請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79090完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳湘鳳(Shana Smith) | |
| dc.contributor.author | Po-Hung Lin | en |
| dc.contributor.author | 林柏宏 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:43:08Z | - |
| dc.date.available | 2023-08-21 | |
| dc.date.copyright | 2018-08-21 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-10 | |
| dc.identifier.citation | Allin, S., Matsuoka, Y., & Klatzky, R. (2002). Measuring just noticeable differences for haptic force feedback: implications for rehabilitation. Paper presented at the 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2002.
Altner, H., Dudel, J., Grüsser, O.-J., Grüsser-Cornehls, U., Klinke, R., & Zimmermann, M. (2012). Fundamentals of sensory physiology: Springer Science & Business Media. Brooke, J. (1996). SUS-A quick and dirty usability scale. Usability evaluation in industry, 189(194), 4-7. Choi, S., & Kuchenbecker, K. J. (2013). Vibrotactile Display: Perception, Technology, and Applications. Proceedings of the IEEE, 101(9), 2093-2104. doi: 10.1109/JPROC.2012.2221071 Cholewiak, R. W., & Collins, A. A. (2000). The generation of vibrotactile patterns on a linear array: Influences of body site, time, and presentation mode. Perception & Psychophysics, 62(6), 1220-1235. DRV2667 Piezo Haptic Driver with Boost, Digital Front End, and Internal Waveform Memory. 2013, from http://www.ti.com/product/DRV2667 Fishel, J., Lin, G., Matulevich, B., & Loeb, G. (2015). BioTac® Product Manual. Gescheider, G. A. (1997). Psychophysics: The Fundamentals. 3rd Erbaum. Mahwah, NJ. Gescheider, G. A., John, H. W., & Ronald, T. V. (2010). Information-processing channels in the tactile sensory system: A psychophysical and physiological analysis. Goble, A. K., Collins, A. A., & Cholewiak, R. W. (1996). Vibrotactile threshold in young and old observers: the effects of spatial summation and the presence of a rigid surround. The Journal of the Acoustical Society of America, 99(4), 2256-2269. Goldstein, Morris, & Yen. (2004). Problems with fitting to the power-law distribution. The European Physical Journal B-Condensed Matter and Complex Systems, 41(2), 255-258. Goldstein, E. B. (2009). Sensation and Perception: Cengage Learning: ISBN 978-0-495-60149-4. Goldstein, E. B., & Brockmole, J. (2016). Sensation and perception: Cengage Learning. Hartenberg, R. S., & Denavit, J. (1964). Kinematic synthesis of linkages: McGraw-Hill. Hsu, T.-Y., & Smith, S. (2017). Development of a Teleoperation System with Realistic Tactile Sensation Based on Artificial Neural Networks. Paper presented at the The 14th International Conference on Automation Technology, Kaohsiung, Taiwan. Israr, A., Tan, H. Z., & Reed, C. M. (2006). Frequency and amplitude discrimination along the kinesthetic-cutaneous continuum in the presence of masking stimuli. The Journal of the Acoustical Society of America, 120(5), 2789-2800. Johnson, K. O., & Phillips, J. R. (1981). Tactile spatial resolution. I. Two-point discrimination, gap detection, grating resolution, and letter recognition. Journal of neurophysiology, 46(6), 1177-1192. Jones, L. A., & Lederman, S. J. (2006). Human hand function: Oxford University Press. Kron, A., & Schmidt, G. (2003). Multi-fingered tactile feedback from virtual and remote environments. Paper presented at the null. Kuchenbecker, K. J., McMahan, W., Landin, N., & Romano, J. M. (2010). Dimensional Reduction of High-Frequencey Accelerations for Haptic Rendering. Kuroki, S., Watanabe, J., & Nishida, S. y. (2013). Contribution of within- and cross-channel information to vibrotactile frequency discrimination. Brain Research, 1529, 46-55. doi: https://doi.org/10.1016/j.brainres.2013.06.036 Kyung, K.-U., Son, S.-W., Kwon, D.-S., & Kim, M.-S. (2004). Design of an integrated tactile display system. Paper presented at the IEEE International Conference on Robotics and Automation, 2004. Lederman, S. J., & Klatzky, R. L. (1999). Sensing and displaying spatially distributed fingertip forces in haptic interfaces for teleoperator and virtual environment systems. Presence: Teleoperators & Virtual Environments, 8(1), 86-103. Majumdar, A., & Bhushan, B. (1990). Role of fractal geometry in roughness characterization and contact mechanics of surfaces. Journal of tribology, 112(2), 205-216. Matsumoto, Y., Adachi, T., Hoshi, Y., & Sone, J. (2017). Feasible Design and Simulation of Tactile Sensation Device using MEMS Technology. Transactions of the Virtual Reality Society of Japan, 22(2), 279-285. doi: 10.18974/tvrsj.22.2_279 McMahan, W., Gewirtz, J., Standish, D., Martin, P., Kunkel, J. A., Lilavois, M., . . . Kuchenbecker, K. J. (2011). Tool contact acceleration feedback for telerobotic surgery. IEEE Transactions on Haptics, 4(3), 210-220. McMahan, W., & Kuchenbecker, K. J. (2009). Haptic display of realistic tool contact via dynamically compensated control of a dedicated actuator. Paper presented at the The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, USA. Minamizawa, K., Fukamachi, S., Kajimoto, H., Kawakami, N., & Tachi, S. (2007). Gravity grabber: wearable haptic display to present virtual mass sensation. Paper presented at the ACM SIGGRAPH 2007 emerging technologies. Morioka, M., & Griffin, M. J. (2005). Thresholds for the perception of hand-transmitted vibration: Dependence on contact area and contact location. Somatosensory & motor research, 22(4), 281-297. Morioka, M., & Griffin, M. J. (2006). Magnitude-dependence of equivalent comfort contours for fore-and-aft, lateral and vertical whole-body vibration. Journal of Sound and Vibration, 298(3), 755-772. Morley, J. W., & Rowe, M. J. (1990). Perceived pitch of vibrotactile stimuli: effects of vibration amplitude, and implications for vibration frequency coding. The Journal of physiology, 431(1), 403-416. Nishimura, N., Leonardis, D., Solazzi, M., Frisoli, A., & Kajimoto, H. (2014). Wearable encounter-type haptic device with 2-dof motion and vibration for presentation of friction. Paper presented at the Haptics Symposium (HAPTICS), 2014 IEEE. Pacchierotti, C., Prattichizzo, D., & Kuchenbecker, K. J. (2016). Cutaneous feedback of fingertip deformation and vibration for palpation in robotic surgery. IEEE Transactions on Biomedical Engineering, 63(2), 278-287. Park, G., & Choi, S. (2011). Perceptual space of amplitude-modulated vibrotactile stimuli. Paper presented at the World Haptics Conference (WHC), 2011 IEEE. Pongrac, H. (2008). Vibrotactile perception: examining the coding of vibrations and the just noticeable difference under various conditions. Multimedia systems, 13(4), 297-307. Purves, D., Augustine, G., & Fitzpatrick, D. (2001). et al., editors. Neuroscience. Sunderland (MA): Sinauer Associates. Ryu, J., Jung, J., Park, G., & Choi, S. (2010). Psychophysical model for vibrotactile rendering in mobile devices. Presence: Teleoperators and Virtual Environments, 19(4), 364-387. Sarakoglou, I., Garcia-Hernandez, N., Tsagarakis, N. G., & Caldwell, D. G. (2012). Integration of a tactile display in teleoperation of a soft robotic finger using model based tactile feedback. Paper presented at the The 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Algarve, Portugal. Schena, B. M., & Shahoian, E. (2010). Controlling vibrotactile sensations for haptic feedback devices: Google Patents. Sheridan, T. B. (1989). Telerobotics. Automatica, 25(4), 487-507. Sheridan, T. B. (1992). Telerobotics, automation, and human supervisory control: MIT press. Shinya, T., Gomez, G., Koh, H., & Pfeifer, R. (2007). Haptic discrimination of material properties by a robotic hand. Paper presented at the 2007 IEEE 6th International Conference on Development and Learning. Tan, H. Z., Durlach, N. I., Reed, C. M., & Rabinowitz, W. M. (1999). Information transmission with a multifinger tactual display. Perception & Psychophysics, 61(6), 993-1008. Tullis, T. S., & Stetson, J. N. (2004). A comparison of questionnaires for assessing website usability. Paper presented at the Usability professional association conference. Van Boven, R. W., & Johnson, K. O. (1994). The limit of tactile spatial resolution in humans Grating orientation discrimination at the lip, tongue, and finger. Neurology, 44(12), 2361-2361. Weinstein, S. (1962). Tactile sensitivity of the phalanges. Perceptual and motor skills, 14(3), 351-354. Intuitive Surgical, Inc. (2018), Retrieved July 4, 2018, from http://www.davincisurgery.com/da-vinci-surgery/da-vinci-surgical-system/ | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79090 | - |
| dc.description.abstract | 近年來,觸覺回饋技術被廣泛應用在各式的產品中幫助使用者獲得更多的環境資訊。在本研究中,我們開發了一個即時的遠端觸覺回饋重現系統,可以在本地端的使用者手指上重現遠端機械手臂觸摸材質表面的紋理感受。
本研究所採用之材質紋理重現方法為使用一PVDF壓電薄膜做為振動感測器,裝置在遠端的機械手臂前端作為紋理擷取模組,當使用者透過系統操作遠端機械手臂時,擷取模組紀錄材質表面的紋理振動訊號。針對人體無毛皮膚內的振動資訊受器特性,本研究開發一基於振動頻道分離方法,開發一新穎之紋理振動呈現模式。將所記錄的紋理振動訊號透過資料的處理,拆解成高頻成分與低頻成分的資訊。並透過兩個壓電致動器組成的振動觸覺回饋裝置,呈現給使用者一個具有空間資訊與頻率資訊差異的複合式資訊,藉此提升使用者分辨遠端材質紋理的正確性。 最後,進行人因測試,比較這個基於振動頻道分離方法的新穎觸覺回饋呈現模式,與傳統的複合觸覺回饋呈現模式的效果。結果發現,在材質紋理分辨測試中,使用本研究所開發的方法進行遠端材質紋理的重現,正確率有顯著的提升。另外,透過使用者的訪談回饋,也發現本研究所開發的回饋呈現方法,更進一步的提高了紋理重現的真實感。 | zh_TW |
| dc.description.abstract | Nowadays, haptic feedback technology has been applied to many applications to help users acquiring more information concerning surrounding environments. In this research, a real-time teleoperation system was developed to bring realistic tactile sensation concerning object surface texture from a remote location to the local users.
A force sensor and a PVDF sensor were used to design a data recording device, which was attached to a remote slave robot arm, for recording physical surface texture information. Moreover, based on the different sensitivity frequency ranges of the mechanoreceptors in human glabrous skin, a novel feedback device was designed to trigger frequency-channel-segregated vibrotactile stimulus. Two bending piezo-electric actuators were used to trigger different stimulation intensities with different frequency ranges. Finally, a user test was conducted to compare the novel rendering method, based on frequency-channel segregation, with traditional rendering methods, based on frequency integration. User test results showed that the developed vibrotactile feedback method can significantly increase the discrimination of remote surface textures. The user interview also showed that the new rendering method is able to enhance the feeling of three-dimension and realism of the simulated texture information. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:43:08Z (GMT). No. of bitstreams: 1 ntu-107-R05522606-1.pdf: 6019805 bytes, checksum: 8b89a298551f3b0ba6375ce6bc430ae3 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 誌謝 II
摘要 III ABSTRACT IV 目錄 V 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 第二章 文獻回顧 4 2.1 感覺神經生理的感受(sensation)與感知(perception) 4 2.2 機械觸覺接收器四頻道理論(The four-channel theory) 5 2.3 機械振動觸覺回饋的感知 7 2.3.1 機械振動觸覺回饋科學 7 2.3.2 感受閥值(sensory threshold)和感受頻道 (frequency channel) 7 2.3.3 跨頻資訊(cross-channel information)感知探討 8 2.4 利用機械振動觸覺回饋呈現紋理資訊之裝置 9 2.4.1 偏心振動馬達 10 2.4.2 線性響應致動器 10 2.4.3 壓電材料致動器 12 2.4.4 機械振動觸覺回饋裝置小結 13 2.5 利用紋理擷取裝置擷取紋理之機械振動資訊 14 2.5.1 BioTac 14 2.5.2 三軸加速度規 14 2.5.3 壓電聚偏二氟乙烯薄膜和應變規 15 2.6 遠端操作系統 16 2.7 觸覺回饋系統設計考量 19 2.7.1 空間資訊問題 19 2.7.2 剛好感知差異(JND)和韋伯分數(Weber Fraction) 19 2.7.3 刺激強度問題 20 2.7.4 致動器設計考量 20 2.7.5 感測器設計考量 20 第三章 研究介紹 21 3.1 研究目的 21 3.2 研究假設 21 3.3 系統架構介紹 21 第四章 主端子系統 23 4.1 使用者介面 24 4.2 觸覺回饋裝置 25 4.2.1 致動器特性:高低頻強度差異 25 4.2.2 生理機械振動觸覺回饋接收機制 28 4.2.3 機構設計 29 第五章 從端子系統 31 5.1 遠端機械手臂 31 5.2 紋理擷取裝置 34 第六章 訊號處理 36 6.1 轉換函式討論 36 6.2 濾波電路設計 38 6.3 放大電路模組 41 第七章 實驗設置 42 7.1 觸覺呈現模式 42 7.2 樣本選擇 43 第八章 使用者測試 49 8.1 前測試 49 8.1.1 高低頻放大倍率校正 49 8.1.2 前測試流程 50 8.1.3 前測試結果 51 8.2 主測試 53 8.2.1 受測者資訊 53 8.2.2 受測者觸覺感知測試 53 8.2.3 主測試介紹 54 8.2.4 主測試流程 55 8.2.5 主測試結果 56 8.2.6 統計檢驗結果 60 8.2.7 使用者回饋 61 8.2.8 研究討論 62 8.2.9 系統易用性量表(System Usability Scale)分析結果 63 第九章 結論與未來工作 65 參考文獻 61 附件一 使用者測試問卷 71 | |
| dc.language.iso | zh-TW | |
| dc.subject | 壓電致動器 | zh_TW |
| dc.subject | 紋理重現 | zh_TW |
| dc.subject | 振動觸覺回饋 | zh_TW |
| dc.subject | 遠端操作系統 | zh_TW |
| dc.subject | 觸覺回饋 | zh_TW |
| dc.subject | 觸覺感知 | zh_TW |
| dc.subject | haptic feedback | en |
| dc.subject | vibrotactile feedback | en |
| dc.subject | teleoperation system | en |
| dc.subject | tactile perception | en |
| dc.subject | piezo-electric actuators | en |
| dc.subject | surface texture reproduction | en |
| dc.title | 使用感知頻道分離方法重現遠端表面紋理之觸感 | zh_TW |
| dc.title | Reproduce Tactile Perception for Remote Surface Textures Using Frequency-Channel Segregation Method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 廖先順(Hsien-Shun Liao),詹魁元(Kuei-Yuan Chan) | |
| dc.subject.keyword | 紋理重現,振動觸覺回饋,遠端操作系統,觸覺回饋,壓電致動器,觸覺感知, | zh_TW |
| dc.subject.keyword | surface texture reproduction,vibrotactile feedback,teleoperation system,haptic feedback,piezo-electric actuators,tactile perception, | en |
| dc.relation.page | 72 | |
| dc.identifier.doi | 10.6342/NTU201802938 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-10 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-08-21 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-R05522606-1.pdf 未授權公開取用 | 5.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
