Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79047
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor湯志永zh_TW
dc.contributor.author陳子元zh_TW
dc.contributor.authorTzu-Yuan Chenen
dc.date.accessioned2021-07-11T15:39:30Z-
dc.date.available2024-02-28-
dc.date.copyright2018-10-05-
dc.date.issued2018-
dc.date.submitted2002-01-01-
dc.identifier.citationAitken, A. 1996. 14-3-3 and its possible role in co-ordinating multiple signalling pathways. Trends in cell biology. 6:341-347.
Aitken, A. 2002. Functional specificity in 14-3-3 isoform interactions through dimer formation and phosphorylation. Chromosome location of mammalian isoforms and variants. Plant molecular biology. 50:993-1010.
Aitken, A. 2006. 14-3-3 proteins: a historic overview. Seminars in cancer biology. 16:162-172.
Akhavan, A., R. Atanasiu, T. Noguchi, W. Han, N. Holder, and A. Shrier. 2005. Identification of the cyclic-nucleotide-binding domain as a conserved determinant of ion-channel cell-surface localization. Journal of cell science. 118:2803-2812.
Albesa, M., L.S. Grilo, B. Gavillet, and H. Abriel. 2011. Nedd4-2-dependent ubiquitylation and regulation of the cardiac potassium channel hERG1. Journal of molecular and cellular cardiology. 51:90-98.
Anderson, C.L., B.P. Delisle, B.D. Anson, J.A. Kilby, M.L. Will, D.J. Tester, Q. Gong, Z. Zhou, M.J. Ackerman, and C.T. January. 2006. Most LQT2 mutations reduce Kv11.1 (hERG) current by a class 2 (trafficking-deficient) mechanism. Circulation. 113:365-373.
Anderson, C.L., C.E. Kuzmicki, R.R. Childs, C.J. Hintz, B.P. Delisle, and C.T. January. 2014. Large-scale mutational analysis of Kv11.1 reveals molecular insights into type 2 long QT syndrome. Nature communications. 5:5535.
Apaja, P.M., B. Foo, T. Okiyoneda, W.C. Valinsky, H. Barriere, R. Atanasiu, E. Ficker, G.L. Lukacs, and A. Shrier. 2013. Ubiquitination-dependent quality control of hERG K+ channel with acquired and inherited conformational defect at the plasma membrane. Molecular biology of the cell. 24:3787-3804.
Bajaj Pahuja, K., J. Wang, A. Blagoveshchenskaya, L. Lim, M.S. Madhusudhan, P. Mayinger, and R. Schekman. 2015. Phosphoregulatory protein 14-3-3 facilitates SAC1 transport from the endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America. 112:E3199-3206.
Bauer, C.K., and J.R. Schwarz. 2018. Ether-a-go-go K(+) channels: effective modulators of neuronal excitability. 596:769-783.
Bhalla, V., D. Daidie, H. Li, A.C. Pao, L.P. LaGrange, J. Wang, A. Vandewalle, J.D. Stockand, O. Staub, and D. Pearce. 2005. Serum- and glucocorticoid-regulated kinase 1 regulates ubiquitin ligase neural precursor cell-expressed, developmentally down-regulated protein 4-2 by inducing interaction with 14-3-3. Molecular endocrinology (Baltimore, Md.). 19:3073-3084.
Birkenfeld, J., B. Kartmann, B. Anliker, K. Ono, B. Schlotcke, H. Betz, and D. Roth. 2003. Characterization of zetin 1/rBSPRY, a novel binding partner of 14-3-3 proteins. Biochemical and biophysical research communications. 302:526-533.
Boston, P.F., P. Jackson, and R.J. Thompson. 1982. Human 14-3-3 protein: radioimmunoassay, tissue distribution, and cerebrospinal fluid levels in patients with neurological disorders. Journal of neurochemistry. 38:1475-1482.
Boukens, B.J., V.M. Christoffels, R. Coronel, and A.F. Moorman. 2009. Developmental basis for electrophysiological heterogeneity in the ventricular and outflow tract myocardium as a substrate for life-threatening ventricular arrhythmias. Circulation research. 104:19-31.
Bozoky, Z., M. Krzeminski, R. Muhandiram, J.R. Birtley, A. Al-Zahrani, P.J. Thomas, R.A. Frizzell, R.C. Ford, and J.D. Forman-Kay. 2013. Regulatory R region of the CFTR chloride channel is a dynamic integrator of phospho-dependent intra- and intermolecular interactions. Proceedings of the National Academy of Sciences of the United States of America. 110:E4427-4436.
Brandizzi, F., and C. Barlowe. 2013. Organization of the ER-Golgi interface for membrane traffic control. Nature reviews. Molecular cell biology. 14:382-392.
Brelidze, T.I., A.E. Carlson, B. Sankaran, and W.N. Zagotta. 2012. Structure of the carboxy-terminal region of a KCNH channel. Nature. 481:530-533.
Chen, J., K. Chen, J. Sroubek, Z.Y. Wu, D. Thomas, J.S. Bian, and T.V. McDonald. 2010. Post-transcriptional control of human ether-a-go-go-related gene potassium channel protein by alpha-adrenergic receptor stimulation. Molecular pharmacology. 78:186-197.
Chen, J., J. Sroubek, Y. Krishnan, Y. Li, J. Bian, and T.V. McDonald. 2009. PKA phosphorylation of HERG protein regulates the rate of channel synthesis. Am J Physiol Heart Circ Physiol. 296:H1244-1254.
Chen, J., A. Zou, I. Splawski, M.T. Keating, and M.C. Sanguinetti. 1999. Long QT syndrome-associated mutations in the Per-Arnt-Sim (PAS) domain of HERG potassium channels accelerate channel deactivation. The Journal of biological chemistry. 274:10113-10118.
Cornell, B., and K. Toyo-Oka. 2017. 14-3-3 Proteins in Brain Development: Neurogenesis, Neuronal Migration and Neuromorphogenesis. Frontiers in molecular neuroscience. 10:318.
Cui, J., Y. Melman, E. Palma, G.I. Fishman, and T.V. McDonald. 2000. Cyclic AMP regulates the HERG K(+) channel by dual pathways. Current biology : CB. 10:671-674.
Curran, M.E., I. Splawski, K.W. Timothy, G.M. Vincent, E.D. Green, and M.T. Keating. 1995. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell. 80:795-803.
Dancourt, J., and C. Barlowe. 2010. Protein sorting receptors in the early secretory pathway. Annual review of biochemistry. 79:777-802.
Doyle, D.A., J. Morais Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, and R. MacKinnon. 1998. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science (New York, N.Y.). 280:69-77.
Farhan, H., and C. Rabouille. 2011. Signalling to and from the secretory pathway. Journal of cell science. 124:171-180.
Fernandez-Orth, J., P. Ehling, T. Ruck, S. Pankratz, M.S. Hofmann, P. Landgraf, D.C. Dieterich, K.H. Smalla, T. Kahne, G. Seebohm, T. Budde, H. Wiendl, S. Bittner, and S.G. Meuth. 2017. 14-3-3 Proteins regulate K2P 5.1 surface expression on T lymphocytes. Traffic (Copenhagen, Denmark). 18:29-43.
Ficker, E., A.T. Dennis, L. Wang, and A.M. Brown. 2003. Role of the cytosolic chaperones Hsp70 and Hsp90 in maturation of the cardiac potassium channel HERG. Circulation research. 92:e87-100.
Foo, B., B. Williamson, J.C. Young, G. Lukacs, and A. Shrier. 2016. hERG quality control and the long QT syndrome. The Journal of physiology. 594:2469-2481.
Fu, H., R.R. Subramanian, and S.C. Masters. 2000. 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol. 40:617-647.
Ghatta, S., D. Nimmagadda, X. Xu, and S.T. O'Rourke. 2006. Large-conductance, calcium-activated potassium channels: structural and functional implications. Pharmacology & therapeutics. 110:103-116.
Gong, Q., C.L. Anderson, C.T. January, and Z. Zhou. 2002. Role of glycosylation in cell surface expression and stability of HERG potassium channels. Am J Physiol Heart Circ Physiol. 283:H77-84.
Gong, Q., D.R. Keeney, M. Molinari, and Z. Zhou. 2005. Degradation of trafficking-defective long QT syndrome type II mutant channels by the ubiquitin-proteasome pathway. The Journal of biological chemistry. 280:19419-19425.
Grandi, E., M.C. Sanguinetti, D.C. Bartos, D.M. Bers, Y. Chen-Izu, N. Chiamvimonvat, H.M. Colecraft, B.P. Delisle, and J. Heijman. 2017. Potassium channels in the heart: structure, function and regulation. 595:2209-2228.
Guasti, L., E. Cilia, O. Crociani, G. Hofmann, S. Polvani, A. Becchetti, E. Wanke, F. Tempia, and A. Arcangeli. 2005. Expression pattern of the ether-a-go-go-related (ERG) family proteins in the adult mouse central nervous system: evidence for coassembly of different subunits. The Journal of comparative neurology. 491:157-174.
Guo, J., T. Wang, X. Li, H. Shallow, T. Yang, W. Li, J. Xu, M.D. Fridman, X. Yang, and S. Zhang. 2012. Cell surface expression of human ether-a-go-go-related gene (hERG) channels is regulated by caveolin-3 protein via the ubiquitin ligase Nedd4-2. The Journal of biological chemistry. 287:33132-33141.
Hantouche, C., B. Williamson, W.C. Valinsky, J. Solomon, A. Shrier, and J.C. Young. 2017. Bag1 Co-chaperone Promotes TRC8 E3 Ligase-dependent Degradation of Misfolded Human Ether a Go-Go-related Gene (hERG) Potassium Channels. 292:2287-2300.
Hibino, H., A. Inanobe, K. Furutani, S. Murakami, I. Findlay, and Y. Kurachi. 2010. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev. 90:291-366.
Ichimura, T., H. Yamamura, K. Sasamoto, Y. Tominaga, M. Taoka, K. Kakiuchi, T. Shinkawa, N. Takahashi, S. Shimada, and T. Isobe. 2005. 14-3-3 proteins modulate the expression of epithelial Na+ channels by phosphorylation-dependent interaction with Nedd4-2 ubiquitin ligase. The Journal of biological chemistry. 280:13187-13194.
Johnston, J., I.D. Forsythe, and C. Kopp-Scheinpflug. 2010. Going native: voltage-gated potassium channels controlling neuronal excitability. The Journal of physiology. 588:3187-3200.
Kagan, A., and T.V. McDonald. 2005. Dynamic control of hERG/I(Kr) by PKA-mediated interactions with 14-3-3. Novartis Foundation symposium. 266:75-89; discussion 89-99.
Kagan, A., Y.F. Melman, A. Krumerman, and T.V. McDonald. 2002. 14-3-3 amplifies and prolongs adrenergic stimulation of HERG K+ channel activity. Embo j. 21:1889-1898.
Kang, Y., J. Guo, T. Yang, W. Li, and S. Zhang. 2015. Regulation of the human ether-a-go-go-related gene (hERG) potassium channel by Nedd4 family interacting proteins (Ndfips). The Biochemical journal. 472:71-82.
Kaplan, W.D., and W.E. Trout, 3rd. 1969. The behavior of four neurological mutants of Drosophila. Genetics. 61:399-409.
Krishnan, Y., Y. Li, R. Zheng, V. Kanda, and T.V. McDonald. 2012. Mechanisms underlying the protein-kinase mediated regulation of the HERG potassium channel synthesis. Biochimica et biophysica acta. 1823:1273-1284.
Kuang, Q., P. Purhonen, and H. Hebert. 2015. Structure of potassium channels. Cellular and molecular life sciences : CMLS. 72:3677-3693.
Li, K., Q. Jiang, X. Bai, Y.F. Yang, M.Y. Ruan, and S.Q. Cai. 2017. Tetrameric Assembly of K(+) Channels Requires ER-Located Chaperone Proteins. Molecular cell. 65:52-65.
Li, M., Y.N. Jan, and L.Y. Jan. 1992. Specification of subunit assembly by the hydrophilic amino-terminal domain of the Shaker potassium channel. Science (New York, N.Y.). 257:1225-1230.
Li, Y., H.Q. Ng, Q. Li, and C. Kang. 2016. Structure of the Cyclic Nucleotide-Binding Homology Domain of the hERG Channel and Its Insight into Type 2 Long QT Syndrome. Scientific reports. 6:23712.
Liang, X., M.B. Butterworth, K.W. Peters, W.H. Walker, and R.A. Frizzell. 2008. An obligatory heterodimer of 14-3-3beta and 14-3-3epsilon is required for aldosterone regulation of the epithelial sodium channel. The Journal of biological chemistry. 283:27418-27425.
Liang, X., A.C. Da Paula, Z. Bozoky, H. Zhang, C.A. Bertrand, K.W. Peters, J.D. Forman-Kay, and R.A. Frizzell. 2012. Phosphorylation-dependent 14-3-3 protein interactions regulate CFTR biogenesis. Molecular biology of the cell. 23:996-1009.
Liang, X., K.W. Peters, M.B. Butterworth, and R.A. Frizzell. 2006. 14-3-3 isoforms are induced by aldosterone and participate in its regulation of epithelial sodium channels. The Journal of biological chemistry. 281:16323-16332.
MacGurn, J.A., P.C. Hsu, and S.D. Emr. 2012. Ubiquitin and membrane protein turnover: from cradle to grave. Annual review of biochemistry. 81:231-259.
Masters, S.C., and H. Fu. 2001. 14-3-3 proteins mediate an essential anti-apoptotic signal. The Journal of biological chemistry. 276:45193-45200.
Modell, S.M., and M.H. Lehmann. 2006. The long QT syndrome family of cardiac ion channelopathies: a HuGE review. Genetics in medicine : official journal of the American College of Medical Genetics. 8:143-155.
Moore, B.W., and V.J. Perez. 1967. Specific acidic proteins of the nervous system. In: Physiological and Biochemical Aspects of Nervous Integration, ed. FD Carlson, Englewood Cliffs. NJ: Prentice-Hall:343-359.
Morais Cabral, J.H., A. Lee, S.L. Cohen, B.T. Chait, M. Li, and R. Mackinnon. 1998. Crystal structure and functional analysis of the HERG potassium channel N terminus: a eukaryotic PAS domain. Cell. 95:649-655.
Murray, A.J. 2008. Pharmacological PKA inhibition: all may not be what it seems. Science signaling. 1:re4.
Muslin, A.J., J.W. Tanner, P.M. Allen, and A.S. Shaw. 1996. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell. 84:889-897.
O'Kelly, I., M.H. Butler, N. Zilberberg, and S.A. Goldstein. 2002. Forward transport. 14-3-3 binding overcomes retention in endoplasmic reticulum by dibasic signals. Cell. 111:577-588.
Petrecca, K., R. Atanasiu, A. Akhavan, and A. Shrier. 1999. N-linked glycosylation sites determine HERG channel surface membrane expression. The Journal of physiology. 515 ( Pt 1):41-48.
Phartiyal, P., E.M. Jones, and G.A. Robertson. 2007. Heteromeric assembly of human ether-a-go-go-related gene (hERG) 1a/1b channels occurs cotranslationally via N-terminal interactions. The Journal of biological chemistry. 282:9874-9882.
Phartiyal, P., H. Sale, E.M. Jones, and G.A. Robertson. 2008. Endoplasmic reticulum retention and rescue by heteromeric assembly regulate human ERG 1a/1b surface channel composition. The Journal of biological chemistry. 283:3702-3707.
Pozuelo Rubio, M., K.M. Geraghty, B.H. Wong, N.T. Wood, D.G. Campbell, N. Morrice, and C. Mackintosh. 2004. 14-3-3-affinity purification of over 200 human phosphoproteins reveals new links to regulation of cellular metabolism, proliferation and trafficking. The Biochemical journal. 379:395-408.
Rajan, S., R. Preisig-Muller, E. Wischmeyer, R. Nehring, P.J. Hanley, V. Renigunta, B. Musset, G. Schlichthorl, C. Derst, A. Karschin, and J. Daut. 2002. Interaction with 14-3-3 proteins promotes functional expression of the potassium channels TASK-1 and TASK-3. The Journal of physiology. 545:13-26.
Sanguinetti, M.C., C. Jiang, M.E. Curran, and M.T. Keating. 1995. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell. 81:299-307.
Sanguinetti, M.C., and M. Tristani-Firouzi. 2006. hERG potassium channels and cardiac arrhythmia. Nature. 440:463-469.
Sansom, M.S., I.H. Shrivastava, J.N. Bright, J. Tate, C.E. Capener, and P.C. Biggin. 2002. Potassium channels: structures, models, simulations. Biochimica et biophysica acta. 1565:294-307.
Schonherr, R., and S.H. Heinemann. 1996. Molecular determinants for activation and inactivation of HERG, a human inward rectifier potassium channel. The Journal of physiology. 493 ( Pt 3):635-642.
Schwartz, P.J., L. Crotti, and R. Insolia. 2012. Long-QT syndrome: from genetics to management. Circulation. Arrhythmia and electrophysiology. 5:868-877.
Shen, N.V., X. Chen, M.M. Boyer, and P.J. Pfaffinger. 1993. Deletion analysis of K+ channel assembly. Neuron. 11:67-76.
Shi, W., R.S. Wymore, H.S. Wang, Z. Pan, I.S. Cohen, D. McKinnon, and J.E. Dixon. 1997. Identification of two nervous system-specific members of the erg potassium channel gene family. The Journal of neuroscience : the official journal of the Society for Neuroscience. 17:9423-9432.
Skoulakis, E.M., and R.L. Davis. 1998. 14-3-3 proteins in neuronal development and function. Molecular neurobiology. 16:269-284.
Smith, A.J., J. Daut, and B. Schwappach. 2011. Membrane proteins as 14-3-3 clients in functional regulation and intracellular transport. Physiology (Bethesda, Md.). 26:181-191.
Smith, J.L., C.L. Anderson, D.E. Burgess, C.S. Elayi, C.T. January, and B.P. Delisle. 2016. Molecular pathogenesis of long QT syndrome type 2. Journal of arrhythmia. 32:373-380.
Smith, P.L., T. Baukrowitz, and G. Yellen. 1996. The inward rectification mechanism of the HERG cardiac potassium channel. Nature. 379:833-836.
Spector, P.S., M.E. Curran, A. Zou, M.T. Keating, and M.C. Sanguinetti. 1996. Fast inactivation causes rectification of the IKr channel. The Journal of general physiology. 107:611-619.
Sreedhar, R., S. Arumugam, R.A. Thandavarayan, V.V. Giridharan, V. Karuppagounder, V. Pitchaimani, R. Afrin, M. Harima, M. Nakamura, K. Suzuki, N. Gurusamy, P. Krishnamurthy, and K. Watanabe. 2016. Depletion of cardiac 14-3-3eta protein adversely influences pathologic cardiac remodeling during myocardial infarction after coronary artery ligation in mice. International journal of cardiology. 202:146-153.
Sreedhar, R., S. Arumugam, R.A. Thandavarayan, V.V. Giridharan, V. Karuppagounder, V. Pitchaimani, R. Afrin, S. Miyashita, M. Nomoto, M. Harima, N. Gurusamy, K. Suzuki, and K. Watanabe. 2015. Myocardial 14-3-3eta protein protects against mitochondria mediated apoptosis. Cellular signalling. 27:770-776.
Sroubek, J., and T.V. McDonald. 2011. Protein kinase A activity at the endoplasmic reticulum surface is responsible for augmentation of human ether-a-go-go-related gene product (HERG). The Journal of biological chemistry. 286:21927-21936.
Staub, O., and D. Rotin. 2006. Role of ubiquitylation in cellular membrane transport. Physiol Rev. 86:669-707.
Stevers, L.M., C.V. Lam, S.F. Leysen, F.A. Meijer, D.S. van Scheppingen, R.M. de Vries, G.W. Carlile, L.G. Milroy, D.Y. Thomas, L. Brunsveld, and C. Ottmann. 2016. Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR. Proceedings of the National Academy of Sciences of the United States of America. 113:E1152-1161.
Thomas, D., W. Zhang, C.A. Karle, S. Kathofer, W. Schols, W. Kubler, and J. Kiehn. 1999. Deletion of protein kinase A phosphorylation sites in the HERG potassium channel inhibits activation shift by protein kinase A. The Journal of biological chemistry. 274:27457-27462.
Trudeau, M.C., J.W. Warmke, B. Ganetzky, and G.A. Robertson. 1995. HERG, a human inward rectifier in the voltage-gated potassium channel family. Science (New York, N.Y.). 269:92-95.
Tseng, G.N. 2001. I(Kr): the hERG channel. Journal of molecular and cellular cardiology. 33:835-849.
van Hemert, M.J., H.Y. Steensma, and G.P. van Heusden. 2001. 14-3-3 proteins: key regulators of cell division, signalling and apoptosis. BioEssays : news and reviews in molecular, cellular and developmental biology. 23:936-946.
Vandenberg, J.I., M.D. Perry, M.J. Perrin, S.A. Mann, Y. Ke, and A.P. Hill. 2012. hERG K(+) channels: structure, function, and clinical significance. Physiol Rev. 92:1393-1478.
Vembar, S.S., and J.L. Brodsky. 2008. One step at a time: endoplasmic reticulum-associated degradation. Nature reviews. Molecular cell biology. 9:944-957.
Walker, V.E., M.J. Wong, R. Atanasiu, C. Hantouche, J.C. Young, and A. Shrier. 2010. Hsp40 chaperones promote degradation of the HERG potassium channel. The Journal of biological chemistry. 285:3319-3329.
Warmke, J., R. Drysdale, and B. Ganetzky. 1991. A distinct potassium channel polypeptide encoded by the Drosophila eag locus. Science (New York, N.Y.). 252:1560-1562.
Warmke, J.W., and B. Ganetzky. 1994. A family of potassium channel genes related to eag in Drosophila and mammals. Proceedings of the National Academy of Sciences of the United States of America. 91:3438-3442.
Yaffe, M.B., K. Rittinger, S. Volinia, P.R. Caron, A. Aitken, H. Leffers, S.J. Gamblin, S.J. Smerdon, and L.C. Cantley. 1997. The structural basis for 14-3-3:phosphopeptide binding specificity. Cell. 91:961-971.
Zhou, Z., Q. Gong, and C.T. January. 1999. Correction of defective protein trafficking of a mutant HERG potassium channel in human long QT syndrome. Pharmacological and temperature effects. The Journal of biological chemistry. 274:31123-31126.
Zhou, Z., Q. Gong, B. Ye, Z. Fan, J.C. Makielski, G.A. Robertson, and C.T. January. 1998. Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature. Biophysical journal. 74:230-241.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79047-
dc.description.abstract人類鉀離子通道hErg (human ether-à-go-go related gene) 的突變,會造成hErg鉀離子通道功能的低下,導致先天性第二型long QT症 (long QT syndrome type 2, LQT2) 的症狀。突變的hErg蛋白質通常有不正常的折疊 (misfolding),和有增加內質網相關的蛋白質降解 (endoplasmic reticulum-associated degradation, ERAD) 作用,而使得鉀離子通道不易被運送至細胞膜表現。過去對於14-3-3蛋白質調控hErg鉀離子通道的研究結果主要著重於探討14-3-3蛋白質如何調控hErg鉀離子通道在細胞膜上的電生理功能,而對於14-3-3蛋白質是否會調控hErg蛋白質的生合成機制則並不清楚。為了瞭解這個問題,我們將hErg蛋白質表現在HEK293T細胞株,利用此細胞表現系統來探討14-3-3蛋白質對hErg蛋白質的生合成的調控機制。此外我們也利用表現hErg蛋白質的SH-SY5Y細胞株驗證在HEK293T細胞株得到的結果。我們發現HEK293T及SH-SY5Y細胞的hErg蛋白質的表現量在有14-3-3抑制劑BV02存在下會明顯減少。在SH-SY5Y細胞大量表現胜肽類的14-3-3抑制劑 (difopein) 也得到一致的結果。相反地,當在HEK293T細胞大量表現14-3-3蛋白質異形體 (isoforms): 14-3-3ε或14-3-3η,則會明顯增加hErg蛋白質表現量。半定量聚合酶連鎖反應實驗顯示hErg mRNA的量並沒有因14-3-3蛋白質的大量表現而受影響。後續在HEK293T細胞藉由酵素水解法去醣處理、brefeldin A (BFA) 抑制蛋白質運輸以及cycloheximide (CHX) 追蹤蛋白質降解等實驗方式,我們發現大量表現14-3-3蛋白質,主要是促進了hErg蛋白質在內質網的穩定度,而非影響了hErg蛋白質的運輸。我們也發現大量表現14-3-3蛋白質可能藉抑制E3 ubiquitin ligase功能而增加hErg蛋白質表現量。另一方面,在HEK293T細胞大量表現difopein,則是會造成hErg蛋白質膜運輸的缺陷,但幾乎不影響hErg蛋白質在內質網的穩定度。除此之外,在HEK293T細胞以forskolin活化PKA的訊息路徑,會有相似於大量表現14-3-3蛋白質的現象,即hErg蛋白質的表現量大幅增加。PKA活化導致的hErg表現量增加的效果,會被difopein抑制。綜而言之,我們的結果顯示14-3-3蛋白質具保護位於內質網的尚未成熟的hErg蛋白質的功能,而使hErg蛋白質免於被降解。且14-3-3蛋白質在活化的PKA訊息路徑下,會促進hErg蛋白質的成熟。zh_TW
dc.description.abstractCongenital long QT syndrome type 2 (LQT2), caused by mutations of human ether-à-go-go related gene (hErg) K+ channel, is associated with hErg protein misfolding and enhanced endoplasmic reticulum (ER)-associated degradation, leading to defective membrane trafficking of the hErg K+ channel. The physiological function of cardiac hErg channel is subject to adrenergic regulation via either direct binding of cAMP or protein kinase A (PKA)-mediated phosphorylation, both of which are further potentiated by the interaction of hErg with 14-3-3 proteins. However, it remains unclear whether 14-3-3 proteins may also regulate the biogenesis of hErg protein. To address this question, we studied hErg protein expression in HEK293T cells and SH-SY5Y cells. Treatment with BV02, a non-peptidic 14-3-3 inhibitor can effectively decrease both the mature and immature forms of overexpressed hErg proteins in HEK293T cells and endogenous hErg proteins in SH-SY5Y cells. Besides, expression of difopein, a peptide inhibitor of 14-3-3s, also leads to the decrease of endogenous hErg protein expression in SH-SY5Y cells. In contrast, overexpression of 14-3-3ε or 14-3-3η isoforms enhances both the mature and immature forms hErg proteins in HEK293T cells. Semiquantitative RT-PCR analyses show that 14-3-3 overexpression does not affect the mRNA level of hErg. As revealed by glycosidase digestion, brefeldin A (BFA) treatment, and cycloheximide (CHX) chase experiments, overexpression of 14-3-3ε or 14-3-3η prominently increases protein stability of immature hErg at the ER, but has little influence on the ER-to-Golgi trafficking of the hErg K+ channel in HEK293T cells. Additionally, 14-3-3η overexpression may increase hErg expression by inhibiting E3 ubiquitin ligase mediated protein degradation. In comparison with expression of difopein causes defective membrane trafficking of hErg, while exerting negligible effect on hErg protein stability at the ER in HEK293T cells. Furthermore, similar to the effect of 14-3-3 overexpression, forskolin (FSK)-induced cAMP up-regulation, through the PKA signaling pathway, significantly promotes hErg expression level in HEK293T cells, an effect that can be abolished by difopein overexpression. Together, our results suggest that 14-3-3 proteins protect immature hErg from degradation at the ER, and facilitate PKA-mediated hErg protein maturation.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:39:30Z (GMT). No. of bitstreams: 1
ntu-107-R04441002-1.pdf: 3145174 bytes, checksum: c25da3e024e2672e1bdc7ccbb8348ece (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents中文摘要 i
英文摘要 ii
第一章 導論 1
1.1 鉀離子通道概論 1
1.2 EAG鉀離子通道蛋白家族 2
1.3 Erg鉀離子通道次家族 3
1.3.1 hErg鉀離子通道的蛋白質品質控管 3
1.3.2 hErg鉀離子通道的生理功能 5
1.3.3 hErg鉀離子通道的調控機制 6
1.3.4 hErg鉀離子通道相關疾病-long QT症 7
1.4 14-3-3蛋白質 8
1.4.1 14-3-3蛋白質調控膜蛋白的生合成及膜運輸 9
1.4.2 14-3-3蛋白質與hErg相關研究 10
1.5 研究目的 11
第二章 材料與方法 13
2.1 細胞培養 (Cell culture) 13
2.2 轉形作用 (Transformation) 13
2.3 質體DNA製備 (Plasmid DNA preparation) 14
2.4 質體DNA點突變 (Site-directed mutagenensis) 14
2.5 質體DNA轉殖(Plasmid DNA transfection) 16
2.6 西方墨點法分析 (Western blotting analysis) 16
2.7 酵素水解法去醣 (Deglycosylation digestion) 18
2.8 藥物處理 (Drug treatment) 19
2.9 Small hairpin RNA knockdown (shRNA knockdown) 20
2.10 核醣核酸萃取 (RNA extraction) 21
2.11 半定量反轉錄聚合酶連鎖反應 (Semi-quantitative RT-PCR) 21
2.12 定量與統計分析 (Statistic analysis) 22
第三章 結果 23
3.1 14-3-3蛋白質調控hErg蛋白質的表現 23
3.1.1 觀察14-3-3蛋白質是否影響hErg蛋白質的表現量 23
3.1.2 檢測大量表現14-3-3蛋白質對hErg蛋白質表現量的影響 23
3.1.3 檢測內生性的14-3-3η蛋白質對hErg蛋白質表現量的影響 24
3.2 大量表現14-3-3蛋白質主要調控未成熟的hErg蛋白質表現 24
3.2.1 利用酵素水解法去醣檢測低分子量的hErg蛋白質在細胞中的位置 25
3.2.2 抑制蛋白質運輸後觀察未成熟的hErg蛋白質表現量 25
3.3 大量表現14-3-3蛋白質增強hErg蛋白質的穩定度 26
3.3.1 利用蛋白質合成抑制劑探討大量表現14-3-3蛋白質的作用機制 26
3.3.2 檢測14-3-3蛋白質是否抑制E3 ubiquitin ligase功能 27
3.4 14-3-3蛋白質調控hErg蛋白質的膜運輸 27
3.4.1 大量表現difopein觀察內生性14-3-3蛋白質對hErg蛋白質表現的影響 28
3.4.2 利用蛋白質合成抑制劑檢測大量表現difopein對hErg蛋白質調控機制 28
3.5 14-3-3蛋白質參與腎上腺素刺激調控的hErg蛋白質生合成 28
3.5.1 觀察cAMP/PKA刺激對於hErg蛋白質表現的影響 29
3.5.2 檢測14-3-3蛋白質是否參與cAMP/PKA調控的機制 29
第四章 討論 30
4.1 內生性14-3-3蛋白質對hErg蛋白質表現的調控 30
4.2 大量表現14-3-3蛋白質影響hErg蛋白質表現的作用機制 31
4.3 14-3-3蛋白質參與PKA磷酸化調控的hErg蛋白質的生合成 33
4.4 未來方向 34
第五章 結論 36
第六章 結果圖表 37
第七章 參考文獻 59
-
dc.language.isozh_TW-
dc.title14-3-3蛋白質調控hErg鉀離子通道的生合成zh_TW
dc.title14-3-3 Contributes to the Biogenesis of hErg K+ Channelen
dc.typeThesis-
dc.date.schoolyear106-2-
dc.description.degree碩士-
dc.contributor.coadvisor鄭瓊娟zh_TW
dc.contributor.coadvisor;en
dc.contributor.oralexamcommittee卓貴美;胡孟君zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keywordhErg鉀離子通道,蛋白質生合成,14-3-3蛋白質,zh_TW
dc.subject.keywordhErg potassium channel,protein biogenesis,14-3-3,en
dc.relation.page65-
dc.identifier.doi10.6342/NTU201802491-
dc.rights.note未授權-
dc.date.accepted2018-08-14-
dc.contributor.author-college醫學院-
dc.contributor.author-dept生理學研究所-
dc.date.embargo-lift2023-10-05-
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-106-2.pdf
  目前未授權公開取用
3.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved