Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79095
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱浩傑(Hao-Chieh Chiu)
dc.contributor.authorChieh-Hsien Luen
dc.contributor.author呂杰憲zh_TW
dc.date.accessioned2021-07-11T15:43:33Z-
dc.date.available2025-08-17
dc.date.copyright2020-09-10
dc.date.issued2020
dc.date.submitted2020-08-17
dc.identifier.citation1. Lowy, F.D., et al., Staphylococcus aureus infections. N Engl J Med, 1998. 339(8): p. 520-32.
2. Heymann, David L., et al., Control of Communicable Diseases Manual, 19th Edition Control of Communicable Diseases Manual, 19th Edition Edited by David L. Heymann Washington, DC: American Public Health Association, 2008. 746 pp. $45.00 (hardcover). Clin. Infect. Dis., 2009. 49(8): p. 1292-1293.
3. Richardson, J.F., et al., The Staphylococci in Human Disease. Eds. K. B.
Crossley and G. L. Archer. Churchill Livingstone
1997. Pp. 682. £90.00. ISBN 0 4430 7644 8. Epidemiol. Infect, 1998. 120(1): p. 111-114.
4. Powers, M.E., et al., Igniting the fire: Staphylococcus aureus virulence factors in the pathogenesis of sepsis. PLOS Pathog., 2014. 10(2): p. e1003871.
5. Bergdoll, M., et al., A New Staphylococcal Enterotoxin, Enterotoxin F, Associated with Toxic-Shock-Syndrome Staphylococcus Aureus Isolates. Lancet, 1981. 317(8228): p. 1017-1021.
6. Dinges, M.M., et al., Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev., 2000. 13(1): p. 16-34.
7. Lindmark, R., et al., Binding of immunoglobulins to protein A and immunoglobulin levels in mammalian sera. J. Immunol. Methods, 1983. 62(1): p. 1-13.
8. Diekema, D.J., et al., Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997-1999. Clin Infect Dis, 2001. 32 Suppl 2: p. S114-32.
9. Doern, G.V., et al., Bacterial pathogens isolated from patients with skin and soft tissue infections: frequency of occurrence and antimicrobial susceptibility patterns from the SENTRY Antimicrobial Surveillance Program (United States and Canada, 1997). Diagn. Microbiol. Infect. Dis., 1999. 34(1): p. 65-72.
10. Peyrusson, F., et al., Intracellular Staphylococcus aureus persisters upon antibiotic exposure. Nat. Commun., 2020. 11(1): p. 2200.
11. Kelly, J.A., et al., Penicillin target enzyme and the antibiotic binding site. Science, 1982. 218(4571): p. 479-81.
12. Rammelkamp, C.H., et al., Resistance of Staphylococcus aureus to the Action of Penicillin. Exp. Biol. Med., 1942. 51(3): p. 386-389.
13. Barber, M., et al., Methicillin-resistant staphylococci. J Clin Pathol, 1961. 14: p. 385-93.
14. Turlej, A., et al., Staphylococcal cassette chromosome mec (Sccmec) classification and typing methods: an overview. Pol J Microbiol, 2011. 60(2): p. 95-103.
15. Hartman, B., et al., Altered penicillin-binding proteins in methicillin-resistant strains of Staphylococcus aureus. Antimicrob. Agents Chemother., 1981. 19(5): p. 726-35.
16. Hussain, F.M., et al., Current trends in community-acquired methicillin-resistant Staphylococcus aureus at a tertiary care pediatric facility. Pediatr. Infect. Dis. J., 2000. 19(12): p. 1163-1166.
17. CDC, Four Pediatric Deaths From Community-Acquired Methicillin-Resistant Staphylococcus aureus--Minnesota and North Dakota, 1997-1999. JAMA, 1999. 282(12): p. 1123-1125.
18. Crossley, K., et al., An outbreak of infections caused by strains of Staphylococcus aureus resistant to methicillin and aminoglycosides. II. Epidemiologic studies. J Infect Dis, 1979. 139(3): p. 280-7.
19. Okwu, M.U., et al., Methicillin-resistant Staphylococcus aureus (MRSA) and anti-MRSA activities of extracts of some medicinal plants: A brief review. AIMS Microbiol., 2019. 5(2): p. 117-137.
20. Vandenesch, F., et al., Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence. Emerg Infect Dis, 2003. 9(8): p. 978-84.
21. Rasigade, J.P., et al., Global distribution and evolution of Panton-Valentine leukocidin-positive methicillin-susceptible Staphylococcus aureus, 1981-2007. J Infect Dis, 2010. 201(10): p. 1589-97.
22. Prevost, G., et al., Epidemiological data on Staphylococcus aureus strains producing synergohymenotropic toxins. J Med Microbiol, 1995. 42(4): p. 237-45.
23. Seybold, U., et al., Emergence of community-associated methicillin-resistant Staphylococcus aureus USA300 genotype as a major cause of health care-associated blood stream infections. Clin Infect Dis, 2006. 42(5): p. 647-56.
24. Traczewski, M.M., et al., Inhibitory and bactericidal activities of daptomycin, vancomycin, and teicoplanin against methicillin-resistant Staphylococcus aureus isolates collected from 1985 to 2007. Antimicrob. Agents Chemother., 2009. 53(5): p. 1735-8.
25. Diederen, B.M.W., et al., In Vitro Activity of Daptomycin against Methicillin-Resistant Staphylococcus aureus, Including Heterogeneously Glycopeptide-Resistant Strains. Antimicrob. Agents Chemother., 2006. 50(9): p. 3189-3191.
26. Kaur, D.C., et al., Study of Antibiotic Resistance Pattern in Methicillin Resistant Staphylococcus Aureus with Special Reference to Newer Antibiotic. J Glob Infect Dis, 2015. 7(2): p. 78-84.
27. Liu, C., et al., Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis, 2011. 52(3): p. e18-55.
28. Cui, L., et al., Contribution of a thickened cell wall and its glutamine nonamidated component to the vancomycin resistance expressed by Staphylococcus aureus Mu50. Antimicrob. Agents Chemother., 2000. 44(9): p. 2276-85.
29. Silverman, J.A., et al., Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. Antimicrob Agents Chemother, 2003. 47(8): p. 2538-44.
30. Benarroch, J.M., et al., The Microbiologist's Guide to Membrane Potential Dynamics. Trends Microbiol., 2020. 28(4): p. 304-314.
31. Tsiodras, S., et al., Linezolid resistance in a clinical isolate of Staphylococcus aureus. Lancet, 2001. 358(9277): p. 207-8.
32. Sharma, N.K., et al., Nosocomial Infections and Drug Susceptibility Patterns in Methicillin Sensitive and Methicillin Resistant Staphylococcus aureus. J Clin Diagn Res, 2013. 7(10): p. 2178-80.
33. Nurjadi, D., et al., Emergence of trimethoprim resistance gene dfrG in Staphylococcus aureus causing human infection and colonization in sub-Saharan Africa and its import to Europe. J Antimicrob Chemother, 2014. 69(9): p. 2361-8.
34. Mangili, A., et al., Daptomycin-resistant, methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis, 2005. 40(7): p. 1058-60.
35. Cosgrove, S.E., et al., Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis, 2003. 36(1): p. 53-9.
36. Antibiotic Resistance Threats in the United States, 2019, C. U.S. Department of Health and Human Services, Editor. November 2019, Centers for Disease Control and Prevention.
37. WHO publishes list of bacteria for which new antibiotics are urgently needed. February 27, 2017; Available from: https://www.who.int/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed.
38. Boucher, H.W., et al., Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis, 2009. 48(1): p. 1-12.
39. Spellberg, B., et al., Trends in antimicrobial drug development: implications for the future. Clin Infect Dis, 2004. 38(9): p. 1279-86.
40. Lewis, K., et al., Platforms for antibiotic discovery. Nat Rev Drug Discov, 2013. 12(5): p. 371-87.
41. Dastidar, S.G., et al., Triflupromazine: a microbicide non-antibiotic compound. Acta Microbiol. Immunol. Hung., 2004. 51(1-2): p. 1-15.
42. Martins, M., et al., Targeting human macrophages for enhanced killing of intracellular XDR-TB and MDR-TB. Int J Tuberc Lung Dis, 2009. 13(5): p. 569-73.
43. Ordway, D., et al., Intracellular activity of clinical concentrations of phenothiazines including thioridiazine against phagocytosed Staphylococcus aureus. Int. J. Antimicrob. Agents, 2002. 20(1): p. 34-43.
44. Chang, H.C., et al., In vitro and in vivo activity of a novel sorafenib derivative SC5005 against MRSA. J Antimicrob Chemother, 2016. 71(2): p. 449-59.
45. CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 29th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute;2019.
46. Sharafutdinov, I.S., et al., Unraveling the Molecular Mechanism of Selective Antimicrobial Activity of 2(5H)-Furanone Derivative against Staphylococcus aureus. Int J Mol Sci, 2019. 20(3).
47. Mitchell, P., et al., Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc, 1966. 41(3): p. 445-502.
48. Dzbek, J., et al., Control over the contribution of the mitochondrial membrane potential (DeltaPsi) and proton gradient (DeltapH) to the protonmotive force (Deltap). In silico studies. J Biol Chem, 2008. 283(48): p. 33232-9.
49. Malinsky, J., et al., New Insight Into the Roles of Membrane Microdomains in Physiological Activities of Fungal Cells. Int Rev Cell Mol Biol, 2016. 325: p. 119-80.
50. David J. Novo, N.G.P., Richard H. Hunt, and Howard M. Shapiro, Multiparameter flow cytometric analysis of antibiotic effects on membrane potential, membrane permeability, and bacterial counts of Staphylococcus aureus and Micrococcus luteus. Antimicrob Agents Chemother. , 2000 Apr. 44(4): p. 827-34.
51. Koronakis, V., et al., Energetically distinct early and late stages of HlyB/HlyD-dependent secretion across both Escherichia coli membranes. EMBO J, 1991. 10(11): p. 3263-72.
52. Farha, M.A., et al., Bicarbonate Alters Bacterial Susceptibility to Antibiotics by Targeting the Proton Motive Force. ACS Infect. Dis., 2018. 4(3): p. 382-390.
53. Le, P., et al., Repurposing human kinase inhibitors to create an antibiotic active against drug-resistant Staphylococcus aureus, persisters and biofilms. Nat Chem, 2020. 12(2): p. 145-158.
54. Sonohara, R., et al., Difference in surface properties between Escherichia coli and Staphylococcus aureus as revealed by electrophoretic mobility measurements. Biophys Rev, 1995. 55(3): p. 273-277.
55. Nikaido, H., et al., Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev, 2003. 67(4): p. 593-656.
56. Zavascki, A.P., et al., Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J Antimicrob Chemother, 2007. 60(6): p. 1206-15.
57. Baltz, R.H., Daptomycin: mechanisms of action and resistance, and biosynthetic engineering. Curr Opin Chem Biol, 2009. 13(2): p. 144-51.
58. Joe Pogliano, N.P., and Jared A. Silverman, Daptomycin-mediated reorganization of membrane architecture causes mislocalization of essential cell division proteins. J Bacteriol. , 2012 Sep. 194(17): p. 4494-504.
59. Jiang H, X.M., Bi Q, Wang Y, Li C, Self-enhanced targeted delivery of a cell wall- and membrane-active antibiotics, daptomycin, against staphylococcal pneumonia. Acta Pharm Sin B. , 2016 Jul. 6(4): p. 319-28.
60. Dai, T., et al., Animal models of external traumatic wound infections. Virulence, 2011. 2(4): p. 296-315.
61. Gleckman, R., et al., Trimethoprim: mechanisms of action, antimicrobial activity, bacterial resistance, pharmacokinetics, adverse reactions, and therapeutic indications. Pharmacotherapy, 1981. 1(1): p. 14-20.
62. Krause, K.M., et al., Aminoglycosides: An Overview. Cold Spring Harb Perspect Med, 2016. 6(6).
63. Tipper, D.J., et al., Mode of action of β-lactam antibiotics. Pharmacol. Ther., 1985. 27(1): p. 1-35.
64. Chopra, I., et al., Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev, 2001. 65(2): p. 232-60 ; second page, table of contents.
65. Abdollahi, M., et al., Chloramphenicol, in Encyclopedia of Toxicology (Third Edition), P. Wexler, Editor. 2014, Academic Press: Oxford. p. 837-840.
66. Sato, K., et al., Antibacterial activity of ofloxacin and its mode of action. Infection, 1986. 14 Suppl 4: p. S226-30.
67. Wehrli, W., et al., Rifampin: mechanisms of action and resistance. Rev Infect Dis, 1983. 5 Suppl 3: p. S407-11.
68. Ament, P.W., et al., Linezolid: its role in the treatment of gram-positive, drug-resistant bacterial infections. Am Fam Physician, 2002. 65(4): p. 663-70.
69. Champney, W.S., et al., Macrolide antibiotics inhibit 50S ribosomal subunit assembly in Bacillus subtilis and Staphylococcus aureus. Antimicrob. Agents Chemother., 1995. 39(9): p. 2141-4.
70. Watanakunakorn, C., et al., Mode of action and in-vitro activity of vancomycin. J Antimicrob Chemother, 1984. 14 Suppl D: p. 7-18.
71. Taylor, S.D., et al., The action mechanism of daptomycin. Bioorg. Med. Chem., 2016. 24(24): p. 6253-6268.
72. Vardanyan, R.S., et al., 32 - Antibiotics, in Synthesis of Essential Drugs, R.S. Vardanyan and V.J. Hruby, Editors. 2006, Elsevier: Amsterdam. p. 425-498.
73. Kim, W., et al., Strategies against methicillin-resistant Staphylococcus aureus persisters. Future Med Chem, 2018. 10(7): p. 779-794.
74. Archer, N.K., et al., Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence, 2011. 2(5): p. 445-59.
75. Slipski, C.J., et al., Biocide Selective TolC-Independent Efflux Pumps in Enterobacteriaceae. J Membr Biol, 2018. 251(1): p. 15-33.
76. Ardebili, A., et al., Effect of Efflux Pump Inhibitor Carbonyl Cyanide 3-Chlorophenylhydrazone on the Minimum Inhibitory Concentration of Ciprofloxacin in Acinetobacter baumannii Clinical Isolates. Jundishapur J Microbiol, 2014. 7(1): p. e8691.
77. Vaara, M., et al., Agents That Increase the Permeability of the Outer-Membrane. FEMS Microbiol. Rev., 1992. 56(3): p. 395-411.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79095-
dc.description.abstract金黃色葡萄球菌(Staphylococcus aureus)是身體表面菌相中常見的一員,約出現於30%的人口之中,常造成伺機性感染,症狀可從輕微的皮膚感染到較為嚴重的菌血症。隨著對大多數抗生素有抗藥性的抗甲氧苯青黴素金黃色葡萄球菌methicillin-resistant Staphylococcus aureus (MRSA)的出現與傳播,金黃色葡萄球菌感染症已成為全球性的健康議題,凸顯出新穎抗金黃色葡萄球菌藥物開發的重要性。在我們先前的研究中,從抗癌藥物蕾莎瓦(Nexavar;sorafenib)的衍生物篩選出了一個小分子化合物SC5005,於體外體內試驗中皆展現了良好的抗菌能力,並發現SC5005會造成細菌膜的去極化,甚至造成通透性的增加以達到殺菌的效果。爾後在優化SC5005於動物實驗的劑型時,意外發現其與特定天然物NP7合併使用後可大幅提升抑菌效果達8000倍。在這次的研究中,我們通過殺菌效力評估試驗測試SC5005與NP7合併使用後抗細菌休眠細胞的能力,結果表明合併使用後可在短時間內達到完全殺菌的效果,此外其還可以穿過細菌生物膜殺滅其內部的休眠細胞,並在MRSA皮膚感染模型中表現出顯著的抗菌活性。而此SC5005與NP7的協同作用是屬於細菌特異性的,因為在存在NP7的情況下SC5005的細胞毒性並不會隨之增加,之後的研究中指出SC5005會幫助NP7對細菌造成殺傷效果,並發現細菌內部的氧化反應扮演了相當重要的角色。接著我們進一步修飾SC5005的結構,以尋找並評估更具有潛力的化合物。在利用Time-killing assay測試一系列的SC5005衍生物與NP7的協同殺菌能力後,發現衍生物SC5178以及SC5103在與NP7合併使用下,展現出比SC5005更好的協同殺菌效果。鑑於SC5005的細胞毒性並不會因為加入NP7而有顯著的增加,此一特殊的協同殺菌活性,提供了一個開發治療抗甲氧苯青黴素金黃色葡萄球菌感染症藥物的新方向。zh_TW
dc.description.abstractStaphylococcus aureus is colonized on approximately 30% of the human population. It is also an opportunistic pathogen, and infections can cause disease from minor skin infections to severe bacteremia. Moreover, the emergence of methicillin-resistant Staphylococcus aureus (MRSA) with resistance to most antibiotics has become a serious threat worldwide. Thus, the development of a novel antibacterial agent against MRSA has been an urgent need for public health. In our previous study, we identified a novel small-molecule compound named SC5005, which is a derivative of the anti-cancer drug sorafenib (Nexavar). SC5005 exhibited high antibacterial activity at in vitro and in vivo assays. Our results indicated that SC5005 can cause membrane depolarization and increase permeability of S. aureus membrane. While developing SC5005’s formulation for the in vivo test, we unexpectedly found a natural product, NP7, that can significantly enhance SC5005’s antibacterial activity to more than 8,000-fold. The combination of SC5005 and NP7 can completely eradicate MRSA and planktonic persister cells in the time-killing assay. Furthermore, this combination is also capable of penetrating into the biofilm to kill persisters inside, and exhibited a significant antibacterial activity in the MRSA skin infection model. The synergistic effect of SC5005 with NP7 is bacteria-specific as SC5005’s cytotoxicity is not increased in the presence of NP7. Subsequent investigation indicated that SC5005 increased MRSA susceptibility to NP7, and the oxidative stress in the bacteria is essential to this synergistic bactericidal effect of NP7 and SC5005. To further optimize the bacterial killing activity of this combination, a series of SC5005 derivatives were designed and synthesized. The synergistic killing activity of SC5005 derivatives with NP7 was assessed using a time-killing assay. The screening identified SC5103 and SC5178 which showed a better killing activity in combined with NP7 than that of SC5005. Altogether, our findings showed that the synergistic bactericidal activity of SC5005 and NP7 is promising and could be further exploited as a new therapeutic against MRSA.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:43:33Z (GMT). No. of bitstreams: 1
U0001-1708202016045900.pdf: 4453758 bytes, checksum: 234289270bfab01c1d4698f613265840 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 I
中文摘要 III
Abstract IV
Contents 1
1. Introduction 8
1.1 Staphylococcus aureus 9
1.2 The global threat of methicillin-resistant Staphylococcus aureus 10
1.3 The strategy of repurposing non-antibiotics to bacterial infections 13
1.4 The novel small-molecule antibacterial compound “SC5005” 14
1.5 The synergistic effect of SC5005 with nature products 14
2. Materials and Methods 16
2.1 Bacteria and culture condition 17
2.2 Medium 17
2.3 Chemicals 18
2.4 Antibacterial assays 18
2.5 Cell culture 19
2.6 Anti-proliferative assay 19
2.7 Time-kill assay 20
2.8 Biofilm eradication assay 21
2.9 Calcein leakage assay 22
2.10 Persisters assay 24
2.11 Membrane potential assay with flow cytometry 24
2.12 Checkerboard assay 25
2.13 In vivo infection assay 26
2.14 ROS detection 29
2.15 Statistical analysis 30
3.Results 31
3.1 The action mechanism of SC5005 against S. aureus 32
3.2 The antibacterial activity and compound stability of SC5005 derivatives 37
3.3 SC5005 didn’t show synergistic effect with other antibiotics 39
3.4 The fast-eradicating activity of the combination of SC5005 and NP7 against planktonic MRSA persisters. 40
3.5 The synergistic mechanism of the combination of SC5005 and NP7 against S. aureus. 44
3.6 The derivatives of SC5005 showed better antibacterial activity synergized with NP7 46
3.7 Evaluate the in vivo efficacy of SC5005 and its optimal derivatives in combined with NP7 47
4. Discussion 49
4.1 SC5005 showed no antibacterial activity on Gram-negative bacteria. 50
4.2 The antagonism effect on biofilm eradication activity of SC5005 combined with NP7 51
4.3 The SC5005 combined with NP7 can’t show the robust bactericidal effect at in vivo 51
4.4 The antagonism effect on the combination of SC5005 and valinomycin 52
4.5 Conclusion and future work 52
5. References 54
6. Tables 67
Table 1. The effect of magnesium on the antibacterial activity of SC5005 against S. aureus. 68
Table 2. Anti-bacterial activity of SC5005 against Bacillus subtilis lacking different phospholipid. 69
Table 3. Antibacterial activity of SC5005 and SC5005 derivatives in medium with various percentage of FBS. 70
Table 4. NP7 increases SC5005’s antibacterial activity. (The data is adapted from Chia-Min Yuan’s master thesis) 71
Table 5. Anti-proliferative activity of SC5005 combined with NP7 toward different human epithelial cell lines. (The data is adapted from Chui-Hian Lim’s master thesis) 73
Table 6. Antibacterial activity of SC5005 combined with different forms of NP7. 74
Table 7. Biofilm eradicating activity of antibiotics, SC5005, and SC5005 combined with NP7. 75
Table 8. Antibacterial activity and synergistic killing activity of SC5005 derivatives against MRSA ATCC33592. 76
7. Figures 77
Figure 1. SC5005 affects different pathways of S. aureus without detectable resistance. (The data is adapted from Han-Chu Chang’s master thesis) 78
Figure 2. Percentage of membrane-compromised cell after SC5005 treatment. (The data is adapted from Chui-Hian Lim’s master thesis) 79
Figure 3. The membrane potential of S. aureus treated valinomycin, CCCP and SC5005. 80
Figure 4. Effect of SC5005 on artificial liposome composed of different phospholipids, which mimics the membrane of S. aureus. 81
Figure 5. Anti-proliferative activity of SC5005 and SC5103 in culture medium with different concentration of FBS 82
Figure 6. SC5103 exhibited a better efficacy in the MRSA skin infection model than SC5005. 83
Figure 7. The antibacterial activity of SC5005 in combined with antibiotics. (Part of the data is adapted from Chia Min Yuan’s master thesis) 84
Figure 8. The killing kinetic of SC5005 combined with NP7 on MRSA ATCC33592 85
Figure 9. The killing kinetic of SC5005 combined with NP7 against MRSA persisters. 86
Figure 12. The synergistic antibacterial activity of SC5005 and NP7 can be inhibited by a variety of antioxidants. (The data is adapted from Chui-Hian Lim’s master thesis) 91
Figure 13. The intracellular ROS level of MRSA USA300 treated with SC5005 or SC5005 combined with NP7 92
Figure 14. Antibacterial activity and cytotoxicity of SC derivatives in combined with NP7 94
Figure 15. The membrane potential of S. aureus treated with SC5005, SC5178, SC5103 or CCCP 95
Figure 16. Effect of intraperitoneal administration of SC5005 on the survival of MRSA-infected mice 96
Figure 17. The efficacy of SC5005, SC5178 and SC5103 in combined with NP7 in the MRSA USA300 skin infection model 97
8. Supplementary 98
Table S1. Antibacterial spectrum of SC5005 (The data is adapted from Han-Chu Chang’s master thesis) 99
Table S2. The MICs of SC5005 and CCCP against MSSA NCTC8325 in the presence of menaquinone-4 (MK-4) 100
Table S3. MICs of antibiotics and SC5005 against reference strain and efflux pump deficient strains of E. coli 101
Table S4. MBEC of SC5005 against MRSA USA300 biofilm pretreated with NP7 102
Figure S1. The intracellular ATP level of S. aureus. (The data is adapted from Chia-Min Yuan’s and Sheng-Hsuan Huang’s master thesis) 103
Figure S2. The antibacterial effect of SC5005 combined with CCCP or valinomycin on MRSA USA300 104
Figure S3. The membrane potential of S. aureus treated with SC5005 or SC5005 combined MK-4. 105
dc.language.isoen
dc.subject協同殺菌zh_TW
dc.subject抗甲氧苯青黴素之金黃色葡萄球菌zh_TW
dc.subjectSC5005zh_TW
dc.subjectSC5005en
dc.subjectMRSAen
dc.subjectsynergistic bactericidal effecten
dc.title探討SC5005與天然物對抗藥性金黃色葡萄球菌、休眠細胞與生物膜的協同抗菌機制zh_TW
dc.titleThe synergistic mechanism of SC5005 and nature products against antibiotic-resistant
Staphylococcus aureus, persisters and biofilms
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.advisor-orcid邱浩傑(0000-0002-8800-8474)
dc.contributor.coadvisor鄧麗珍(Lee-Jene Teng)
dc.contributor.coadvisor-orcid鄧麗珍(0000-0003-0104-741X)
dc.contributor.oralexamcommittee蘇伯琦(Po-Chi Soo),陳振暐(Jenn-Wei Chen),蕭崇瑋(Chung-Wai Shiau)
dc.subject.keyword抗甲氧苯青黴素之金黃色葡萄球菌,SC5005,協同殺菌,zh_TW
dc.subject.keywordMRSA,SC5005,synergistic bactericidal effect,en
dc.relation.page105
dc.identifier.doi10.6342/NTU202003784
dc.rights.note有償授權
dc.date.accepted2020-08-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
dc.date.embargo-lift2025-08-17-
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
U0001-1708202016045900.pdf
  未授權公開取用
4.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved