Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79106
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor杜宜殷(Yi-Yin Do)
dc.contributor.authorYu Wangen
dc.contributor.author王瑜zh_TW
dc.date.accessioned2021-07-11T15:44:23Z-
dc.date.available2025-08-20
dc.date.copyright2020-08-28
dc.date.issued2020
dc.date.submitted2020-08-19
dc.identifier.citation王月華. 2000. 應用蝴蝶蘭癒傷組織進行基因轉殖之硏究. 國立臺灣大學園藝暨景觀學系碩士論文.
林雅亭. 1999. 蝴蝶蘭苯基苯乙烯酮合成酶基因轉殖之硏究. 國立臺灣大學園藝暨景觀學系碩士論文.
林映均. 2011. 轉殖果膠分解酶基因於蝴蝶蘭抗細菌性軟腐病之研究. 國立臺灣大學園藝暨景觀學系碩士論文.
倪毓琳. 1995. 蝴蝶蘭基因轉殖系統之硏究. 國立臺灣大學園藝暨景觀學系碩士論文.
涂美智、李哖. 1987. 蝴蝶蘭授粉適期與果莢成熟度對種子發芽之影響. 中國園藝33:190-200.
徐善德. 2007. 蝴蝶蘭癒合組織再生植株與轉殖體系之建立. 國立臺灣大學園藝暨景觀學系博士論文.
陳欣郁. 2015. 應用文心蘭基因默化轉殖延緩老化及抵抗喜姆比蘭嵌紋病毒與齒舌蘭輪斑病毒. 國立臺灣大學園藝暨景觀學系博士論文.
陳慶忠、陳煜焜、柯文華、葉士財. 2006. 齒舌蘭輪斑病毒及蕙蘭嵌紋病毒感染蝴蝶蘭之病徵學及細胞病理學探討. 臺中區農業改良場研究彙報93:15-27.
黃聖佑. 1997. 蝴蝶蘭轉殖系統之建立及ACC合成酶反義基因之構築. 國立臺灣大學園藝暨景觀學系碩士論文.
葉素瑛. 2004. 蘭花抗病毒專一性載體構築與暫時性表達分析. 國立臺灣大學園藝暨景觀學系碩士論文.
詹婉琦. 2005. 蝴蝶蘭之基因轉殖及芭菲爾拖鞋蘭癒合組織之誘導與植株再生. 國立臺灣大學園藝暨景觀學系碩士論文.
謝永祥. 1993. 應用花粉管法及基因槍法於蝴蝶蘭基因轉殖之研究. 國立臺灣大學園藝暨景觀學系碩士論文.
謝永祥、許聰耀、黃鵬林. 1995. 應用基因槍法於蝴蝶蘭基因轉殖之研究. 中國園藝41:174-185.
盧美君. 1998. 蝴蝶蘭ACC合成酶及ACC氧化酶基因之選殖與分析. 國立臺灣大學園藝暨景觀學系碩士論文.
魏军亚、刘德兵、陈业渊、蔡群芳、周鹏. 2008. 花粉管通道法介導 PRSV-CP基因dsRNA轉化番木瓜. 西北植物學報 28:2159-2163.
Agrawal, N., P.V.N. Dasaradhi, A. Mohmmed, P. Malhotra, R.K. Bhatnagar, and S.K. Mukherjee. 2003. RNA interference: biology, mechanism, and applications. Microbiol. Mol. Biol. Rev. 67:657-685.
Akhunov, E.D., A.R. Akhunova, O.D. Anderson, J.A. Anderson, N. Blake, M.T. Clegg, D. Coleman-Derr, E.J. Conley, C.C. Crossman, and K.R. Deal. 2008. Purifying selection and gene conversion in polyploid wheat evolution. In Proceedings of the 11th International Wheat Genetics Symposium. Sydney University Press, Sydney, Australia, pp 1-3.
Ali, A., S.W. Bang, S.M. Chung, and J.E. Staub. 2015. Plant transformation via pollen tube-mediated gene transfer. Plant Mol. Biol. Rep. 33:742-774.
Ali, Z., A. Abulfaraj, A. Idris, S. Ali, M. Tashkandi, and M.M. Mahfouz. 2015. CRISPR/Cas9-mediated viral interference in plants. Genome Biol. 16:238.
Anazi, H., Y. Ishii, M. Schichinohe, K. Katsumata, C. Nojiri, H. Morikawa, and M. Tanaka. 1996. Transformation of Phalaenopsis by particle bombardment. Plant Tissue Cult. Lett. 13:265-272.
Bernard, G., D. Gagneul, H. Alves Dos Santos, A. Etienne, J.L. Hilbert, and C. Rambaud. 2019. Efficient genome editing using CRISPR/Cas9 technology in chicory. Int. J. Mol. Sci. 20:1155.
Bortesi, L. and R. Fischer. 2015. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol. Adv. 33:41-52.
Čermák, T., S.J. Curtin, J. Gil-Humanes, R. Čegan, T.J.Y. Kono, E. Konečná, J.J. Belanto, C.G. Starker, J.W. Mathre, R.L. Greenstein, and D.F. Voytas. 2017. A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell 29:1196-1217.
Chandrasekaran, J., M. Brumin, D. Wolf, D. Leibman, C. Klap, M. Pearlsman, A. Sherman, T. Arazi, and A. Gal-On. 2016. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. 17:1140-1153.
Charrier, A., E. Vergne, N. Dousset, A. Richer, A. Petiteau, and E. Chevreau. 2019. Efficient targeted mutagenesis in apple and first time edition of pear using the CRISPR-Cas9 system. Front. Plant Sci. 10:40.
Chen, M.H., J. Sheng, G. Hind, A.K. Handa, and V. Citovsky. 2000. Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. EMBO J. 19:913-920.
Chen, M.H. and V. Citovsky. 2003. Systemic movement of a tobamovirus requires host cell pectin methylesterase. Plant J. 35:386-392.
Chen, Q., H. Lai, J. Hurtado, J. Stahnke, K. Leuzinger, and M. Dent. 2014. Agroinfiltration as an effective and scalable strategy of gene delivery for production of pharmaceutical proteins. Adv. Tech. Biol. Med. 1:103.
Chen, X.G., X.K. Lu, N. Shu, S.A. Wang, J.J. Wang, D.L. Wang, L.X. Guo, and W.W. Yea. 2017. Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system. Sci. Rep. 7:44304.
Christou, P. 2013. Plant genetic engineering and agricultural biotechnology. Trends Biotechnol. 31:125-127.
Cronn, R.C., R. L. Small, and J.F. Wendel. 1999. Duplicated genes evolve independently after polyploid formation in cotton. Proc. Natl. Acad. Sci. U.S.A. 96:14406‐14411.
Cui, H., K. Tsuda, and J.E. Parker. 2015. Effector-triggered immunity: from pathogen perception to robust defense. Annu. Rev. Plant Biol. 66:487-511.
Dellaporta, S.L., J. Wood , and J.B. Hicks. 1983. Dellaporta DNA extraction. Plant Mol. Biol. Rep. 1:19-21.
Donga, O.X. and P.C. Ronalda. 2019. Genetic engineering for disease resistance in plants: recent progress and future perspectives. Plant Physiol. 180:26-38.
Doudna, J.A. and E. Charpentier. 2014. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096.
Duprat, A., C. Caranta, F. Revers, B. Menand, K.S. Browning, and C. Robaglia. 2002. The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J. 32:927-934.
Fries, M., J. Ihrig, K. Brocklehurst, V.E. Shevchik, and R.W. Pickersgill. 2007. Molecular basis of the activity of the phytopathogen pectin methylesterase. EMBO J. 26:3879-3887.
Gergerich, R.C. and V.V. Dolja. 2006. Introduction to plant viruses, the invisible foe. Plant Health Instr. doi:10.1094/PHI-I-2006-0414-01.
Greenleaf, W.H. 1956. Inheritance of resistance to tobacco etch virus in Capsicum frutescens and in Capsicum annuum. Phytopathology 46:371-375.
Gou, Y.J., Y.L. Li, P.P. Bi, D.J. Wang, Y.Y. Ma, Y. Hu, H.C. Zhou, Y.Q. Wen, and J.Y. Feng. 2020. Optimization of the protoplast transient expression system for gene functional studies in strawberry (Fragaria vesca). Plant Cell, Tissue Organ Cult. 141:41-53.
Hossain, M.M. and R. Dey. 2013. Multiple regeneration pathways in Spathoglottis plicata Blume - A study in vitro. S. Afr. J. Bot. 85:56-62.
Hooghvorst, I., C. López-Cristoffanini, and S. Nogués. 2019. Efficient knockout of phytoene desaturase gene using CRISPR/Cas9 in melon. Sci. Rep. 9:17077.
Hooykaas, P.J.J., P.M. Klapwijk, M.P. Nuti, R.A. Schilperoort, and A. Rorsch. 1977. Transfer of the Agrobacterium tumefaciens Ti-plasmid to avirulent agrobacteria and to Rhizobium ex planta. J. Gen. Microbiol. 98:477-484.
Hsieh, M.H., H.C. Lu, Z.J. Pan, H.H. Yeh, S.S. Wang, W.H. Chen, and H.H. Chen. 2012. Optimizing virus-induced gene silencing efficiency with Cymbidium mosaic virus in Phalaenopsis flower. Plant Sci. 201-202:25-41.
Hu, C.Y., P.P. Chee, R.H. Chesney, J.H. Zhou, P.D. Miller, and W.T. O'Brien. 1990. Intrinsic GUS-like activities in seed plants. Plant Cell Rep. 9:1-5.
Jia, H. and N. Wang. 2014. Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One 9:e93806.
Jia, R., H. Zhao, J. Huang, H. Kong, Y. Zhang, J. Guo, Q. Huang, Y. Guo, Q. Wei, J. Zuo, Y.J. Zhu, M. Peng, and A. Guo. 2017. Use of RNAi technology to develop a PRSV-resistant transgenic papaya. Sci. Rep. 7:12636.
Jouzani, G.R.S., and I.V. Goldenkova. 2005. A new reporter gene technology: opportunities and perspectives. Iran. J. Biotechnol. 3:1-15.
Kang, B.C., I.H. Yeam, H.X. Li, K.W. Perez, and M.M. Jahn. 2007. Ectopic expression of a recessive resistance gene generates dominant potyvirus resistance in plants. Plant Biotechnol. J. 5:526-536.
Kapila, J., R.D. Rycke, M.V. Montagu, and G. Angenon. 1997. An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Science 122:101-108.
Kikkert, J.R., J.R. Vidal and B.I. Reisch. 2005. Stable transformation of plant cells by particle bombardment/biolistics. Methods Mol. Biol. 286:61-78.
Kobayashi, S., T. Kameya, and S. Ichihashi. 1993. Plant regeneration from protoplasts derived from callus of Phalaenopsis. Plant Tiss. Cult. Lett. 10:267-270.
Koch, A., D. Biedenkopf, A. Furch, L. Weber, O. Rossbach, E. Abdellatef, L. Linicus, J. Johannsmeier, L. Jelonek, A. Goesmann, V. Cardoza, J. McMillan, T. Mentzel, and K.H. Kogel. 2016. An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. PLoS Pathog. 12:e1005901.
Kusano, H., M. Ohnuma, H. Mutsuro-Aoki, T. Asahi, D. Ichinosawa, H. Onodera, K. Asano, T. Noda, T. Horie, K. Fukumoto, M. Kihira, H. Teramura, K Yazaki, N Umemoto, T. Muranaka, and H. Shimada. 2018. Establishment of a modified CRISPR/Cas9 system with increased mutagenesis frequency using the translational enhancer dMac3 and multiple guide RNAs in potato. Sci. Rep. 8:13753.
LeBlanc, C., F. Zhang, J. Mendez, Y. Lozano, K. Krishna, V.F. Irish, and Y. Jacob. 2018. Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress. Plant J. 93:377-386.
Li, J., Y. Sun, J. Du, Y. Zhao, and L. Xia. 2017. Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. Mol. Plant. 10:526‐529.
Li, J.L., X.Z. Liao, S.S Zhou, S. Liu, L. Jiang, and G.D. Wang. 2018. Efficient protoplast isolation and transient gene expression system for Phalaenopsis hybrid cultivar ‘Ruili Beauty’. In Vitro Cell Dev. Biol. Plant. 54:87-93.
Liang, G., H.M. Zhang, D.J. Lou, and D.Q. Yu. 2016. Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing. Sci Rep. 6:21451.
Liang, Z., K.L. Chen, T.D. Li, Y. Zhang, Y.P. Wang, Q. Zhao, J.X. Liu, H.W. Zhang, C.M. Liu, Y.D. Ran, and C.X. Gao. 2017. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat. Commun. 8:14261.
Lin, H.Y., J.C. Chen, and S.C. Fang. 2018. A protoplast transient expression system to enable molecular, cellular, and functional studies in Phalaenopsis orchids. Front. Plant Sci. 9:843.
Lin, C.S., C.T. Hsu, L.H. Yang, L.Y. Lee, J.Y. Fu, Q.W. Cheng, F.H. Wu, H.C. Hsiao, Y. Zhang, R. Zhang, W.J. Chang, C.T. Yu, W. Wang, L.J. Liao, S.B. Gelvin, and M.C. Shih. 2018. Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration. Plant Biotechnol. J. 16:1295-1310.
Lionetti, V., A. Raiola, F. Cervone, and D. Bellincampi. 2014a. Transgenic expression of pectin methylesterase inhibitors limits tobamovirus spread in tobacco and Arabidopsis. Mol. Plant Pathol. 15:265-274.
Lionetti, V., A. Raiola, F. Cervone, and D. Bellincampi. 2014b. How do pectin methylesterases and their inhibitors affect the spreading of tobamovirus? Plant Signal Behav. 9:e972863.
Liu, X., S.R. Wu, J. Xu, C. Sui, and J.H. Wei. 2017. Application of CRISPR/Cas9 in plant biology. Acta. Pharm. Sin. B. 7:292-302.
Long, L., D.D. Guo, W. Gao, W.W. Yang, L.P. Hou, X.N. Ma, Y.C. Miao, J.R. Botella, and C.P. Song. 2018. Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression. Plant Methods. 14:85.
Luo, Z.X. and R. Wu. 1989. A simple method for the transformation of rice via the pollen-tube pathway. Plant Mol. Biol. Rep. 7:69-77.
Ma, X.L., Q.L. Zhu, Y.L. Chen, and Y.G. Liu. 2016. CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Mol. Plant 9:961-974.
Maas, C. and W. Werr. 1989. Mechanism and optimized conditions for PEG mediated DNA transfection into plant protoplasts. Plant Cell Rep. 8:148-151.
Manavella, P.A. and R.L. Chan. 2009. Transient transformation of sunflower leaf discs via an Agrobacterium-mediated method: applications for gene expression and silencing studies. Nat. Protoc. 4:1699-1707.
Mao, Y.F., H. Zhang, N.F. Xu, B.T. Zhang, F. Gou, and J.K. Zhu. 2013. Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol. Plant 6:2008-2011.
Marillonnet, S., A. Giritch, M. Gils, R. Kandzia, V. Klimyuk, and Y. Gleba. 2004. In Planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium. Proc. Natl. Acad. Sci. USA 101:6852‐6857.
Molla, K.A., J. Shih, and Y. Yang. 2020. Single-nucleotide editing for zebra3 and wsl5 phenotypes in rice using CRISPR/Cas9-mediated adenine base editors. aBIOTECH 106-118.
Mubarik, M.S., S.H. Khan, A. Ahmad, Z. Khan, M. Sajjad, and I.A. Khan. 2016. Disruption of phytoene desaturase gene using transient expression of Cas9: gRNA complex. Int. J. Agric. Biol. 18:990-996.
Nicaise, V. 2014. Crop immunity against viruses: outcomes and future challenges. Front Plant Sci. 5:660.
Nishitani, C., N. Hirai, S. Komori, M. Wada, K. Okada, K. Osakabe, T. Yamamoto, and Y. Osakabe. 2016. Efficient genome editing in apple using a CRISPR/Cas9 system. Sci. Rep. 6:31481.
Oerke, E.C. and H.W. Dehne. 2004. Safeguarding production-losses in major crops and the role of crop protection. Crop Prot. 23:275-285.
Ohta, Y. 1986. High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA. Proc. Nati. Acad. Sci. USA 83:715-719.
Patade, V.Y., D. Khatri, A. Grover, M. Kumari, S.M. Gupta, and Z. Ahmed. 2014. Silenced phytoene desaturase gene as a scorable marker for plant genetic transformation. Biotechnol. 13:80-84.
Pearson, M.N. and J.S. Cole. 1986. The effects of Cymbidium mosaic virus and Odontoglossum ringspot virus on the growth of Cymbidium orchids. J. Phytopathol. 117:193-197.
Pearson, M.N. and J.S. Cole. 1991. Further observations on the effects of Cymbidium mosaic virus and Odontoglossum ringspot virus on the growth of Cymbidium orchids. J. Pathol. 131:193-198.
Qin, G., H. Gu, L. Ma, Y. Peng, X.W. Deng, Z. Chen, and L.J. Qu. 2007. Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Res. 17:471-482.
Qu, J., J. Ye, and R. Fang. 2007. Artificial microRNA-mediated virus resistance in plants. J. Virol. 81:6690-6699.
Ren, F.R., C. Ren, Z. Zhang, W. Duan, D. Lecourieux, S.H. Li, and Z.C. Liang. 2019. Efficiency optimization of CRISPR/Cas9-mediated targeted mutagenesis in grape. Front. Plant Sci. 10:612.
Ren, Q.R., Z.H. Zhong, Y. Wang, Q. You, Q. Li, M.Z. Yuan, Y He, C.Y. Qi, X. Tang, X.L. Zheng, T. Zhang, Y.P. Qi, and Y. Zhang. 2019. Bidirectional promoter-based CRISPR-Cas9 systems for plant genome editing. Front. Plant Sci. 10:1173.
Rodrigues, S.P., G.G. Lindsey, and P.M.B. Fernandes. 2009. Biotechnological approaches for plant viruses resistance: from general to the modern RNA silencing pathway. Braz. arch. biol. technol. 52:795-808.
Saha, P., I. Dasgupta, and S. Das. 2006. A novel approach for developing resistance in rice against phloem limited viruses by antagonizing the phloem feeding hemipteran vectors. Plant Mol. Biol. 62(4-5):735-752.
Sander, J.D. and J.K. Joung. 2014. CRIRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32:347-355.
Schell, J., and M. Van Montagu. 1977. The Ti-plasmid of Agrobacterium tumefaciens, a natural vector for the introduction of NIF genes in plants? Basic Life Sci. 9:159-179.
Schöb, H., C. Kunz, and F.J. Meins. 1997. Silencing of transgenes introduced into leaves by agroinfiltration: a simple, rapid method for investigating sequence requirements for gene silencing. Mol. Gen. Genet. 256:581‐585.
Svitashev, S., C. Schwartz, B. Lenderts, J.K. Young, and A.M. Cigan. 2016. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat. Commun. 7:13274.
Tashkandi, M., Z. Ali, F. Aljedaani, A. Shami, and M.M. Mahfouz. 2018. Engineering resistance against Tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato. Plant Signal Behav. 13:e1525996.
Toda, E., N. Koiso, A. Takebayashi, M. Ichikawa, T. Kiba, K. Osakabe, Y. Osakabe, H. Sakakibara, N. Kato, and T. Okamoto. 2019. An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice. Nat. Plants 5:363-368.
Upadhyay, S.K., J. Kumar, A. Alok, and R. Tuli. 2013. RNA-guided genome editing for target gene mutations in wheat. G3 (Bethesda). 3:2233‐2238.
Wilson, F.M., K. Harrison, A.D. Armitage, A.J. Simkin, and R.J. Harrison. 2019. CRISPR/Cas9-mediated mutagenesis of phytoene desaturase in diploid and octoploid strawberry. Plant Meth. 15:45.
Wroblewski, T., A. Tomczak, and R. Michelmore. 2005. Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol. J. 3:259-273.
Xie, K., B. Minkenberg, and Y. Yang. 2015. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc. Natl. Acad. Sci. USA 112:3570-3575.
Xun, H.W., X.D. Yang, H.L. He, M. Wang, P. Guo, Y. Wang, J.S. Pang, Y.S. Dong, X.Z. Feng, S.C. Wang, and B. Liu. 2019. Over-expression of GmKR3, a TIR-NBS-LRR type R gene, confers resistance to multiple viruses in soybean. Plant Mol. Biol. 99(1-2):95-111.
Yan, L.H., S.W. Wei, Y.R. Wu, R.L. Hu, H.J. Li, W.C. Yang, and Q. Xie. 2015. High-efficiency genome editing in Arabidopsis using YAO promoter-driven CRISPR/Cas9 system. Mol. Plant. 8:1820-1823.
Zaidi, S.S., M. Tashkandi, S. Mansoor, and M.M. Mahfouz. 2016. Engineering plant immunity: using CRISPR/Cas9 to generate virus resistance. Front. Plant Sci. 7:1673.
Zambryski, P., J. Tempe, and J. Schell. 1989. Transfer and function of T-DNA genes from agrobacterium Ti and Ri plasmids in plants. Cell 56:193-201.
Zhang, Y.Y., H.X. Li, B. Ouyang, and Z.B. Ye. 2006. Regulation of eukaryotic initiation factor 4E and its isoform: implications for antiviral strategy in plants. J. Integr. Plant Biol. 48: 1129-1139.
Zhang, T., Q.F. Zheng, X. Yi, H. An, Y.L. Zhao, S.Q. Ma, and G.H. Zhou. 2018. Establishing RNA virus resistance in plants by harnessing CRISPR immune system. Plant Biotechnol. J. 16:1415-1423.
Zhao, H., Z. Tan, X. Wen, and Y. Wang. 2017. An improved syringe agroinfiltration protocol to enhance transformation efficiency by combinative use of 5-azacytidine, ascorbate acid and Tween-20. Plants (Basel) 6:9.
Zhao, Y.L., X. Yang, G.H. Zhou, and T. Zhang. 2020. Engineering plant virus resistance: from RNA silencing to genome editing strategies. Plant Biotechnol J. 18:328-336.
Zheng, X.L., C.Y. Qi, L.J. Yang, Q. Quan, B.L. Liu, Z.H. Zhong, X. Tang, T.T. Fan, J.P. Zhou, and Y. Zhang. 2020. The improvement of CRISPR-Cas9 system with ubiquitin-associated domain fusion for efficient plant genome editing. Front. Plant Sci. 11:621.
Zhou, G.Y., J. Weng, Y. Zeng, J. Huang, S. Qian, and G. Liu. 1983. Introduction of exogenous DNA into cotton embryos. Meth. Enzymol. 101:433-481.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79106-
dc.description.abstract蝴蝶蘭(Phalaenopsis spp.)是臺灣外銷最大宗花卉作物,受蕙蘭嵌紋病毒(Cymbidium mosaic virus, CymMV)及齒舌蘭輪斑病毒(Odontoglossum ringspot virus, ORSV)等病毒性病害嚴重影響品質。本論文期望運用基因編輯及核糖核酸干擾(RNA interference)技術,取得抗病毒之蝴蝶蘭。首先建立蝴蝶蘭之基因編輯平台,選取蝴蝶蘭八氫番茄紅素去飽和酶(phytoene desaturase, PDS)基因,以CRISPR/Cas9系統進行突變;此基因若喪失功能,會導致白化表觀。經分析P. amabilis PDS cDNA序列及選殖部分PDS基因片段,選擇位於第二個及第三個顯子的20 bp作為標靶序列,構築於表現載體,以農桿菌注射法及聚乙二醇法,分別轉入P. amabilis之葉片及原生質體。轉殖後抽取基因組DNA,進行高解析熔解曲線分析及次世代定序,結果顯示農桿菌注射法之葉片及聚乙二醇法之原生質體中,均造成標靶序列發生單一核苷酸之置換,表示標靶序列具有功能。穩定性轉殖採用花粉管導入法,分別將基因編輯表現質體及雙重病毒基因默化質體轉殖至蝴蝶蘭,得到之原球體於GUS活性組織化學染色後皆有藍點之表現;轉殖基因編輯表現質體得到之原球體具白化表觀,顯示PDS基因編輯成功。zh_TW
dc.description.abstractPhalaenopsis orchids are the largest export floral crops in Taiwan. Infections by viruses such as Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV) dramatically reduce the value of Phalaenopsis. In this study, genome editing and RNA interference (RNAi) technology were used to develop virus resistant Phalaenopsis. In order to establish a genome editing platform in Phalaenopsis, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) was used to mutate the phytoene desaturase (PDS) gene. Loss-of-function of PDS leading to the bleaching phenotype indicates the editing event happened. After the analysis of PDS cDNA sequence and cloning of partial PDS gene, two 20-nucleotide guide sequences located at the second and third exons, respectively, were selected to construct into the expression vector. The gene editing constructs were transformed into leaves and protoplasts of P. amabilis via agroinfiltration and polyethylene glycol (PEG)-mediated transformation, respectively. Genomic DNAs extracted from transformed explants were subjected to the high-resolution melting curve (HRM) analysis and next generation sequencing (NGS). Single nucleotide substitutions were detected in the guide sequence of edited cells. For stable transformation, gene editing expression plasmids and the virus dual gene silencing plasmid were transformed into Phalaenopsis via pollen tube pathway. Putative transgenic protocorms showed blue spots after the GUS assay. Several putative transgenic protocorms with albino phenotype indicated that PDS gene had been edited in these transformants successfully.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:44:23Z (GMT). No. of bitstreams: 1
U0001-1708202015492000.pdf: 16099838 bytes, checksum: 97bb8aace3ed80f72be0216c29b0b6bd (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents摘要....................................................i
Abstract...............................................ii
壹、前言.................................................1
貳、前人研究.............................................2
一、提升病毒抗性之植物基因轉殖.............................2
(一) 植物抗病毒相關基因之過量表現..........................2
1. 隱性抗性基因(recessive resistance gene)...............2
2. 顯性抗性基因(dominant resistance gene)................2
3. 抵禦媒介昆蟲之基因....................................3
4. 阻擋病毒於細胞間擴散之基因.............................3
(二) 植物抗病毒相關基因之抑制表現..........................4
1. 核糖核酸干擾之策略....................................4
2. CRISPR/Cas基因編輯系統於植物抗病毒之應用...............4
(1) CRISPR/Cas基因編輯系統...............................4
(2) 以PDS基因建立CRISPR/Cas9基因編輯平台..................5
(3) DNA病毒抗性之提升.....................................6
(4) RNA病毒抗性之提升.....................................6
二、常用的基因轉殖方法.....................................6
(一) 葉片農桿菌注射法(syringe agroinfiltration)............7
(二) 原生質體聚乙二醇法(polyethylene glycol, PEG)..........7
(三) 花粉管導入法(pollen tube pathway).....................8
(四) 基因槍法(gene gun)....................................9
(五) 農桿菌共感染轉殖法(Agrobacterium-mediated transformation)...10
參、材料與方法.............................................11
一、試驗材料...............................................11
(一) 菌種.................................................11
(二) 質體.................................................11
1. pBluescript II SK (-)..................................11
2. pGSfiI-gfpgus 2-8......................................11
3. pGKU-CyORg核糖核酸干擾質體...............................11
(三) 植物材料..............................................11
二、試驗方法...............................................12
(一) 基因結構分析..........................................12
1. 基因序列分析............................................12
2. 基因片段之選殖..........................................12
(1) 植物基因組DNA之抽取.....................................12
(2) 聚合酶連鎖反應..........................................13
(3) 聚合酶連鎖反應之產物回收.................................13
(4) 大腸桿菌之轉型..........................................13
(5) 小量質體DNA之製備.......................................13
(6) 定序分析...............................................14
(二) 基因編輯表現質體之構築..................................14
1. sgRNA標靶序列之挑選......................................14
2. 構築流程.................................................14
3. 大腸桿菌之轉型...........................................15
4. 大量質體DNA之製備........................................15
5. 農桿菌之轉型.............................................15
6. 農桿菌質體DNA之製備.......................................16
(三) 蝴蝶蘭之基因轉殖........................................16
1. 葉片農桿菌注射法..........................................16
2. 原生質體聚乙二醇法........................................17
3. 花粉管導入法..............................................17
(四) 基因轉殖結果分析.........................................18
1. GUS活性組織化學染色分析....................................18
2. 原生質體基因組DNA之抽取....................................18
3. 高解析度熔解曲線(high-resolution melting, HRM)............18
4. 次世代定序分析(next-generation sequencing, NGS)............19
肆、結果.....................................................20
一、蝴蝶蘭PDS基因之選殖.......................................20
二、sgRNA標靶序列之篩選及PDS基因編輯表現質體之構築..............20
三、PDS基因標靶序列編輯效果分析................................20
(一) 葉片農桿菌注射法.........................................20
(二) 原生質體聚乙二醇法.......................................21
四、蝴蝶蘭之穩定性基因編輯.....................................21
五、病毒雙抗質體之蝴蝶蘭穩定性轉殖..............................22
伍、討論.....................................................23
一、轉殖方法對基因編輯結果之影響................................23
(一) 基因編輯率...............................................23
(二) 基因編輯型態..............................................24
二、sgRNA構築對基因編輯效果之影響...............................25
三、核酸分解酶構築對基因編輯效果之影響...........................25
陸、結語......................................................27
柒、參考文獻..................................................47
捌、附錄......................................................56
dc.language.isozh-TW
dc.subject農桿菌注射法zh_TW
dc.subject齒舌蘭輪斑病毒zh_TW
dc.subject蕙蘭嵌紋病毒zh_TW
dc.subject核糖核酸干擾技術zh_TW
dc.subject農桿菌共感染轉殖法zh_TW
dc.subject花粉管導入法zh_TW
dc.subject基因編輯zh_TW
dc.subject八氫番茄紅素去飽和酶zh_TW
dc.subject聚乙二醇法zh_TW
dc.subjectagroinfiltrationen
dc.subjectpolyethylene glycolen
dc.subjectOdontoglossum ringspot virusen
dc.subjectpollen tube pathwayen
dc.subjectAgorbacterium-mediated transformationen
dc.subjectphytoene desaturaseen
dc.subjectclustered regularly interspaced short palindromic repeats (CRISPR)/Cas9en
dc.subjectRNA interference technologyen
dc.subjectCymbidium mosaic virusen
dc.title蝴蝶蘭定點突變及抗病毒之基因轉殖zh_TW
dc.titleGenetic Transformation for Site-directed Mutagenesis and Virus Resistance in Phalaenopsis amabilisen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.coadvisor黃鵬林(Pung-Ling Huang)
dc.contributor.oralexamcommittee廖芳心(Fang-Shin Liao),劉祖惠(Tsu-Hui Annie Liu),李昆達(Kung-Ta Lee)
dc.subject.keyword基因編輯,八氫番茄紅素去飽和酶,農桿菌注射法,聚乙二醇法,花粉管導入法,農桿菌共感染轉殖法,核糖核酸干擾技術,蕙蘭嵌紋病毒,齒舌蘭輪斑病毒,zh_TW
dc.subject.keywordclustered regularly interspaced short palindromic repeats (CRISPR)/Cas9,phytoene desaturase,agroinfiltration,polyethylene glycol,pollen tube pathway,Agorbacterium-mediated transformation,RNA interference technology,Cymbidium mosaic virus,Odontoglossum ringspot virus,en
dc.relation.page56
dc.identifier.doi10.6342/NTU202003783
dc.rights.note有償授權
dc.date.accepted2020-08-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝暨景觀學系zh_TW
dc.date.embargo-lift2025-08-20-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
U0001-1708202015492000.pdf
  未授權公開取用
15.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved