Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79081
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余佳慧zh_TW
dc.contributor.advisorLinda Chia-Hui Yuen
dc.contributor.author林柏諭zh_TW
dc.contributor.authorPo-Yu Linen
dc.date.accessioned2021-07-11T15:42:25Z-
dc.date.available2024-02-28-
dc.date.copyright2018-10-11-
dc.date.issued2018-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Greenwood-Van Meerveld, B., Johnson, A. C., & Grundy, D. (2017). Gastrointestinal physiology and function. In Gastrointestinal Pharmacology (pp. 1-16). Springer, Cham.
2. Turner, J. R. (2009). Intestinal mucosal barrier function in health and disease. Nature Reviews Immunology, 9(11), 799.
3. Schneeberger, K., Roth, S., Nieuwenhuis, E. E., & Middendorp, S. (2018). Intestinal epithelial cell polarity defects in disease: lessons from microvillus inclusion disease. Disease models & mechanisms, 11(2), dmm031088.
4. Bennett, K. M., Walker, S. L., & Lo, D. D. (2014). Epithelial microvilli establish an electrostatic barrier to microbial adhesion. Infection and immunity, 82(7), 2860-2871.
5. Farquhar, M. G., & Palade, G. E. (1963). Junctional complexes in various epithelia. The Journal of cell biology, 17(2), 375-412.
6. Balda, M. S., & Matter, K. (1998). Tight junctions. Journal of cell science, 111(5), 541-547.
7. Quiros, M., & Nusrat, A. (2014, December). RhoGTPases, actomyosin signaling and regulation of the epithelial Apical Junctional Complex. In Seminars in cell & developmental biology (Vol. 36, pp. 194-203). Academic Press.
8. Niessen, C. M. (2007). Tight junctions/adherens junctions: basic structure and function. Journal of Investigative Dermatology, 127(11), 2525-2532.
9. Cornick, S., Tawiah, A., & Chadee, K. (2015). Roles and regulation of the mucus barrier in the gut. Tissue Barriers, 3(1-2), e982426.
10. Amerongen, A. N., Bolscher, J. G. M., Bloemena, E., & Veerman, E. C. (1998). Sulfomucins in the human body. Biol Chem, 379(1), 1-18.
11. Krause, W. J. (2000). Brunner's glands: a structural, histochemical and pathological profile. Progress in histochemistry and cytochemistry, 35(4), 255-367.
12. Atuma, C., Strugala, V., Allen, A., & Holm, L. (2001). The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. American Journal of Physiology-Gastrointestinal and Liver Physiology, 280(5), G922-G929.
13. Johansson, M. E., Phillipson, M., Petersson, J., Velcich, A., Holm, L., & Hansson, G. C. (2008). The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proceedings of the national academy of sciences, 105(39), 15064-15069.
14. Johansson, M. E., Larsson, J. M. H., & Hansson, G. C. (2011). The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host–microbial interactions. Proceedings of the national academy of sciences, 108(Supplement 1), 4659-4665.
15. Roberton, A. M., & Wright, D. P. (1997). Bacterial glycosulphatases and sulphomucin degradation. Canadian Journal of Gastroenterology and Hepatology, 11(4), 361-366.
16. Peterson, L. W., & Artis, D. (2014). Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nature Reviews Immunology, 14(3), 141.
17. Bevins, C. L., & Salzman, N. H. (2011). Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nature Reviews Microbiology, 9(5), 356.
18. Stadnyk, A. W. (2002). Intestinal epithelial cells as a source of inflammatory cytokines and chemokines. Canadian Journal of Gastroenterology and Hepatology, 16(4), 241-246.
19. Jung, H. C., Eckmann, L., Yang, S. K., Panja, A. S. I. T., Fierer, J., Morzycka-Wroblewska, E., & Kagnoff, M. F. (1995). A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. The Journal of clinical investigation, 95(1), 55-65.
20. Stadnyk, A. W., & Kearsey, J. A. (1996). Pattern of proinflammatory cytokine mRNA expression during Trichinella spiralis infection of the rat. Infection and immunity, 64(12), 5138-5143.
21. Meyer, T. A., Noguchi, Y., Ogle, C. K., Tiao, G., Wang, J. J., Fischer, J. E., & Hasselgren, P. O. (1994). Endotoxin stimulates interleukin-6 production in intestinal epithelial cells: a synergistic effect with prostaglandin E2. Archives of surgery, 129(12), 1290-1295.
22. Eckmann, L., Jung, H. C., Schürer-Maly, C., Panja, A., Morzycka-Wroblewska, E., & Kagnoff, M. F. (1993). Differential cytokine expression by human intestinal epithelial cell lines: regulated expression of interleukin 8. Gastroenterology, 105(6), 1689-1697.
23. Alzoghaibi, M. A., AL‐MOFLEH, I. A., & AL‐JEBREEN, A. M. (2008). Neutrophil chemokines GCP‐2 and GRO‐α in patients with inflammatory bowel disease. Journal of digestive diseases, 9(3), 144-148.
24. Fukata, M., & Arditi, M. (2013). The role of pattern recognition receptors in intestinal inflammation. Mucosal immunology, 6(3), 451.
25. De Santis, S., Cavalcanti, E., Mastronardi, M., Jirillo, E., & Chieppa, M. (2015). Nutritional keys for intestinal barrier modulation. Frontiers in immunology, 6, 612.
26. Suzuki, T. (2013). Regulation of intestinal epithelial permeability by tight junctions. Cellular and molecular life sciences, 70(4), 631-659.
27. Wolochow, H., Hildebrand, G. J., & Lamanna, C. (1966). Translocation of Microorganisms across the Intestinal Wall of the Rat: Effect of Microbial Size and Concentration [with Discussion]. The Journal of infectious diseases, 116(4), 523-528.
28. Yu, L. C. H. (2015). Commensal bacterial internalization by epithelial cells: An alternative portal for gut leakiness. Tissue barriers, 3(3), e1008895.
29. Bischoff, S. C., Barbara, G., Buurman, W., Ockhuizen, T., Schulzke, J. D., Serino, M., Tilg, H., Watson, A., & Wells, J. M. (2014). Intestinal permeability–a new target for disease prevention and therapy. BMC gastroenterology, 14(1), 189.
30. Ulluwishewa, D., Anderson, R. C., McNabb, W. C., Moughan, P. J., Wells, J. M., & Roy, N. C. (2011). Regulation of tight junction permeability by intestinal bacteria and dietary components. The Journal of nutrition, 141(5), 769-776.
31. Laukoetter, M. G., Bruewer, M., & Nusrat, A. (2006). Regulation of the intestinal epithelial barrier by the apical junctional complex. Current opinion in gastroenterology, 22(2), 85-89.
32. Kim, J. M., Eckmann, L., Savidge, T. C., Lowe, D. C., Witthöft, T., & Kagnoff, M. F. (1998). Apoptosis of human intestinal epithelial cells after bacterial invasion. The Journal of clinical investigation, 102(10), 1815-1823.
33. Negroni, A., Cucchiara, S., & Stronati, L. (2015). Apoptosis, necrosis, and necroptosis in the gut and intestinal homeostasis. Mediators of inflammation, 2015.
34. Gitter, A. H., Bendfeldt, K., Schulzke, J. D., & Fromm, M. (2000). Leaks in the epithelial barrier caused by spontaneous and TNF-α-induced single-cell apoptosis. The FASEB Journal, 14(12), 1749-1753.
35. Halliez, M. C., Motta, J. P., Feener, T. D., Guérin, G., LeGoff, L., François, A., Colasse, E., Favennec, L., Gargala, G., Lapointe, T. K., Altier, C., & Buret, A. G., (2016). Giardia duodenalis induces paracellular bacterial translocation and causes postinfectious visceral hypersensitivity. American Journal of Physiology-Gastrointestinal and Liver Physiology, 310(8), G574-G585.
36. Hoy, B., Geppert, T., Boehm, M., Reisen, F., Plattner, P., Gadermaier, G., Sewald, N., Ferreira, F., Briza, P., Schneider, G., & Backert, S. (2012). Distinct roles of secreted HtrA proteases from gram-negative pathogens in cleaving the junctional protein and tumor suppressor E-cadherin. Journal of Biological Chemistry, 287(13), 10115-10120.
37. Wu, S., Lim, K. C., Huang, J., Saidi, R. F., & Sears, C. L. (1998). Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. Proceedings of the National Academy of Sciences, 95(25), 14979-14984.
38. Thanabalasuriar, A., Koutsouris, A., Weflen, A., Mimee, M., Hecht, G., & Gruenheid, S. (2010). The bacterial virulence factor NleA is required for the disruption of intestinal tight junctions by enteropathogenic Escherichia coli. Cellular microbiology, 12(1), 31-41.
39. Boyle, E. C., Brown, N. F., & Finlay, B. B. (2006). Salmonella enterica serovar Typhimurium effectors SopB, SopE, SopE2 and SipA disrupt tight junction structure and function. Cellular microbiology, 8(12), 1946-1957.
40. Drago, S., El Asmar, R., Di Pierro, M., Grazia Clemente, M., Sapone, A. T. A., Thakar, M., Iacono, G., Carroccio, A., D'Agate, C., Not, T., Zampini, L., Catassi, C., & Zampini, L. (2006). Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scandinavian journal of gastroenterology, 41(4), 408-419.
41. Boivin, M. A., Roy, P. K., Bradley, A., Kennedy, J. C., Rihani, T., & Ma, T. Y. (2009). Mechanism of interferon-γ–induced increase in T84 intestinal epithelial tight junction. Journal of Interferon and Cytokine Research, 29(1), 45-54.
42. McKay, D. M., Watson, J. L., Wang, A., Caldwell, J., Prescott, D., Ceponis, P. M., Di Leo, V., & Lu, J. (2007). Phosphatidylinositol 3’-kinase is a critical mediator of interferon-γ-induced increases in enteric epithelial permeability. Journal of Pharmacology and Experimental Therapeutics, 320(3), 1013-1022.
43. Al-Sadi, R. M., & Ma, T. Y. (2007). IL-1β causes an increase in intestinal epithelial tight junction permeability. The Journal of Immunology, 178(7), 4641-4649.
44. Bruewer, M., Luegering, A., Kucharzik, T., Parkos, C. A., Madara, J. L., Hopkins, A. M., & Nusrat, A. (2003). Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. The Journal of Immunology, 171(11), 6164-6172.
45. Bonazzi, M., & Cossart, P. (2006). Bacterial entry into cells: a role for the endocytic machinery. FEBS letters, 580(12), 2962-2967.
46. Kalischuk, L. D., Leggett, F., & Inglis, G. D. (2010). Campylobacter jejuni induces transcytosis of commensal bacteria across the intestinal epithelium through M-like cells. Gut pathogens, 2(1), 14.
47. Clark, E., Hoare, C., Tanianis-Hughes, J., Carlson, G. L., & Warhurst, G. (2005). Interferon γ Induces Translocation of Commensal Escherichia coli Across Gut Epithelial Cells via a Lipid Raft--Mediated Process. Gastroenterology, 128(5), 1258-1267.
48. Wu, L. L., Peng, W. H., Kuo, W. T., Huang, C. Y., Ni, Y. H., Lu, K. S., Turner, J. R., & Linda, C. H. (2014). Commensal bacterial endocytosis in epithelial cells is dependent on myosin light chain kinase–activated brush border fanning by interferon-γ. The American journal of pathology, 184(8), 2260-2274.
49. Clark, E. C., Patel, S. D., Chadwick, P. R., Warhurst, G., Curry, A., & Carlson, G. L. (2003). Glutamine deprivation facilitates tumour necrosis factor induced bacterial translocation in Caco-2 cells by depletion of enterocyte fuel substrate. Gut, 52(2), 224-230.
50. Cossart, P., & Sansonetti, P. J. (2004). Bacterial invasion: the paradigms of enteroinvasive pathogens. Science, 304(5668), 242-248.
51. dos Reis, R. S., & Horn, F. (2010). Enteropathogenic Escherichia coli, Samonella, Shigella and Yersinia: cellular aspects of host-bacteria interactions in enteric diseases. Gut pathogens, 2(1), 8.
52. Croxen, M. A., & Finlay, B. B. (2010). Molecular mechanisms of Escherichia coli pathogenicity. Nature Reviews Microbiology, 8(1), 26.
53. Patel, J. C., & Galan, J. E. (2005). Manipulation of the host actin cytoskeleton by Salmonella—all in the name of entry. Current opinion in microbiology, 8(1), 10-15.
54. Mounier, J., Popoff, M. R., Enninga, J., Frame, M. C., Sansonetti, P. J., & Van Nhieu, G. T. (2009). The IpaC carboxyterminal effector domain mediates Src-dependent actin polymerization during Shigella invasion of epithelial cells. PLoS pathogens, 5(1), e1000271.
55. Carayol, N., & Van Nhieu, G. T. (2013). Tips and tricks about Shigella invasion of epithelial cells. Current opinion in microbiology, 16(1), 32-37.
56. Ke, Y., Chen, Z., & Yang, R. (2013). Yersinia pestis: mechanisms of entry into and resistance to the host cell. Frontiers in cellular and infection microbiology, 3, 106.
57. Eitel, J., Heise, T., Thiesen, U., & Dersch, P. (2005). Cell invasion and IL‐8 production pathways initiated by YadA of Yersinia pseudotuberculosis require common signalling molecules (FAK, c‐Src, Ras) and distinct cell factors. Cellular microbiology, 7(1), 63-77.
58. Wassenaar, T. M., & Panigrahi, P. (2014). Is a foetus developing in a sterile environment?. Letters in applied microbiology, 59(6), 572-579.
59. Walker, R. W., Clemente, J. C., Peter, I., & Loos, R. J. F. (2017). The prenatal gut microbiome: are we colonized with bacteria in utero?. Pediatric obesity.
60. Wopereis, H., Oozeer, R., Knipping, K., Belzer, C., & Knol, J. (2014). The first thousand days–intestinal microbiology of early life: establishing a symbiosis. Pediatric Allergy and Immunology, 25(5), 428-438.
61. Adlerberth, I., & Wold, A. E. (2009). Establishment of the gut microbiota in Western infants. Acta paediatrica, 98(2), 229-238.
62. Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. (2005). Host-bacterial mutualism in the human intestine. Science, 307(5717), 1915-1920.
63. Rajilić-Stojanović, M., & de Vos, W. M. (2014). The first 1000 cultured species of the human gastrointestinal microbiota. FEMS microbiology reviews, 38(5), 996-1047.
64. Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., Mende, D. R , Li, J., Xu, J., Li, S., Li, D., Cao, J., Wang, B., Liang, H., Zheng, H., Xie, Y., Tap, J., Lepage, P., Bertalan, M., Batto, J. M., Hansen, T., Le Paslier, D., Linneberg, A., Nielsen, H. B., Pelletier, E., Renault, P., Sicheritz-Ponten, T., Turner, K., Zhu, H., Yu, C., Li, S., Jian, M., Zhou, Y., Li, Y., Zhang, X., Li, S., Qin, N., Yang, H., Wang, J., Brunak, S., Doré, J., Guarner, F., Kristiansen, K., Pedersen, O., Parkhill, J., Weissenbach, J., Consortium, M., Bork, P., Ehrlich, S. D., & Wang J. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464(7285), 59.
65. Wang, M., Ahrné, S., Jeppsson, B., & Molin, G. (2005). Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS microbiology ecology, 54(2), 219-231.
66. Orrhage, K., & Nord, C. E. (2000). Bifidobacteria and lactobacilli in human health. Drugs under experimental and clinical research, 26(3), 95-111.
67. O'Hara, A. M., & Shanahan, F. (2006). The gut flora as a forgotten organ. EMBO reports, 7(7), 688-693.
68. Bik, E. M. (2009). Composition and function of the human-associated microbiota. Nutrition reviews, 67(suppl_2), S164-S171.
69. Brestoff, J. R., & Artis, D. (2013). Commensal bacteria at the interface of host metabolism and the immune system. Nature immunology, 14(7), 676.
70. Jandhyala, S. M., Talukdar, R., Subramanyam, C., Vuyyuru, H., Sasikala, M., & Reddy, D. N. (2015). Role of the normal gut microbiota. World journal of gastroenterology: WJG, 21(29), 8787.
71. Ichikawa, H., Kuroiwa, T., Inagaki, A., Shineha, R., Nishihira, T., Satomi, S., & Sakata, T. (1999). Probiotic bacteria stimulate gut epithelial cell proliferation in rat. Digestive diseases and sciences, 44(10), 2119-2123.
72. Lukic, J., Chen, V., Strahinic, I., Begovic, J., Lev‐Tov, H., Davis, S. C., Tomic-Canic, M., & Pastar, I. (2017). Probiotics or pro‐healers: the role of beneficial bacteria in tissue repair. Wound Repair and Regeneration, 25(6), 912-922.
73. Resta, S. C. (2009). Effects of probiotics and commensals on intestinal epithelial physiology: implications for nutrient handling. The Journal of physiology, 587(17), 4169-4174.
74. Ohland, C. L., & MacNaughton, W. K. (2010). Probiotic bacteria and intestinal epithelial barrier function. American Journal of Physiology-Gastrointestinal and Liver Physiology, 298(6), G807-G819.
75. Bernet, M. F., Brassart, D., Neeser, J. R., & Servin, A. L. (1994). Lactobacillus acidophilus LA 1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria. Gut, 35(4), 483-489.
76. Mack, D. R., Michail, S., Wei, S., McDougall, L., & Hollingsworth, M. A. (1999). Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. American Journal of Physiology-Gastrointestinal and Liver Physiology, 276(4), G941-G950.
77. Menard, S., Candalh, C., Bambou, J. C., Terpend, K., Cerf-Bensussan, N., & Heyman, M. (2004). Lactic acid bacteria secrete metabolites retaining anti-inflammatory properties after intestinal transport. Gut, 53(6), 821-828.
78. Round, J. L., & Mazmanian, S. K. (2009). The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology, 9(5), 313.
79. Cerf-Bensussan, N., & Gaboriau-Routhiau, V. (2010). The immune system and the gut microbiota: friends or foes?. Nature Reviews Immunology, 10(10), 735.
80. Chow, J., Tang, H., & Mazmanian, S. K. (2011). Pathobionts of the gastrointestinal microbiota and inflammatory disease. Current opinion in immunology, 23(4), 473-480.
81. Hornef, M. (2015). Pathogens, commensal symbionts, and pathobionts: discovery and functional effects on the host. ILAR journal, 56(2), 159-162.
82. Reddy, B. S., & Watanabe, K. (1978). Effect of intestinal microflora on 3, 2′-dimethyl-4-aminobiphenyl-induced carcinogenesis in F344 rats. Journal of the National Cancer Institute, 61(5), 1269-1271.
83. Uronis, J. M., Mühlbauer, M., Herfarth, H. H., Rubinas, T. C., Jones, G. S., & Jobin, C. (2009). Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PloS one, 4(6), e6026.
84. Polk, D. B., & Peek Jr, R. M. (2010). Helicobacter pylori: gastric cancer and beyond. Nature Reviews Cancer, 10(6), 403.
85. Wroblewski, L. E., Peek, R. M., & Wilson, K. T. (2010). Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clinical microbiology reviews, 23(4), 713-739.
86. Atherton, J. C. (2006). The pathogenesis of Helicobacter pylori–induced gastro-duodenal diseases. Annu. Rev. Pathol. Mech. Dis., 1, 63-96.
87. Martin, H. M., Campbell, B. J., Hart, C. A., Mpofu, C., Nayar, M., Singh, R., Englyst, H., Williams, H. F., & Rhodes, J. M. (2004). Enhanced Escherichia coli adherence and invasion in Crohn’s disease and colon cancer. Gastroenterology, 127(1), 80-93.
88. Viljoen, K. S., Dakshinamurthy, A., Goldberg, P., & Blackburn, J. M. (2015). Quantitative profiling of colorectal cancer-associated bacteria reveals associations between fusobacterium spp., enterotoxigenic Bacteroides fragilis (ETBF) and clinicopathological features of colorectal cancer. PloS one, 10(3), e0119462.
89. Zhao, L., Zhang, X., Zuo, T., & Yu, J. (2017). The Composition of Colonic Commensal Bacteria According to Anatomical Localization in Colorectal Cancer. Engineering, 3(1), 90-97.
90. Behnsen, J., Deriu, E., Sassone-Corsi, M., & Raffatellu, M. (2013). Probiotics: properties, examples, and specific applications. Cold Spring Harbor perspectives in medicine, 3(3), a010074.
91. Dewhirst, F. E., Chen, T., Izard, J., Paster, B. J., Tanner, A. C., Yu, W. H., Lakshmanan, A., & Wade, W. G. (2010). The human oral microbiome. Journal of bacteriology, 192(19), 5002-5017.
92. Peterson, J. W. (1996). Bacterial pathogenesis. Epidemiology--Medical Microbiology (No. 4th edition). University of Texas Medical Branch at Galveston. Chapter 7.
93. Wilson, J. W., Schurr, M. J., LeBlanc, C. L., Ramamurthy, R., Buchanan, K. L., & Nickerson, C. A. (2002). Mechanisms of bacterial pathogenicity. Postgraduate medical journal, 78(918), 216-224.
94. Kline, K. A., Fälker, S., Dahlberg, S., Normark, S., & Henriques-Normark, B. (2009). Bacterial adhesins in host-microbe interactions. Cell host & microbe, 5(6), 580-592.
95. Busch, A., Phan, G., & Waksman, G. (2015). Molecular mechanism of bacterial type 1 and P pili assembly. Phil. Trans. R. Soc. A, 373(2036), 20130153.
96. Servin, A. L. (2014). Pathogenesis of human diffusely adhering Escherichia coli expressing Afa/Dr adhesins (Afa/Dr DAEC): current insights and future challenges. Clinical microbiology reviews, 27(4), 823-869.
97. Walker, T. (1998). Microbiology. Philadelphia: WB Saunders Company.
98. Brown, S., Santa Maria Jr, J. P., & Walker, S. (2013). Wall teichoic acids of gram-positive bacteria. Annual review of microbiology, 67, 313-336.
99. Kochut, A., & Dersch, P. (2013). Bacterial invasion factors: Tools for crossing biological barriers and drug delivery?. European Journal of Pharmaceutics and Biopharmaceutics, 84(2), 242-250.
100. Finlay, B. B., & McFadden, G. (2006). Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell, 124(4), 767-782.
101. Senda, S., Fujiyama, Y., & Hosoda, S. (1987). IgA protease-producing bacteria in patients with ulcerative colitis. Gut, 28(7), 917.
102. Raetz, C. R., & Whitfield, C. (2002). Lipopolysaccharide endotoxins. Annual review of biochemistry, 71(1), 635-700.
103. Fleckenstein, J. M., Hardwidge, P. R., Munson, G. P., Rasko, D. A., Sommerfelt, H., & Steinsland, H. (2010). Molecular mechanisms of enterotoxigenic Escherichia coli infection. Microbes and Infection, 12(2), 89-98.
104. Giannella, R. A., & Mann, E. A. (2003). E. coli heat-stable enterotoxin and guanylyl cyclase C: new functions and unsuspected actions. Transactions of the American Clinical and Climatological Association, 114, 67.
105. Menestrina, G., Moser, C., Pellet, S., & Welch, R. (1994). Pore-formation by Escherichia coli hemolysin (HlyA) and other members of the RTX toxins family. Toxicology, 87(1-3), 249-267.
106. Balskus, E. P. (2015). Colibactin: understanding an elusive gut bacterial genotoxin. Natural product reports, 32(11), 1534-1540.
107. Clausen, T., Southan, C., & Ehrmann, M. (2002). The HtrA family of proteases: implications for protein composition and cell fate. Molecular cell, 10(3), 443-455.
108. Wessler, S., Schneider, G., & Backert, S. (2017). Bacterial serine protease HtrA as a promising new target for antimicrobial therapy? Cell Communication and Signaling, 15(1), 4.
109. Foucaud-Scheunemann, C., & Poquet, I. (2003). HtrA is a key factor in the response to specific stress conditions in Lactococcus lactis. FEMS microbiology letters, 224(1), 53-59.
110. Miethke, M., & Marahiel, M. A. (2007). Siderophore-based iron acquisition and pathogen control. Microbiology and molecular biology reviews, 71(3), 413-451.
111. Motta, J. P., Allain, T., Green-Harrison, L. E., Groves, R. A., Feener, T., Ramay, H., Beck, P. L., Lewis, I. A., Wallace, J. L., & Buret, A. G. (2018). Iron Sequestration in Microbiota Biofilms As A Novel Strategy for Treating Inflammatory Bowel Disease. Inflammatory bowel diseases, 24(7), 1493-1502.
112. Raymond, K. N., Dertz, E. A., & Kim, S. S. (2003). Enterobactin: an archetype for microbial iron transport. Proceedings of the National Academy of Sciences, 100(7), 3584-3588.
113. Dobrindt, U., & Reidl, J. (2000). Pathogenicity islands and phage conversion: evolutionary aspects of bacterial pathogenesis. International journal of medical microbiology, 290(6), 519-527.
114. Niu, C., Yu, D., Wang, Y., Ren, H., Jin, Y., Zhou, W., Li, B., Cheng, Y., Yue, J., Gao, Z., & Liang, L. (2013). Common and pathogen-specific virulence factors are different in function and structure. Virulence, 4(6), 473-482.
115. Clowes, R. C. (1972). Molecular structure of bacterial plasmids. Bacteriological Reviews, 36(3), 361.
116. Ippen-Ihler, K. A., & Minkley Jr, E. G. (1986). The conjugation system of F, the fertility factor of Escherichia coli. Annual review of genetics, 20(1), 593-624.
117. Bennett, P. M. (2008). Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. British journal of pharmacology, 153(S1).
118. Schultsz, C., & Geerlings, S. (2012). Plasmid-mediated resistance in Enterobacteriaceae. Drugs, 72(1), 1-16.
119. Lyon, B. R., May, J. W., Marshall, J. H., & Skurray, R. A. (1982). Plasmid-mediated antibiotic resistance in methicillin-resistant Staphylococcus aureus. The Medical Journal of Australia, 1(11), 468-469.
120. Flannagan, S. E., Chow, J. W., Donabedian, S. M., Brown, W. J., Perri, M. B., Zervos, M. J., Ozawa, Y., & Clewell, D. B. (2003). Plasmid content of a vancomycin-resistant Enterococcus faecalis isolate from a patient also colonized by Staphylococcus aureus with a VanA phenotype. Antimicrobial agents and chemotherapy, 47(12), 3954-3959.
121. Lautenbach, E., Patel, J. B., Bilker, W. B., Edelstein, P. H., & Fishman, N. O. (2001). Extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. Clinical Infectious Diseases, 32(8), 1162-1171.
122. Cascales, E., Buchanan, S. K., Duché, D., Kleanthous, C., Lloubes, R., Postle, K. Riley, M., Slatin, S., & Cavard, D. (2007). Colicin biology. Microbiology and molecular biology reviews, 71(1), 158-229.
123. Pemberton, J. M. (1983). Degradative plasmids. In International review of cytology (Vol. 84, pp. 155-183). Academic Press.
124. Rotger, R., & Casadesús, J. (1999). The virulence plasmids of Salmonella. International Microbiology, 2, 177-184.
125. Kopecko, D. J., Sansonetti, P. J., Baron, L. S., & Formal, S. B. (1981). Invasive bacterial pathogens of the intestine: Shigella virulence plasmids and potential vaccine approaches. In Molecular Biology, Pathogenicity, and Ecology of Bacterial Plasmids (pp. 111-121). Springer, Boston, MA.
126. Johnson, T. J., & Nolan, L. K. (2009). Pathogenomics of the virulence plasmids of Escherichia coli. Microbiology and Molecular Biology Reviews, 73(4), 750-774.
127. García-Quintanilla, M., Ramos-Morales, F., & Casadesús, J. (2008). Conjugal transfer of the Salmonella enterica virulence plasmid in the mouse intestine. Journal of bacteriology, 190(6), 1922-1927.
128. Kohanski, M. A., Dwyer, D. J., & Collins, J. J. (2010). How antibiotics kill bacteria: from targets to networks. Nature Reviews Microbiology, 8(6), 423.
129. Fröhlich, E. E., Farzi, A., Mayerhofer, R., Reichmann, F., Jačan, A., Wagner, B., Zinser, E., Bordag, N., Magnes, C., Fröhlich, E., Kashofer, K., Gorkiewicz, G., & Holzer, P. (2016). Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication. Brain, behavior, and immunity, 56, 140-155.
130. Morgun, A., Dzutsev, A., Dong, X., Greer, R. L., Sexton, D. J., Ravel, J., Schuster, M., Hsiao, W., Matzinger, P., & Shulzhenko, N. (2015). Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks. Gut, gutjnl-2014.
131. Fernebro, J. (2011). Fighting bacterial infections—future treatment options. Drug Resistance Updates, 14(2), 125-139.
132. Casjens, S. R., & Hendrix, R. W. (2015). Bacteriophage lambda: early pioneer and still relevant. Virology, 479, 310-330.
133. Doss, J., Culbertson, K., Hahn, D., Camacho, J., & Barekzi, N. (2017). A review of phage therapy against bacterial pathogens of aquatic and terrestrial organisms. Viruses, 9(3), 50.
134. Cisek, A. A., Dąbrowska, I., Gregorczyk, K. P., & Wyżewski, Z. (2017). Phage therapy in bacterial infections treatment: one hundred years after the discovery of bacteriophages. Current microbiology, 74(2), 277-283.
135. Doss, J., Culbertson, K., Hahn, D., Camacho, J., & Barekzi, N. (2017). A review of phage therapy against bacterial pathogens of aquatic and terrestrial organisms. Viruses, 9(3), 50.
136. Scarpellini, E., Ianiro, G., Attili, F., Bassanelli, C., De Santis, A., & Gasbarrini, A. (2015). The human gut microbiota and virome: potential therapeutic implications. Digestive and Liver Disease, 47(12), 1007-1012.
137. Keen, E. C., & Dantas, G. (2018). Close Encounters of Three Kinds: Bacteriophages, Commensal Bacteria, and Host Immunity. Trends in microbiology.
138. De Sordi, L., Lourenço, M., & Debarbieux, L. (2018). “I will survive”: A tale of bacteriophage-bacteria coevolution in the gut. Gut microbes, (just-accepted), 1-18.
139. Łusiak-Szelachowska, M., Weber-Dąbrowska, B., Jończyk-Matysiak, E., Wojciechowska, R., & Górski, A. (2017). Bacteriophages in the gastrointestinal tract and their implications. Gut pathogens, 9(1), 44.
140. Abedon, S. T., Kuhl, S. J., Blasdel, B. G., & Kutter, E. M. (2011). Phage treatment of human infections. Bacteriophage, 1(2), 66-85.
141. Budynek, P., Dąbrowska, K., Skaradziński, G., & Górski, A. (2010). Bacteriophages and cancer. Archives of microbiology, 192(5), 315-320.
142. Denou, E., Bruttin, A., Barretto, C., Ngom-Bru, C., Brüssow, H., & Zuber, S. (2009). T4 phages against Escherichia coli diarrhea: potential and problems. Virology, 388(1), 21-30.
143. Darfeuille-Michaud, A., Neut, C., Barnich, N., Lederman, E., Di Martino, P., Desreumaux, P., Gambiez, L., Joly, B., Cortot, A., & Colombel, J. F. (1998). Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn's disease. Gastroenterology, 115(6), 1405-1413.
144. Kleessen, B., Kroesen, A. J., Buhr, H. J., & Blaut, M. (2002). Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls. Scandinavian journal of gastroenterology, 37(9), 1034-1041.
145. Deitch, E. A., Bridges, W. M., Ma, J. W., Ma, L., Berg, R. D., & Specian, R. D. (1990). Obstructed intestine as a reservoir for systemic infection. The American Journal of Surgery, 159(4), 394-401.
146. Bjarnason, I., & Peters, T. J. (1984). In vitro determination of small intestinal permeability: demonstration of a persistent defect in patients with coeliac disease. Gut, 25(2), 145-150.
147. Madara, J. L., & Trier, J. S. (1980). Structural abnormalities of jejunal epithelial cell membranes in celiac sprue. Laboratory investigation, 43(3), 254-261.
148. Hsiao, J. K., Huang, C. Y., Lu, Y. Z., Yang, C. Y., & Yu, L. C. H. (2009). Magnetic resonance imaging detects intestinal barrier dysfunction in a rat model of acute mesenteric ischemia/reperfusion injury. Investigative radiology, 44(6), 329-335.
149. Mazzon, E., Sturniolo, G. C., Puzzolo, D., Frisina, N., & Fries, W. (2002). Effect of stress on the paracellular barrier in the rat ileum. Gut, 51(4), 507-513.
150. Kiliaan, A. J., Saunders, P. R., Bijlsma, P. B., Berin, M. C., Taminiau, J. A., Groot, J. A., & Perdue, M. H. (1998). Stress stimulates transepithelial macromolecular uptake in rat jejunum. American Journal of Physiology-Gastrointestinal and Liver Physiology, 275(5), G1037-G1044.
151. Ogura, Y., Bonen, D. K., Inohara, N., Nicolae, D. L., Chen, F. F., Ramos, R., Britton, H., Moran, T., Karaliuskas, R., Duerr, R. H., Achkar, J. P., Brant, S. R., Bayless, T. M., Kirschner, B. S., Hanauer, S. B., Nuñez, G., & Cho, J. H. (2001). A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature, 411(6837), 603.
152. Duerr, R. H., Taylor, K. D., Brant, S. R., Rioux, J. D., Silverberg, M. S., Daly, M. J., Steinhart, A. H., Abraham, C., Regueiro, M., Griffiths, A., Dassopoulos, T., Bitton, A., Yang, H., Targan, S., Datta, L. W., Kistner, E. O., Schumm, L. P., Lee, A. T., Gregersen, P. K., Barmada, M. M., Rotter, J. I., Nicolae, D. L., & Cho, J. H. (2006). A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science, 314(5804), 1461-1463.
153. Sartor, R. B. (2006). Mechanisms of disease: pathogenesis of Crohn's disease and ulcerative colitis. Nature Reviews Gastroenterology and Hepatology, 3(7), 390.
154. Kaser, A., Zeissig, S., & Blumberg, R. S. (2010). Inflammatory bowel disease. Annual Review of Immunology, 28, 573-621.
155. Cheifetz, A. S. (2013). Management of active Crohn disease. Jama, 309(20), 2150-2158.
156. Di Sabatino, A., Ciccocioppo, R., Luinetti, O., Ricevuti, L., Morera, R., Cifone, M. G., Solcia, E., & Corazza, G. R. (2003). Increased enterocyte apoptosis in inflamed areas of Crohn’s disease. Diseases of the colon & rectum, 46(11), 1498-1507.
157. Hollander, D., Vadheim, C. M., Brettholz, E., Petersen, G. M., Delahunty, T., & Rotter, J. I. (1986). Increased intestinal permeability in patients with Crohn's disease and their relatives: a possible etiologic factor. Annals of internal medicine, 105(6), 883-885.
158. Welcker, K., Martin, A., Kolle, P., Siebeck, M., & Gross, M. (2004). Increased intestinal permeability in patients with inflammatory bowel disease. European journal of medical research, 9(10), 456-460.
159. Antoni, L., Nuding, S., Wehkamp, J., & Stange, E. F. (2014). Intestinal barrier in inflammatory bowel disease. World journal of gastroenterology: WJG, 20(5), 1165-1179.
160. Kashani, A., Chitsazan, M., Che, K., & Garrison, R. C. (2014). Leclercia adecarboxylata bacteremia in a patient with ulcerative colitis. Case reports in gastrointestinal medicine, 2014, 457687.
161. Gardiner, K. R., Halliday, M. I., Barclay, G. R., Milne, L., Brown, D., Stephens, S., Maxwell, R. J., & Rowlands, B. J. (1995). Significance of systemic endotoxaemia in inflammatory bowel disease. Gut, 36(6), 897-901.
162. Breslin, N. P., Nash, C., Hilsden, R. J., Hershfield, N. B., Price, L. M., Meddings, J. B., & Sutherland, L. R. (2001). Intestinal permeability is increased in a proportion of spouses of patients with Crohn's disease. The American journal of gastroenterology, 96(10), 2934.
163. Zeissig, S., Bürgel, N., Günzel, D., Richter, J., Mankertz, J., Wahnschaffe, U., Kroesen, A. J., Zeitz, M., Fromm, M., & Schulzke, J. D. (2007). Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut, 56(1), 61-72.
164. Das, P., Goswami, P., Das, T. K., Nag, T., Sreenivas, V., Ahuja, V., Panda, S. K., Gupta, S. D., & Makharia, G. K. (2012). Comparative tight junction protein expressions in colonic Crohn’s disease, ulcerative colitis, and tuberculosis: a new perspective. Virchows Archiv, 460(3), 261-270.
165. Lupp, C., Robertson, M. L., Wickham, M. E., Sekirov, I., Champion, O. L., Gaynor, E. C., & Finlay, B. B. (2007). Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell host & microbe, 2(2), 119-129.
166. Heller, F., Florian, P., Bojarski, C., Richter, J., Christ, M., Hillenbrand, B., Mankertz, J., Gitter, A. H., Bürgel, N., Fromm, M., Zeitz, M., Fuss, I., Strober, W., & Schulzke, J. D. (2005). Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology, 129(2), 550-564.
167. Seksik, P., Rigottier-Gois, L., Gramet, G., Sutren, M., Pochart, P., Marteau, P., Jian, R., & Dore, J. (2003). Alterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon. Gut, 52(2), 237-242.
168. Mylonaki, M., Rayment, N. B., Rampton, D. S., Hudspith, B. N., & Brostoff, J. (2005). Molecular characterization of rectal mucosa-associated bacterial flora in inflammatory bowel disease. Inflammatory bowel diseases, 11(5), 481-487.
169. Frank, D. N., Amand, A. L. S., Feldman, R. A., Boedeker, E. C., Harpaz, N., & Pace, N. R. (2007). Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proceedings of the National Academy of Sciences, 104(34), 13780-13785.
170. Tabaqchali, S., O'donoghue, D. P., & Bettelheim, K. A. (1978). Escherichia coli antibodies in patients with inflammatory bowel disease. Gut, 19(2), 108-113.
171. Sasaki, M., Sitaraman, S. V., Babbin, B. A., Gerner-Smidt, P., Ribot, E. M., Garrett, N., Alpern, J. A., Akyildiz, A., Theiss, A. L., Nusrat, A.,& Klapproth, J. M. A. (2007). Invasive Escherichia coli are a feature of Crohn's disease. Laboratory investigation, 87(10), 1042.
172. Darfeuille-Michaud, A., Boudeau, J., Bulois, P., Neut, C., Glasser, A. L., Barnich, N., Bringer, M. A., Swidsinski, A., Beaugerie, L., & Colombel, J. F. (2004). High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology, 127(2), 412-421.
173. Eaves-Pyles, T., Allen, C. A., Taormina, J., Swidsinski, A., Tutt, C. B., Jezek, G. E., Islas-Islas, M., & Torres, A. G. (2008). Escherichia coli isolated from a Crohn's disease patient adheres, invades, and induces inflammatory responses in polarized intestinal epithelial cells. International Journal of Medical Microbiology, 298(5-6), 397-409.
174. Boudeau, J., Glasser, A. L., Masseret, E., Joly, B., & Darfeuille-Michaud, A. (1999). Invasive Ability of an Escherichia coli Strain Isolated from the Ileal Mucosa of a Patient with Crohn’s Disease. Infection and immunity, 67(9), 4499-4509.
175. O'brien, C. L., Bringer, M. A., Holt, K. E., Gordon, D. M., Dubois, A. L., Barnich, N., Darfeuille-Michaud, A., & Pavli, P. (2016). Comparative genomics of Crohn's disease-associated adherent-invasive Escherichia coli. Gut, gutjnl-2015.
176. Lu, C., Chen, J., Xu, H. G., Zhou, X., He, Q., Li, Y. L., Jiang, G., Shan, Y., Xue, B., Zhao, R. X., Wang, Y., Werle, K. D., Cui, R., Liang, J., & Xu, Z. X. (2014). MIR106B and MIR93 prevent removal of bacteria from epithelial cells by disrupting ATG16L1-mediated autophagy. Gastroenterology, 146(1), 188-199.
177. Bretin, A., Carriere, J., Dalmasso, G., Bergougnoux, A., B'chir, W., Maurin, A. C., Müller, S., Seibold, F., Barnich, N., Bruhat, A., Darfeuille-Michaud, A., & Nguyen, H. T. (2016). Activation of the EIF2AK4-EIF2A/eIF2α-ATF4 pathway triggers autophagy response to Crohn disease-associated adherent-invasive Escherichia coli infection. Autophagy, 12(5), 770-783.
178. Meraz, M. A., White, J. M., Sheehan, K. C., Bach, E. A., Rodig, S. J., Dighe, A. S., Kaplan, D. H., Riley, J. K., Greenlund, A. C., Campbell, D., Carver-Moore, K., DuBois, R. N., Clark, R., Aguet, M., Schreiber, R. D. (1996). Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK–STAT signaling pathway. Cell, 84(3), 431-442.
179. Ossa, J. C., Ho, N. K., Wine, E., Leung, N., Gray‐Owen, S. D., & Sherman, P. M. (2013). Adherent–invasive Escherichia coli blocks interferon‐γ‐induced signal transducer and activator of transcription (STAT)‐1 in human intestinal epithelial cells. Cellular microbiology, 15(3), 446-457.
180. Glasser, A. L., Boudeau, J., Barnich, N., Perruchot, M. H., Colombel, J. F., & Darfeuille-Michaud, A. (2001). Adherent invasive Escherichia coli strains from patients with Crohn's disease survive and replicate within macrophages without inducing host cell death. Infection and immunity, 69(9), 5529-5537.
181. Bringer, M. A., Barnich, N., Glasser, A. L., Bardot, O., & Darfeuille-Michaud, A. (2005). HtrA stress protein is involved in intramacrophagic replication of adherent and invasive Escherichia coli strain LF82 isolated from a patient with Crohn's disease. Infection and immunity, 73(2), 712-721.
182. Bringer, M. A., Billard, E., Glasser, A. L., Colombel, J. F., & Darfeuille-Michaud, A. (2012). Replication of Crohn's disease-associated AIEC within macrophages is dependent on TNF-α secretion. Laboratory investigation, 92(3), 411.
183. Huebner, C., Ding, Y., Petermann, I., Knapp, C., & Ferguson, L. R. (2011). The probiotic Escherichia coli Nissle 1917 reduces pathogen invasion and modulates cytokine expression in Caco-2 cells infected with Crohn's disease-associated E. coli LF82. Applied and environmental microbiology, 77(7), 2541-2544.
184. Denizot, J., Sivignon, A., Barreau, F., Darcha, C., Chan, C. H., Stanners, C. P., Hofman, P., Darfeuille-Michaud, A., & Barnich, N. (2011). Adherent-invasive Escherichia coli induce claudin-2 expression and barrier defect in CEABAC10 mice and Crohn's disease patients. Inflammatory bowel diseases, 18(2), 294-304.
185. Boudeau, J., Barnich, N., & Darfeuille‐Michaud, A. (2001). Type 1 pili‐mediated adherence of Escherichia coli strain LF82 isolated from Crohn's disease is involved in bacterial invasion of intestinal epithelial cells. Molecular microbiology, 39(5), 1272-1284.
186. Carvalho, F. A., Barnich, N., Sivignon, A., Darcha, C., Chan, C. H., Stanners, C. P., & Darfeuille-Michaud, A. (2009). Crohn's disease adherent-invasive Escherichia coli colonize and induce strong gut inflammation in transgenic mice expressing human CEACAM. Journal of Experimental Medicine, 206(10), 2179-2189.
187. Boettner, B. (2013). Debugging Crohn's disease. SciBX: Science-Business eXchange, 6(26).
188. Chan, C. H., Cook, D., & Stanners, C. P. (2006). Increased colon tumor susceptibility in azoxymethane treated CEABAC transgenic mice. Carcinogenesis, 27(9), 1909-1916.
189. Hamilton, W., & Sharp, D. (2004). Diagnosis of colorectal cancer in primary care: the evidence base for guidelines. Family Practice, 21(1), 99-106.
190. Fitzmaurice, C., & Global Burden of Disease Cancer Collaboration. (2018). Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2016: A Systematic Analysis for the Global Burden of Disease Study. JAMA oncology.
191. Health Promotion Administration, Ministry of Health and Welfare. (2017). Cancer registry annual report.
192. Jess, T., Gamborg, M., Matzen, P., Munkholm, P., & Sørensen, T. I. (2005). Increased risk of intestinal cancer in Crohn's disease: a meta-analysis of population-based cohort studies. The American journal of gastroenterology, 100(12), 2724.
193. Eaden, J. A., Abrams, K. R., & Mayberry, J. F. (2001). The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut, 48(4), 526-535.
194. Bernstein, C. N., Blanchard, J. F., Kliewer, E., & Wajda, A. (2001). Cancer risk in patients with inflammatory bowel disease. Cancer, 91(4), 854-862.
195. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646-674.
196. Sopik, V., Phelan, C., Cybulski, C., & Narod, S. A. (2015). BRCA1 and BRCA2 mutations and the risk for colorectal cancer. Clinical genetics, 87(5), 411-418.
197. Armaghany, T., Wilson, J. D., Chu, Q., & Mills, G. (2012). Genetic alterations in colorectal cancer. Gastrointestinal cancer research: GCR, 5(1), 19.
198. Valle, L. (2014). Genetic predisposition to colorectal cancer: where we stand and future perspectives. World journal of gastroenterology: WJG, 20(29), 9828.
199. Baena, R., & Salinas, P. (2015). Diet and colorectal cancer. Maturitas, 80(3), 258-264.
200. Song, M., Garrett, W. S., & Chan, A. T. (2015). Nutrients, foods, and colorectal cancer prevention. Gastroenterology, 148(6), 1244-1260.
201. Boleij, A., & Tjalsma, H. (2012). Gut bacteria in health and disease: a survey on the interface between intestinal microbiology and colorectal cancer. Biological Reviews, 87(3), 701-730.
202. Sobhani, I., Amiot, A., Le Baleur, Y., Levy, M., Auriault, M. L., Van Nhieu, J. T., & Delchier, J. C. (2013). Microbial dysbiosis and colon carcinogenesis: could colon cancer be considered a bacteria-related disease? Therapeutic advances in gastroenterology, 6(3), 215-229.
203. Wong, C. H., & Goh, K. L. (2006). Chronic hepatitis B infection and liver cancer. Biomedical imaging and intervention journal, 2(3).
204. Leung, N. (2005). HBV and liver cancer. The Medical journal of Malaysia, 60, 63-66.
205. Burd, E. M. (2003). Human papillomavirus and cervical cancer. Clinical microbiology reviews, 16(1), 1-17.
206. Pattle, S. B., & Farrell, P. J. (2006). The role of Epstein–Barr virus in cancer. Expert opinion on biological therapy, 6(11), 1193-1205.
207. Choi, B. I., Han, J. K., Hong, S. T., & Lee, K. H. (2004). Clonorchiasis and cholangiocarcinoma: etiologic relationship and imaging diagnosis. Clinical microbiology reviews, 17(3), 540-552.
208. Chan, C. P., Kok, K. H., & Jin, D. Y. (2017). Human T-Cell Leukemia Virus Type 1 Infection and Adult T-Cell Leukemia. In Infectious Agents Associated Cancers: Epidemiology and Molecular Biology (pp. 147-166). Springer, Singapore.
209. Bonnet, M., Buc, E., Sauvanet, P., Darcha, C., Dubois, D., Pereira, B., Déchelotte, P., Bonnet, R., Pezet, D., & Darfeuille-Michaud, A. (2014). Colonization of the human gut by E. coli and colorectal cancer risk. Clinical Cancer Research, 20(4), 859-867.
210. Kostic, A. D., Gevers, D., Pedamallu, C. S., Michaud, M., Duke, F., Earl, A. M., Ojesina, A. I., Jung, J., Bass, A. J., Tabernero, J., Baselga, J., Liu, C., Shivdasani, R. A., Ogino, S., Birren, B. W., Huttenhower, C., Garrett, W. S., & Meyerson, M. (2012). Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome research, 22(2), 292-298.
211. Ahn, J., Sinha, R., Pei, Z., Dominianni, C., Wu, J., Shi, J., Goedert, J. J., Hayes, R. B., & Yang, L. (2013). Human gut microbiome and risk for colorectal cancer. Journal of the National Cancer Institute, 105(24), 1907-1911.
212. Chen, W., Liu, F., Ling, Z., Tong, X., & Xiang, C. (2012). Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PloS one, 7(6), e39743.
213. Gao, R., Gao, Z., Huang, L., & Qin, H. (2017). Gut microbiota and colorectal cancer. European Journal of Clinical Microbiology & Infectious Diseases, 36(5), 757-769.
214. Gagnière, J., Raisch, J., Veziant, J., Barnich, N., Bonnet, R., Buc, E., Bringer, M. A., Pezet, D., & Bonnet, M. (2016). Gut microbiota imbalance and colorectal cancer. World journal of gastroenterology, 22(2), 501.
215. Castellarin, M., Warren, R. L., Freeman, J. D., Dreolini, L., Krzywinski, M., Strauss, J., Barnes, R., Watson, P., Allen-Vercoe, E., Moore, R. A., & Holt, R. A. (2012). Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome research, 22(2), 299-306.
216. Hsu, R. Y., Chan, C. H., Spicer, J. D., Rousseau, M. C., Giannias, B., Rousseau, S., & Ferri, L. E. (2011). LPS-induced TLR4 signaling in human colorectal cancer cells increases β1 integrin-mediated cell adhesion and liver metastasis. Cancer research, 71(5), 1989-1998.
217. Newman, J. V., Kosaka, T., Sheppard, B. J., Fox, J. G., & Schauer, D. B. (2001). Bacterial infection promotes colon tumorigenesis in ApcMin/+ mice. The Journal of infectious diseases, 184(2), 227-230.
218. Yurdakul, D., Yazgan-Karataş, A., & Şahin, F. (2015). Enterobacter strains might promote colon cancer. Current microbiology, 71(3), 403-411.
219. Yu, L. C. H., Wei, S. C., & Ni, Y. H. (2017). Interplay between the gut microbiota and epithelial innate signaling in colitis-associated colon carcinogenesis. Cancer Research Frontiers, 3(1), 1-28.
220. Choi, H. J., Kim, J., Do, K. H., Park, S. H., & Moon, Y. (2013). Enteropathogenic Escherichia coli-induced macrophage inhibitory cytokine 1 mediates cancer cell survival: an in vitro implication of infection-linked tumor dissemination. Oncogene, 32(41), 4960.
221. Cougnoux, A., Dalmasso, G., Martinez, R., Buc, E., Delmas, J., Gibold, L., Sauvanet, P., Darcha, C., Déchelotte, P., Bonnet, M., Pezet, D., Wodrich, H., Darfeuille-Michaud, A., & Bonnet, R. (2014). Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut, 63(12), 1932-1942.
222. Buc, E., Dubois, D., Sauvanet, P., Raisch, J., Delmas, J., Darfeuille-Michaud, A. Pezet, D., & Bonnet, R. (2013). High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer. PloS one, 8(2), e56964.
223. Arthur, J. C., Perez-Chanona, E., Mühlbauer, M., Tomkovich, S., Uronis, J. M., Fan, T. J., Campbell, B. J., Abujamel, T., Dogan, B., Rogers, A. B., Rhodes, J. M., Stintzi, A., Simpson, K. W., Hansen, J. J., Keku, T. O., Fodor, A. A., & Jobin, C. (2012). Intestinal inflammation targets cancer-inducing activity of the microbiota. Science, 338(6103), 120-123.
224. Dalmasso, G., Cougnoux, A., Delmas, J., Darfeuille-Michaud, A., & Bonnet, R. (2014). The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment. Gut Microbes, 5(5), 675-680.
225. Guerra, L., Guidi, R., & Frisan, T. (2011). Do bacterial genotoxins contribute to chronic inflammation, genomic instability and tumor progression? The FEBS journal, 278(23), 4577-4588.
226. Raisch, J., Rolhion, N., Dubois, A., Darfeuille-Michaud, A., & Bringer, M. A. (2015). Intracellular colon cancer-associated Escherichia coli promote protumoral activities of human macrophages by inducing sustained COX-2 expression. Laboratory Investigation, 95(3), 296.
227. Wang, D., & DuBois, R. N. (2010). The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene, 29(6), 781.
228. Sahu, U., Choudhury, A., Parvez, S., Biswas, S., & Kar, S. (2017). Induction of intestinal stemness and tumorigenicity by aberrant internalization of commensal non-pathogenic E. coli. Cell death & disease, 8(3), e2667.
229. Raisch, J., Buc, E., Bonnet, M., Sauvanet, P., Vazeille, E., De Vallée, A., Déchelotte, P., Darcha, C., Pezet, D., Bonnet, R., Bringer, M. A., and Darfeuille-Michaud A. (2014). Colon cancer-associated B2 Escherichia coli colonize gut mucosa and promote cell proliferation. World Journal of Gastroenterology: WJG, 20(21), 6560.
230. Prorok-Hamon, M., Friswell, M. K., Alswied, A., Roberts, C. L., Song, F., Flanagan, P. K., Knight, P., Codling, C., Marchesi, J. R., Winstanley, C., Hall, N., Rhodes, J. M., Campbell, B. J., & Hall, N. (2013). Colonic mucosa-associated diffusely adherent afaC+ Escherichia coli expressing lpfA and pks are increased in inflammatory bowel disease and colon cancer. Gut, gutjnl-2013.
231. Perry, J. K., Lins, R. J., Lobie, P. E., & Mitchell, M. D. (2010). Regulation of invasive growth: similar epigenetic mechanisms underpin tumour progression and implantation in human pregnancy. Clinical Science, 118(7), 451-457.
232. Moon, R. T., Kohn, A. D., De Ferrari, G. V., & Kaykas, A. (2004). WNT and β-catenin signalling: diseases and therapies. Nature Reviews Genetics, 5(9), 691.
233. Posselt, G., Crabtree, J. E., & Wessler, S. (2017). Proteolysis in Helicobacter pylori-induced gastric cancer. Toxins, 9(4), 134.
234. Hussain, M., Ramzan, M., Iqbal, Z., Qazi, W. M., & Hoessli, D. C. (2018). Charge and Polarity Preferences for N-glycosylation: a genome-Wide In Silico study and its implications regarding constitutive proliferation and adhesion of carcinoma cells. Frontiers in oncology, 8, 29.
235. Kohoutova, D., Smajs, D., Moravkova, P., Cyrany, J., Moravkova, M., Forstlova, M., Cihak, M., Rejchrt, S., & Bures, J. (2014). Escherichia coli strains of phylogenetic group B2 and D and bacteriocin production are associated with advanced colorectal neoplasia. BMC infectious diseases, 14(1), 733.
236. Wu, S., Rhee, K. J., Albesiano, E., Rabizadeh, S., Wu, X., Yen, H. R. Huso, D. L., Brancati, F. L., Wick, E., McAllister, F., Housseau, F., Pardoll, D. M., & Sears, C. L. (2009). A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nature medicine, 15(9), 1016.
237. Goodwin, A. C., Shields, C. E. D., Wu, S., Huso, D. L., Wu, X., Murray-Stewart, T. R., Hacker-Prietz, A., Rabizadeh, S., Woster, P. M., Sears, C. L., & Casero, R. A. (2011). Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proceedings of the National Academy of Sciences, 108(37), 15354-15359.
238. Rubinstein, M. R., Wang, X., Liu, W., Hao, Y., Cai, G., & Han, Y. W. (2013). Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell host & microbe, 14(2), 195-206.
239. Yang, Y., Weng, W., Peng, J., Hong, L., Yang, L., Toiyama, Y., Gao, R., Liu, M., Yin, M., Pan, C., Li, H., Guo, B., Zhu, Q., Wei, Q., Moyer, M. P., Wang, P., Cai, S., Goel, A., Qin, H., & Ma, Y. (2017). Fusobacterium nucleatum Increases Proliferation of Colorectal Cancer Cells and Tumor Development in Mice by Activating Toll-Like Receptor 4 Signaling to Nuclear Factor− κB, and Up-regulating Expression of MicroRNA-21. Gastroenterology, 152(4), 851-866.
240. Chen, Y., Peng, Y., Yu, J., Chen, T., Wu, Y., Shi, L., Li, Q., Wu, J., & Fu, X. (2017). Invasive Fusobacterium nucleatum activates beta-catenin signaling in colorectal cancer via a TLR4/P-PAK1 cascade. Oncotarget, 8(19), 31802.
241. Abed, J., Emgård, J. E., Zamir, G., Faroja, M., Almogy, G., Grenov, A., Sol, A., Naor, R., Pikarsky, E., Atlan, K. A., Mellul, A., Chaushu, S., Manson, A. L., Earl, A. M., Ou, N., Brennan, C. A., Garrett, W. S., & Bachrach, G. (2016). Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell host & microbe, 20(2), 215-225.
242. Kostic, A. D., Chun, E., Robertson, L., Glickman, J. N., Gallini, C. A., Michaud, M., Clancy, T. E., Chung, D. C., Lochhead, P., Hold, G. L., El-Omar, E. M., Brenner, D., Fuchs, C. S., Meyerson, M., & Garrett, W. S.( 2013). Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell host & microbe, 14(2), 207-215.
243. Wang, X., Yang, Y., & Huycke, M. M. (2015). Commensal bacteria drive endogenous transformation and tumour stem cell marker expression through a bystander effect. Gut, 64(3), 459-468.
244. De Robertis, M., Massi, E., Poeta, M. L., Carotti, S., Morini, S., Cecchetelli, L., Signori, E. & Fazio, V. M. (2011). The AOM/DSS murine model for the study of colon carcinogenesis: From pathways to diagnosis and therapy studies. Journal of carcinogenesis, 10: 9.
245. Fiala, E. S. (1977). Investigations into the metabolism and mode of action of the colon carcinogens 1, 2‐dimethylhydrazine and azoxymethane. Cancer, 40(S5): 2436-2445.
246. Laroui, H., Ingersoll, S. A., Liu, H. C., Baker, M. T., Ayyadurai, S., Charania, M. A., Laroui, F., Yan, Y., Sitaraman, S. V., & Merlin, D. (2012). Dextran sodium sulfate (DSS) induces colitis in mice by forming nano-lipocomplexes with medium-chain-length fatty acids in the colon. PloS one, 7(3), e32084.
247. Banerjee, A., Bizzaro, D., Burra, P., Di Liddo, R., Pathak, S., Arcidiacono, D., Cappon, A., Bo, P., Conconi, M. T., Crescenzi, M., Pinna, C. M. A., Parnigotto, P. P., Alison M. R., Sturniolo, G. C., D’Incà, R. & Pinna, C. M. A. (2015). Umbilical cord mesenchymal stem cells modulate dextran sulfate sodium induced acute colitis in immunodeficient mice. Stem cell research & therapy, 6(1), 79.
248. Chassaing, B., Aitken, J. D., Malleshappa, M., & Vijay‐Kumar, M. (2014). Dextran sulfate sodium (DSS)‐induced colitis in mice. Current protocols in immunology, 15-25.
249. Okayasu, I., Ohkusa, T., Kajiura, K., Kanno, J., & Sakamoto, S. (1996). Promotion of colorectal neoplasia in experimental murine ulcerative colitis. Gut, 39(1), 87-92.
250. Pepin, J. (2008). Vancomycin for the treatment of Clostridium difficile infection: for whom is this expensive bullet really magic?. Clinical Infectious Diseases, 46(10), 1493-1498.
251. Rimola, A., Bory, F., Teres, J., Perez‐Ayuso, R. M., Arroyo, V., & Rodes, J. (1985). Oral, nonabsorbable antibiotics prevent infection in cirrhotics with gastrointestinal hemorrhage. Hepatology, 5(3), 463-467.
252. Butler, M. S., Hansford, K. A., Blaskovich, M. A., Halai, R., & Cooper, M. A. (2014). Glycopeptide antibiotics: back to the future. The Journal of antibiotics, 67(9), 631.
253. Van Bambeke, F. (2006). Glycopeptides and glycodepsipeptides in clinical development: a comparative review of their antibacterial spectrum, pharmacokinetics and clinical efficacy. Current Opinion in Investigational Drugs, 7(8), 740.
254. Levine, D. P. (2006). Vancomycin: a history. Clinical Infectious Diseases, 42(Supplement_1), S5-S12.
255. Haltalin, K. C., Nelson, J. D., Hinton, L. V., Kusmiesz, H. T., & Sladoje, M. (1968). Comparison of orally absorbable and nonabsorbable antibiotics in shigellosis: A double-blind study with ampicillin and neomycin. The Journal of pediatrics, 72(5), 708-720.
256. Kotra, L. P., Haddad, J., & Mobashery, S. (2000). Aminoglycosides: perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrobial agents and chemotherapy, 44(12), 3249-3256.
257. Taber, H. W., Mueller, J. P., Miller, P. F., & Arrow, A. S. (1987). Bacterial uptake of aminoglycoside antibiotics. Microbiological reviews, 51(4), 439.
258. Hobbie, S. N., Pfister, P., Bruell, C., Sander, P., François, B., Westhof, E., & Böttger, E. C. (2006). Binding of neomycin-class aminoglycoside antibiotics to mutant ribosomes with alterations in the A site of 16S rRNA. Antimicrobial agents and chemotherapy, 50(4), 1489-1496.
259. Cherian, P. T., Wu, X., Yang, L., Scarborough, J. S., Singh, A. P., Alam, Z. A., Lee, R. E., & Hurdle, J. G. (2015). Gastrointestinal localization of metronidazole by a lactobacilli-inspired tetramic acid motif improves treatment outcomes in the hamster model of Clostridium difficile infection. Journal of Antimicrobial Chemotherapy, 70(11), 3061-3069.
260. Edwards, D. I. (1979). Mechanism of antimicrobial action of metronidazole. Journal of Antimicrobial Chemotherapy, 5(5), 499-502.
261. Mukherjee, T., & Boshoff, H. (2011). Nitroimidazoles for the treatment of TB: past, present and future. Future medicinal chemistry, 3(11), 1427-1454.
262. Tomasz, A. (1979). The mechanism of the irreversible antimicrobial effects of penicillins: how the beta-lactam antibiotics kill and lyse bacteria. Annual Reviews in Microbiology, 33(1), 113-137.
263. Chow, J. W. (2000). Aminoglycoside resistance in enterococci. Clinical Infectious Diseases, 31(2), 586-589.
264. Yoshizawa, S., Fourmy, D., & Puglisi, J. D. (1998). Structural origins of gentamicin antibiotic action. The EMBO journal, 17(22), 6437-6448.
265. Seeberg, V. P., Illg, P. L., & Brown, D. J. (1946). The intestinal absorption of penicillin G. Science, 104(2702), 342-343.
266. Bhardwaj, R. K., Herrera-Ruiz, D., Sinko, P. J., Gudmundsson, O. S., & Knipp, G. (2005). Delineation of human peptide transporter 1 (hPepT1)-mediated uptake and transport of substrates with varying transporter affinities utilizing stably transfected hPepT1/Madin-Darby canine kidney clones and Caco-2 cells. Journal of Pharmacology and Experimental Therapeutics, 314(3), 1093-1100.
267. Buggs, C. W., Pilling, M. A., Bronstein, B., Hirshfeld, J. W., Worzniak, L., & Key, L. J. (1946). The absorption, distribution, and excretion of streptomycin in man. The Journal of clinical investigation, 25(1), 94-102.
268. Moazed, D., & Noller, H. F. (1987). Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature, 327(6121), 389.
269. Kunin, C. M. (1966). Absorption, distribution, excretion and fate of kanamycin. Annals of the New York Academy of Sciences, 132(1), 811-818.
270. Suzuki, J., Kunimoto, T., & Hori, M. (1970). Effects of kanamycin on protein synthesis: inhibition of elongation of peptide chains. The Journal of antibiotics, 23(2), 99-101.
271. Pindell, M. H., Cull, K. M., Doran, K. M., & Dickison, H. L. (1959). Absorption and excretion studies on tetracycline. Journal of Pharmacology and Experimental Therapeutics, 125(4), 287-294.
272. Connell, S. R., Tracz, D. M., Nierhaus, K. H., & Taylor, D. E. (2003). Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrobial agents and chemotherapy, 47(12), 3675-3681.
273. Watanabe, K., Kodama, Y., & Harayama, S. (2001). Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. Journal of Microbiological Methods, 44(3), 253-262.
274. Muyzer, G., De Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and environmental microbiology, 59(3), 695-700.
275. Vandemaele, F., Vandekerchove, D., Vereecken, M., Derijcke, J., Dho-Moulin, M., & Goddeeris, B. M. (2003). Sequence analysis demonstrates the conservation of fimH and variability of fimA throughout avian pathogenic Escherichia coli (APEC). Veterinary research, 34(2), 153-163.
276. Li, B., Koch, W. H., & Cebula, T. A. (1997). Detection and characterization of the fimA gene of Escherichia coli O157: H7. Molecular and cellular probes, 11(6), 397-406.
277. Lin, T. L., Hsieh, P. F., Huang, Y. T., Lee, W. C., Tsai, Y. T., Su, P. A., Pan, Y.J., Hsu, C.R., Wu, M.C., & Wang, J. T. (2014). Isolation of a bacteriophage and its depolymerase specific for K1 capsule of Klebsiella pneumoniae: implication in typing and treatment. The Journal of infectious diseases, 210(11), 1734-1744.
278. Scholzen, T., & Gerdes, J. (2000). The Ki‐67 protein: from the known and the unknown. Journal of cellular physiology, 182(3), 311-322.
279. Cecchini, M. J., Amiri, M., & Dick, F. A. (2012). Analysis of cell cycle position in mammalian cells. Journal of visualized experiments: JoVE, (59).
280. Schembri, M. A., Kjaergaard, K., Sokurenko, E. V., & Klemm, P. (2001). Molecular characterization of the Escherichia coli FimH adhesin. The Journal of infectious diseases, 183(Supplement_1), S28-S31.
281. Li, H., Bo, H., Wang, J., Shao, H., & Huang, S. (2011). Separation of supercoiled from open circular forms of plasmid DNA, and biological activity detection. Cytotechnology, 63(1), 7-12.
282. Sanmukh, S. G., & Felisbino, S. L. (2017). Bacteriophages in Cancer Biology and Therapies. Clin Oncol, 2, 1295.
283. Smith, H. W., & Huggins, M. B. (1983). Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. Microbiology, 129(8), 2659-2675.
284. Sarker, S. A., Sultana, S., Reuteler, G., Moine, D., Descombes, P., Charton, F., Bourdin, G., McCallin, S., Ngom-Bru, C., Neville, T., Akter, M., Huq, S., Qadri, F., Talukdar, K., Kassam, M., Delley, M., Loiseau, C., Deng, Y., El Aidy, S., Berger, B., & Brüssow, H. (2016). Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh. EBioMedicine, 4, 124-137.
285. Riley, M. A., Cadavid, L., Collett, M. S., Neely, M. N., Adams, M. D., Phillips, C. M., Neel, J. V., & Friedman, D. (2000). The newly characterized colicin Y provides evidence of positive selection in pore-former colicin diversification. Microbiology, 146(7), 1671-1677.
286. Varsaki, A., Lucas, M., Afendra, A. S., Drainas, C., & De La Cruz, F. (2003). Genetic and biochemical characterization of MbeA, the relaxase involved in plasmid ColE1 conjugative mobilization. Molecular microbiology, 48(2), 481-493.
287. Yamada, Y., Yamada, M., & Nakazawa, A. (1995). A ColE1-encoded gene directs entry exclusion of the plasmid. Journal of bacteriology, 177(21), 6064-6068.
288. Castagnoli, L., Scarpa, M., Kokkinidis, M., Banner, D. W., Tsernoglou, D., & Cesareni, G. (1989). Genetic and structural analysis of the ColE1 Rop (Rom) protein. The EMBO journal, 8(2), 621-629.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79081-
dc.description.abstract背景:結腸直腸癌 (colorectal cancer, CRC) 的發生率在台灣已經連續9年佔據十大癌症之首。而發炎性腸道疾病 (inflammatory bowel disease, IBD) 的患者有很高的風險會進展成CRC。先前許多證據指出腸道菌叢與IBD及CRC的病理發展是有關的,但詳細的機制目前尚未清楚。目的:探討含有毒性因子之細菌入侵腸道上皮細胞後是否會直接影響細胞的增生週期,並利用噬菌體抑制細菌之促癌作用。方法:將腸癌模式小鼠大腸上皮細胞分離之大腸桿菌 (Escherichia coli) 與人類大腸癌細胞株Caco-2及T84細胞共培養4小時以測量內化菌落數,並於24小時後利用流式細胞技術觀察細胞週期之改變。利用PCR技術分析內化細菌之毒性因子,並將細菌之fimA、fimH及htrA基因作單獨或共同剔除,隨後與Caco-2細胞共培養後測量內化菌落數及觀察細胞增生情形。噬菌體實驗則是將噬菌體、細菌、Caco-2細胞三者共培養後測量內化細菌菌落數及觀察細胞增生情形。結果:小鼠腸道上皮細胞分離的E. coli感染Caco-2或T84細胞後,都會侵襲至細胞中並促使細胞加速增生。若將細菌毒性因子包括fimA、fimH或htrA基因單獨或共同剔除,則細胞增生情形減少。將針對E. coli有專一性的噬菌體與細菌和Caco-2細胞共培養後,可降低內化菌落數並且減少細胞增生的情形。結論:小鼠腸道上皮細胞分離之細菌透過毒性因子fimA/fimH/htrA內化至細胞中並促進細胞加速增生,推論是細菌促癌的機制。而利用噬菌體可有效抑制細菌促進上皮細胞增生的能力。zh_TW
dc.description.abstractBackground: The incidence of colorectal cancer (CRC) had been the highest among other types of cancers for 9 years in Taiwan, and patients with inflammatory bowel disease (IBD) had a higher risk. Previous studies showed that gut microbiota were related to IBD and CRC development, but the mechanism is still unclear. Aim: To investigate whether the invasion of intestinal bacteria with virulence factors and endogenous plasmids may promote epithelial cell proliferation, and the inhibitory effect of bacteriophage on bacteria-induced epithelial cell hyperproliferation. Methods: Escherichia coli were isolated from mouse colonocytes of colitis-associated cancer model. Human Caco-2 cells and T84 cells were apically exposed to E. coli for 4 hours to measure the internalized bacterial colony forming units. After 24 hours, the cell cycle progression was measured by flow cytometry. Bacterial virulence genes were determined by PCR; bacteria were deleted of fimA, fimH, and htrA genes individually or simultaneously and then exposed to Caco-2 cells for measuring bacterial internalization and cell proliferation. In addition, Caco-2 cells were exposed to bacteriophage and bacteria for measuring bacterial internalization and cell proliferation. Results: The mouse colonocytic isolated E. coli were internalized into Caco-2 and T84 cells, and caused cell proliferation. The internalized E. coli expressed type 1 fimbriae, fimA, fimH gene or stress protein, htrA gene. Single or multiple gene deletion of fimA, fimH, and htrA in E. coli reduced Caco-2 cell proliferation. Addition of phage in the co-culture of E. coli and Caco-2 cells decreased bacterial internalization and cell proliferation. Conclusions: The mouse colonocytic isolated bacteria invaded epithelial cells and promoted cell proliferation via a fimA/fimH/htrA-dependent mechanism, which may contribute to protumorigenic activity. Bacteriophages inhibited the epithelial hyperproliferation induced by bacterial internalization.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:42:25Z (GMT). No. of bitstreams: 1
ntu-107-R05441008-1.pdf: 5115899 bytes, checksum: 5138619f576b1c4a8c4a5df7489a2f38 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
目錄 IV
圖表目錄 VII
壹、文獻探討 1
一、腸道屏障功能 (Intestinal barrier function) 1
二、上皮細胞通透性(Epithelial permeability)與細菌位移(Bacterial translocation) 3
2.1 間細胞途徑 (paracellular pathway) 3
2.2 穿細胞途徑 (transcellular pathway) 5
三、腸腔之常生細菌 (Commensal bacteria) 6
3.1 共生菌 (symbionts) 6
3.2 病生菌 (pathobionts) 7
四、細菌之毒性因子 (Bacterial virulence factor) 8
4.1 黏附因子 (adherence factor) 8
4.2 侵入因子 (invasion factor) 9
4.3 免疫反應抑制劑 (immune response inhibitor) 9
4.4 毒素 (toxin) 10
4.5 螯鐵蛋白 (siderophore) 11
4.6 細菌毒性基因水平轉移 (horizontal gene transfer) 11
4.7 具有毒性因子的非病原菌 12
五、細菌內源性質體 (Bacterial endogenous plasmid) 12
5.1 致育性質體 (fertility plasmid, F plasmid) 13
5.2 抗藥性質體 (resistance plasmid, R plasmid) 13
5.3 大腸桿菌素質體 (colicinogenic plasmid, Col plasmid) 13
5.4 降解性質體 (degradative plasmid) 14
5.5 毒性質體 (virulence plasmid) 15
5.6 多功能之質體 15
六、細菌感染之治療方法―抗生素治療 vs. 噬菌體治療 15
6.1 抗生素治療 (antibiotics therapy) 15
6.2 噬菌體治療 (bacteriophage therapy) 16
七、腸道屏障功能失常與腸道菌相失衡之相關疾病 18
7.1 發炎性腸道疾病 (inflammatory bowel disease, IBD) 18
7.1.1 發炎性腸道疾病與腸道屏障功能失常之關聯 19
7.1.2 發炎性腸道疾病與腸道菌相失衡之關聯 19
7.2 結腸直腸癌 (colorectal cancer, CRC) 21
7.2.1 結腸直腸癌與腸道菌叢之關聯 22
八、研究目的 24
貳、材料與方法 25
一、動物模式 25
1.1 發炎性結腸直腸癌模式 (colitis-associated colorectal cancer model) 25
1.2 單獨給予AOM或DSS藥劑組別 28
1.3 結直腸腫瘤數量計數及大小測量 29
二、小鼠腸道上皮細胞之內化細菌及糞便細菌分離 29
2.1 小鼠腸道上皮細胞分離技術 (epithelial cell isolation) 29
2.2 內化細菌之定量分析 (bacteria internalization assay/gentamicin resistant assay) 30
2.3 小鼠糞便均質化 (homogenization) 以及糞便細菌分離 30
三、細菌和毒性因子定性分析 30
3.1 細菌之培養與保存 30
3.2 菌種分析―16S核糖體去氧核醣核酸 (16S ribosomal DNA, 16S rDNA) 定序 31
3.2.1 細菌16S rDNA之聚合酶連鎖反應 (polymerase chain reaction, PCR) 31
3.2.2 PCR產物 (16S rDNA) 純化 31
3.2.3 16S rDNA 定序及分析 32
3.3 細菌毒性因子定量分析 33
3.3.1 細菌毒性因子之聚合酶連鎖反應 (PCR) 33
3.3.2 瓊脂糖膠體電泳 (agarose gel electrophoresis) 34
3.4 細菌毒性因子序列分析 35
3.4.1 萃取細菌之基因體去氧核醣核酸 (genomic DNA) 35
3.4.2 細菌毒性因子之高保真度聚合酶連鎖反應 (High-Fidelity PCR) 36
3.4.3 細菌毒性因子基因定序以及序列比對 (sequence alignment) 37
3.5 細菌生長曲線繪製 37
四、細菌毒性因子基因剔除 37
4.1 單一基因剔除 (single gene deletion) 37
4.2 多重基因剔除 (multiple gene deletion) 39
五、細胞實驗 40
5.1 細菌共培養實驗 41
5.2 細胞中內化細菌計數(bacteria internalization assay/gentamicin resistant assay) 43
5.3 細胞上層培養基之細菌 (apical bacteria) 計數 43
5.4 細菌黏附試驗 (bacterial adhesion assay) 43
六、細胞週期分析 (cell cycle analysis) 和流式細胞術 (flow cytometry) 44
七、噬菌體 (bacteriophage) 實驗 45
7.1 噬菌體增殖與保存 45
7.2 噬菌體點滴試驗 (phage spot assay) 46
7.3 噬菌體溶菌斑試驗 (phage plaque assay) 46
7.4 噬菌體殺菌試驗 (phage killing assay) 47
7.5 噬菌體、細菌與上皮細胞共培養實驗 47
八、內化細菌之內源性質體 (endogenous plasmid) 分析 48
8.1 萃取細菌質體去氧核醣核酸 (plasmid DNA) 48
8.2 限制酶 (restriction enzyme) 截切質體 49
8.3 萃取膠體中去氧核醣核酸 (DNA gel extraction) 49
8.4 建構含內化細菌質體DNA片段之載體 (vector) 50
8.5 轉型作用 (transformation) 51
8.6 內化細菌之質體定序 51
九、統計分析方法 (Statistical analysis) 51
參、結果 53
一、腸道E. coli細菌的內化量與促進上皮細胞增生之能力 53
1.1 比較11種細菌株的內化與促進Caco-2上皮細胞增生能力之差異 53
1.2 內化細菌促進上皮增生的現象亦可見於T84細胞 55
1.3特定毒性因子剔除不會影響細菌在體外環境生長的情形 55
1.4特定毒性因子剔除後會降低細菌促進Caco-2細胞增生的能力 56
二、噬菌體對內化細菌促進上皮細胞增生能力之影響 57
2.1 噬菌體之殺菌效果 57
2.2 內化細菌隨著噬菌體量呈現劑量效應 (dose response) 58
2.3 不同劑量之噬菌體與細菌、細胞共培養後上皮細胞增生情形 59
2.4 不同噬菌體與細菌、細胞共培養後之內化細菌存活量 59
2.5 不同噬菌體與細菌、細胞共培養後上皮細胞增生情形 60
三、腸道分離細菌之毒性因子種類序列和內源性質體分析 60
3.1 小鼠腸道上皮細胞及人類黏膜所分離之大腸桿菌毒性因子種類比對 60
3.2 小鼠腸道上皮細胞及人類黏膜所分離之大腸桿菌毒性因子序列比對 61
3.3 小鼠腸道上皮及人類黏膜之內化細菌有內源性質體 61
3.4 小鼠腸道上皮細胞之內化細菌之內源性質體含有colicin Y基因 62
肆、討論 63
伍、附表與附圖 68
陸、參考文獻 93
-
dc.language.isozh_TW-
dc.subject毒性因子zh_TW
dc.subject內化細菌zh_TW
dc.subject噬菌體治療zh_TW
dc.subject結腸直腸癌zh_TW
dc.subject大腸桿菌zh_TW
dc.subjectinternalized bacteriaen
dc.subjectcolorectal canceren
dc.subjectEscherichia colien
dc.subjectvirulence factoren
dc.subjectbacteriophage therapyen
dc.title內化細菌毒性和噬菌體對腸道上皮細胞增生與癌化之探討zh_TW
dc.titleEffects of Internalized Bacterial Virulence and Bacteriophages on Intestinal Epithelial Cell Proliferation and Tumorigenesisen
dc.typeThesis-
dc.date.schoolyear106-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王錦堂;倪衍玄;魏淑?zh_TW
dc.contributor.oralexamcommitteeJin-Town Wang;Yen-Hsuan Ni;Shu-Chen Weien
dc.subject.keyword結腸直腸癌,內化細菌,大腸桿菌,毒性因子,噬菌體治療,zh_TW
dc.subject.keywordcolorectal cancer,internalized bacteria,Escherichia coli,virulence factor,bacteriophage therapy,en
dc.relation.page114-
dc.identifier.doi10.6342/NTU201802825-
dc.rights.note未授權-
dc.date.accepted2018-08-13-
dc.contributor.author-college醫學院-
dc.contributor.author-dept生理學研究所-
dc.date.embargo-lift2028-08-10-
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-106-2.pdf
  未授權公開取用
5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved