (Nuclear Magnetic Resonance) spectroscopy while the first 36 N-terminal residues of MepS is significant disorder in the NMR spectral screening. However, there is no structural evidence to explain the interaction between MepS and NlpI-Prc complex. To understand how the NlpI–Prc complex regulates PG synthesis by altering the levels of MepS, we used biopH ysical and biochemical approaches to investigate the protein-protein interactions. First, the recombinant MepS, NlpI and Prc were expressed and purified by immobilized metal affinity chromatograpH y and gel filtration for structural and functional analysis. We detected the interaction between NlpI, Prc and MepS with isothermal titration calorimetry (ITC) and the results showed that the interaction between MepS and NlpI was an exothermic reaction. But we could not observe any heat changes for the interaction between MepS and Prc. We also tried to determine the crystal structure of NlpI-MepS complex by X-ray diffraction and successfully identified a condition that NlpI-MepS can be crystalized. However, it was difficult to identify the structure of MepS in our X-ray diffraction data due to broken density map. Based on a truncated MepS-docked model built by our collaborator, we examined this binding model by introducing mutations and the results showed that N-terminal helix of MepS is important for interacting to NlpI. To further explore the role of the first 36 N-terminal region of MepS, we detected the interaction between truncated MepS (residues 37-162) and NlpI by ITC, NMR and SPR (Surface Plasma Resonance). Compared to full-length MepS, truncated MepS showed much weak affinity with NlpI and the degradation efficiency was also affected in vitro. Taken together, our findings provide evidences for the MepS-docked model by mutation analyses and the unstructured N-terminal residues of MepS is important for the interaction with NlpI-Prc complex.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:45:08Z (GMT). No. of bitstreams: 1
ntu-107-R05442031-1.pdf: 4036154 bytes, checksum: dff144e8076f38904b974eb046bff730 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents目錄
中文摘要: i
Abstract: iv
目錄 vi
圖目錄 viii
表目錄 x
一、前言 1
1.1 真細菌細胞壁成分:肽聚醣 (peptidoglycan) 1
1.2 細菌細胞壁的合成與擴張 2
1.3 肽聚醣水解酶 3
1.4 DD-內肽酶MepS 3
1.5 DD-內肽酶MepS的調控機制 4
1.6 NlpI-Prc蛋白複合體結構 4
1.7 研究目的 5
二、材料與方法 6
2.1. 蛋白質表現系統 6
2.1.1. 基因選殖與定點突變 6
2.1.2. DNA定序 7
2.1.3. 轉型作用 (transformation) 7
2.1.4. 重組蛋白質大量表現 7
2.2. 蛋白質純化 8
2.2.1. 破菌與蛋白質粗萃取 8
2.2.2. 鎳離子親和性層析 (Nickel column) 8
2.2.3. 膠體過濾層析 (Gel filtration chromatograpH y) 8
2.3. 蛋白質濃縮與定量 9
2.4. 蛋白質晶體培養 9
2.5. 等溫滴定微量量熱法 (Isothermal Titration Calorimetry, ITC) 10
2.6. 表面電漿共振 (Surface Plasmom Resonance, SPR) 11
2.7. 核磁共振光譜儀 (Nuclear Magnetic Resonance, NMR) 12
2.8. MepS降解試驗 (degradation assay) 12
三、結果 13
3.1. 重組蛋白質純化 13
3.1.1. MepS及其突變體 13
3.1.2. MepS-dN36 13
3.1.3. NlpI及其突變體 14
3.1.4. NlpI-ΔN 14
3.1.5. Prc及其突變體 14
3.2. MepS-NlpI蛋白質結晶 15
3.2.1. 蛋白結晶條件初步篩選 15
3.2.2. 蛋白結晶條件之微調 15
3.2.3. X-ray繞射數據收集與結構解析 16
3.3. ITC偵測MepS、NlpI、Prc之間的交互作用 16
3.4. MepS與NlpI結合位點分析 17
3.4.1. NlpI突變分析 17
3.4.2. MepS突變分析 17
3.5. MepS之N末端區域斷裂後對NlpI親和力的影響 18
3.6. 細胞外偵測MepS-dN36與NlpI之交互作用 19
3.6.1. 膠體過濾層析 19
3.6.2. 等溫滴定微量量熱法 19
3.6.3. 表面電漿共振 20
3.7. 核磁共振光譜分析 20
3.7.1. 比較MepS-WT與MepS-dN36之1H-15N TROSY-HSQC光譜 20
3.7.2. 加入NlpI後MepS-WT之1H-15N TROSY-HSQC光譜變化 21
3.7.3. 加入NlpI後MepS-dN36之1H-15N TROSY-HSQC光譜變化 21
3.8. 比較MepS-WT與MepS-dN36受到Prc-NlpI複合體之調控 21
四、討論 23
圖 26
表 61
參考文獻 67

圖目錄
圖1-1 大腸桿菌肽聚醣構造示意圖 26
圖1-2 細菌細胞壁擴張 27
圖1-3 DD-內肽酶MepS之結構 28
圖1-4 MepS之降解試驗 29
圖1-5 NlpI-Prc蛋白複合體之結構 30
圖2-1 實驗流程圖 31
圖3-1 MepS之純化結果 32
圖3-2 MepS-L34A之純化結果 33
圖3-3 MepS-V35A之純化結果 34
圖3-4 MepS-L34A/V35A之純化結果 35
圖3-5 MepS-D39A之純化結果 36
圖3-6 MepS-K41A之純化結果 37
圖3-7 MepS-S42A純化 38
圖3-8 MepS-dN36之純化結果 39
圖3-9 NlpI之純化結果 40
圖3-10 NlpI-Q39A之純化結果 41
圖3-11 NlpI-ΔN之純化結果 42
圖3-12 Prc之純化結果 43
圖3-13 Prc-K477A/S452A之純化結果 44
圖3-14 MepS-NlpI蛋白複合體之結晶 45
圖3-15 ITC偵測MepS、NlpI、Prc相互交互作用 46
圖3-16 MepS分子對接模型 47
圖3-17 ITC偵測MepS與NlpI突變體之交互作用 48
圖3-18 比較NlpI-WT及NlpI-ΔN之膠體過濾層析圖譜 49
圖3-19 ITC偵測MepS與NlpI突變體之交互作用 50
圖3-20 MepS之N端斷裂後降低與NlpI的結合能力 51
圖3-21 比較MepS-WT及MepS-dN36之膠體過濾層析圖譜 52
圖3-22 膠體過濾層析偵測MepS-WT及MepS-dN36與NlpI之結合能力 53
圖3-23 膠體過濾層析偵測MepS-WT及MepS-dN36與NlpI-Prc之結合能力 54
圖3-24 ITC偵測不同溫度下MepS-dN36與NlpI之交互作用 55
圖3-25 SPR偵測MepS-WT及MepS-dN36分別與NlpI的親和力 56
圖3-26 MepS-WT及MepS-dN36之1H-15N TROSY-HSQC核磁共振光譜疊圖 57
圖3-27 MepS-WT加入NlpI後之1H-15N TROSY-HSQC核磁共振光譜疊圖 58
圖3-28 MepS-dN36加入NlpI後之1H-15N TROSY-HSQC核磁共振光譜疊圖 59
圖3-29 MepS-WT及MepS-dN36之降解試驗 60

表目錄
表1 本實驗使用之菌株 61
表2 本實驗使用之質體 62
表3 本實驗使用之引子 (primer) 63
表4 E.coli培養基、培養液 64
表5 緩衝溶液及結晶條件 65
表6 20 ℃下ITC實驗之熱力學參數 66
-
dc.language.isozh_TW-
dc.subjectMepSzh_TW
dc.subjectNlpIzh_TW
dc.subjectPrczh_TW
dc.subject?聚醣zh_TW
dc.subject等溫滴定微量量熱法zh_TW
dc.subject表面電漿共振zh_TW
dc.subject核磁共振zh_TW
dc.subjectPeptidoglycanen
dc.subjectMepSen
dc.subjectNlpIen
dc.subjectPrcen
dc.subjectNuclear Magnetic Resonance (NMR)en
dc.subjectSurface Plasma Resonance (SPR)en
dc.subjectIsothermal Titration Calorimetry (ITC)en
dc.title結構觀點探討細菌肽聚醣水解酶受到蛋白酶複合體的 調控機制zh_TW
dc.titleStructural insights into the degradation of murein hydrolase MepS by the NlpI-Prc complexen
dc.typeThesis-
dc.date.schoolyear106-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張崇毅;徐駿森zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keywordMepS,NlpI,Prc,?聚醣,等溫滴定微量量熱法,表面電漿共振,核磁共振,zh_TW
dc.subject.keywordMepS,NlpI,Prc,Peptidoglycan,Isothermal Titration Calorimetry (ITC),Surface Plasma Resonance (SPR),Nuclear Magnetic Resonance (NMR),en
dc.relation.page68-
dc.identifier.doi10.6342/NTU201802775-
dc.rights.note未授權-
dc.date.accepted2018-08-08-
dc.contributor.author-college醫學院-
dc.contributor.author-dept生物化學暨分子生物學研究所-
dc.date.embargo-lift2023-10-09-
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-106-2.pdf
  未授權公開取用
3.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved