Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79045
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 林中梧 | zh_TW |
dc.contributor.author | 王明彥 | zh_TW |
dc.contributor.author | Ming-Yen Wang | en |
dc.date.accessioned | 2021-07-11T15:39:19Z | - |
dc.date.available | 2024-02-28 | - |
dc.date.copyright | 2018-10-11 | - |
dc.date.issued | 2018 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 1. VanDeusen, J.B. and M.A. Caligiuri, New developments in anti-tumor efficacy and malignant transformation of human natural killer cells. Curr Opin Hematol, 2003. 10(1): p. 55-9.
2. Marcenaro, E., et al., NK/DC crosstalk in anti-viral response. Adv Exp Med Biol, 2012. 946: p. 295-308. 3. Arina, A., et al., Cellular liaisons of natural killer lymphocytes in immunology and immunotherapy of cancer. Expert Opin Biol Ther, 2007. 7(5): p. 599-615. 4. Kwong, Y.L., Natural killer-cell malignancies: diagnosis and treatment. Leukemia, 2005. 19(12): p. 2186-94. 5. Tse, E. and Y.L. Kwong, Diagnosis and management of extranodal NK/T cell lymphoma nasal type. Expert Rev Hematol, 2016. 9(9): p. 861-71. 6. Pongpruttipan, T., et al., Extranodal NK/T-cell lymphoma, nasal type, includes cases of natural killer cell and alphabeta, gammadelta, and alphabeta/gammadelta T-cell origin: a comprehensive clinicopathologic and phenotypic study. Am J Surg Pathol, 2012. 36(4): p. 481-99. 7. Bhatkule, M.A., et al., Nasal natural killer/t cell lymphoma. Indian J Hematol Blood Transfus, 2014. 30(Suppl 1): p. 292-3. 8. Chim, C.S., et al., Lethal midline granuloma revisited: nasal T/Natural-killer cell lymphoma. J Clin Oncol, 1999. 17(4): p. 1322-5. 9. Schwartz, E.J., et al., Immunohistochemical characterization of nasal-type extranodal NK/T-cell lymphoma using a tissue microarray: an analysis of 84 cases. Am J Clin Pathol, 2008. 130(3): p. 343-51. 10. Chen, H.H., et al., The PTEN-AKT-mTOR/RICTOR Pathway in Nasal Natural Killer Cell Lymphoma Is Activated by miR-494-3p via PTEN But Inhibited by miR-142-3p via RICTOR. Am J Pathol, 2015. 185(5): p. 1487-99. 11. Sim, S.H., et al., Novel JAK3-Activating Mutations in Extranodal NK/T-Cell Lymphoma, Nasal Type. Am J Pathol, 2017. 187(5): p. 980-986. 12. Tse, E. and Y.L. Kwong, How I treat NK/T-cell lymphomas. Blood, 2013. 121(25): p. 4997-5005. 13. Horwitz, S.M., et al., NCCN Guidelines Insights: T-Cell Lymphomas, Version 2.2018. J Natl Compr Canc Netw, 2018. 16(2): p. 123-135. 14. Rajalingam, R., Overview of the killer cell immunoglobulin-like receptor system. Methods Mol Biol, 2012. 882: p. 391-414. 15. Parham, P., Killer cell immunoglobulin-like receptor diversity: balancing signals in the natural killer cell response. Immunol Lett, 2004. 92(1-2): p. 11-3. 16. Rajagopalan, S. and E.O. Long, Cellular senescence induced by CD158d reprograms natural killer cells to promote vascular remodeling. Proc Natl Acad Sci U S A, 2012. 109(50): p. 20596-601. 17. Rajagopalan, S. and E.O. Long, KIR2DL4 (CD158d): An activation receptor for HLA-G. Front Immunol, 2012. 3: p. 258. 18. Gomez-Lozano, N., et al., Recognition of HLA-G by the NK cell receptor KIR2DL4 is not essential for human reproduction. Eur J Immunol, 2003. 33(3): p. 639-44. 19. Clements, C.S., et al., Crystal structure of HLA-G: a nonclassical MHC class I molecule expressed at the fetal-maternal interface. Proc Natl Acad Sci U S A, 2005. 102(9): p. 3360-5. 20. Hunt, J.S., et al., The role of HLA-G in human pregnancy. Reprod Biol Endocrinol, 2006. 4 Suppl 1: p. S10. 21. Sheu, J. and M. Shih Ie, HLA-G and immune evasion in cancer cells. J Formos Med Assoc, 2010. 109(4): p. 248-57. 22. Wan, R., et al., Human Leukocyte Antigen-G Inhibits the Anti-Tumor Effect of Natural Killer Cells via Immunoglobulin-Like Transcript 2 in Gastric Cancer. Cell Physiol Biochem, 2017. 44(5): p. 1828-1841. 23. Kucuk, C., et al., Diagnostic and Biological Significance of KIR Expression Profile Determined by RNA-Seq in Natural Killer/T-Cell Lymphoma. Am J Pathol, 2016. 186(6): p. 1435-41. 24. Jenner, R.G., et al., The transcription factors T-bet and GATA-3 control alternative pathways of T-cell differentiation through a shared set of target genes. Proc Natl Acad Sci U S A, 2009. 106(42): p. 17876-81. 25. Reis, B.S., et al., Transcription factor T-bet regulates intraepithelial lymphocyte functional maturation. Immunity, 2014. 41(2): p. 244-56. 26. Lugo-Villarino, G., et al., T-bet is required for optimal production of IFN-gamma and antigen-specific T cell activation by dendritic cells. Proc Natl Acad Sci U S A, 2003. 100(13): p. 7749-54. 27. Powell, N., et al., The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity, 2012. 37(4): p. 674-84. 28. Luetke-Eversloh, M., et al., NK cells gain higher IFN-gamma competence during terminal differentiation. Eur J Immunol, 2014. 44(7): p. 2074-84. 29. Luetke-Eversloh, M., et al., Human cytomegalovirus drives epigenetic imprinting of the IFNG locus in NKG2Chi natural killer cells. PLoS Pathog, 2014. 10(10): p. e1004441. 30. 黃偉庭, 以全基因體shRNA篩選能於YT細胞誘發受T-bet調控的標記之微RNA, in 病理學研究所. 2014, 國立臺灣大學: 台北市. p. 82. 31. 陳建宇, 以YT cells作為鼻NK細胞淋巴癌模型探討BCL11B 抑制T-bet mRNA 轉譯, in 病理學研究所. 2017, 國立臺灣大學: 台北市. p. 59. 32. Avram, D., et al., Isolation of a novel family of C(2)H(2) zinc finger proteins implicated in transcriptional repression mediated by chicken ovalbumin upstream promoter transcription factor (COUP-TF) orphan nuclear receptors. J Biol Chem, 2000. 275(14): p. 10315-22. 33. Satterwhite, E., et al., The BCL11 gene family: involvement of BCL11A in lymphoid malignancies. Blood, 2001. 98(12): p. 3413-20. 34. Gutierrez, A., et al., The BCL11B tumor suppressor is mutated across the major molecular subtypes of T-cell acute lymphoblastic leukemia. Blood, 2011. 118(15): p. 4169-73. 35. Avram, D. and D. Califano, The multifaceted roles of Bcl11b in thymic and peripheral T cells: impact on immune diseases. J Immunol, 2014. 193(5): p. 2059-65. 36. Li, P., et al., Reprogramming of T cells to natural killer-like cells upon Bcl11b deletion. Science, 2010. 329(5987): p. 85-9. 37. Farr, A.R., et al., CD1d-unrestricted NKT cells are endowed with a hybrid function far superior than that of iNKT cells. Proc Natl Acad Sci U S A, 2014. 111(35): p. 12841-6. 38. Huang, X., X. Du, and Y. Li, The role of BCL11B in hematological malignancy. Experimental Hematology & Oncology, 2012. 1(1): p. 22. 39. Bartram, I., et al., Low expression of T-cell transcription factor BCL11b predicts inferior survival in adult standard risk T-cell acute lymphoblastic leukemia patients. J Hematol Oncol, 2014. 7: p. 51. 40. Oshiro, A., et al., Identification of subtype-specific genomic alterations in aggressive adult T-cell leukemia/lymphoma. Blood, 2006. 107(11): p. 4500-7. 41. Gu, X., et al., Aberrant expression of BCL11B in mycosis fungoides and its potential role in interferon-induced apoptosis. J Dermatol, 2013. 40(8): p. 596-605. 42. Grabarczyk, P., et al., Inhibition of BCL11B expression leads to apoptosis of malignant but not normal mature T cells. Oncogene, 2007. 26(26): p. 3797-810. 43. Huang, X., et al., Down regulation of BCL11B expression inhibits proliferation and induces apoptosis in malignant T cells by BCL11B-935-siRNA. Hematology, 2011. 16(4): p. 236-42. 44. Lin, T.C., et al., Epstein-Barr virus-encoded miR-BART20-5p inhibits T-bet translation with secondary suppression of p53 in invasive nasal NK/T-cell lymphoma. Am J Pathol, 2013. 182(5): p. 1865-75. 45. Huang, W.T. and C.W. Lin, EBV-encoded miR-BART20-5p and miR-BART8 inhibit the IFN-gamma-STAT1 pathway associated with disease progression in nasal NK-cell lymphoma. Am J Pathol, 2014. 184(4): p. 1185-97. 46. Gaj, T., C.A. Gersbach, and C.F. Barbas, 3rd, ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol, 2013. 31(7): p. 397-405. 47. Castello, A., et al., Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell, 2012. 149(6): p. 1393-406. 48. Gaj, T., et al., Protein delivery using Cys2-His2 zinc-finger domains. ACS Chem Biol, 2014. 9(8): p. 1662-7. 49. Rice, W.G., et al., Azodicarbonamide inhibits HIV-1 replication by targeting the nucleocapsid protein. Nat Med, 1997. 3(3): p. 341-5. 50. Zhang, Y., et al., LNA-mediated anti-miR-155 silencing in low-grade B-cell lymphomas. Blood, 2012. 120(8): p. 1678-86. 51. Chang, A.Y., et al., A therapeutic T cell receptor mimic antibody targets tumor-associated PRAME peptide/HLA-I antigens. J Clin Invest, 2017. 127(7): p. 2705-18. 52. Tezgel, A.O., et al., Synthetic Protein Mimics for Functional Protein Delivery. Biomacromolecules, 2017. 18(3): p. 819-825. 53. Kanegane, H., et al., EBV-NK cells interactions and lymphoproliferative disorders. Leuk Lymphoma, 1998. 29(5-6): p. 491-8. 54. Yoneda, N., et al., Detection of Epstein-Barr virus genome in natural-killer-like cell line, YT. Leukemia, 1992. 6(2): p. 136-41. 55. Coppo, P., et al., STAT3 transcription factor is constitutively activated and is oncogenic in nasal-type NK/T-cell lymphoma. Leukemia, 2009. 23(9): p. 1667-78. 56. Sambrook, J. and D.W. Russell, The inoue method for preparation and transformation of competent e. Coli: "ultra-competent" cells. CSH Protoc, 2006. 2006(1). 57. Sermwittayawong, D., et al., Economical method for midiprep plasmid DNA purification using diatomaceous earth. SCIENCEASIA, 2013. 39(6): p. 631-635. 58. Ma, R., et al., Removing endotoxin from plasmid samples by Triton X-114 isothermal extraction. Anal Biochem, 2012. 424(2): p. 124-6. 59. Reichelt, P., C. Schwarz, and M. Donzeau, Single step protocol to purify recombinant proteins with low endotoxin contents. Protein Expr Purif, 2006. 46(2): p. 483-8. 60. Iwasaki, T., et al., Cellular uptake and in vivo distribution of polyhistidine peptides. J Control Release, 2015. 210: p. 115-24. 61. Liu, N., B. Bechinger, and R. Suss, The histidine-rich peptide LAH4-L1 strongly promotes PAMAM-mediated transfection at low nitrogen to phosphorus ratios in the presence of serum. Sci Rep, 2017. 7(1): p. 9585. 62. Futaki, S. and I. Nakase, Cell-Surface Interactions on Arginine-Rich Cell-Penetrating Peptides Allow for Multiplex Modes of Internalization. Acc Chem Res, 2017. 50(10): p. 2449-2456. 63. Lagasse, H.A., et al., Recent advances in (therapeutic protein) drug development. F1000Res, 2017. 6: p. 113. 64. Shariat, S., et al., Optimization of a Method to Prepare Liposomes Containing HER2/Neu- Derived Peptide as a Vaccine Delivery System for Breast Cancer. Iran J Pharm Res, 2014. 13(Suppl): p. 15-25. 65. Patel, N., et al., Development and evaluation of a calcium alginate based oral ceftriaxone sodium formulation. Prog Biomater, 2016. 5: p. 117-133. 66. Jen, J. and Y.C. Wang, Zinc finger proteins in cancer progression. J Biomed Sci, 2016. 23(1): p. 53. 67. Grabarczyk, P., et al., The N-Terminal CCHC Zinc Finger Motif Mediates Homodimerization of Transcription Factor BCL11B. Mol Cell Biol, 2018. 38(5). | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79045 | - |
dc.description.abstract | 鼻 NK 細胞淋巴癌 (NNL) 是感染 Epstein-Barr 病毒 (EBV) 的侵襲性淋巴癌。 T-bet 是 NK 細胞產生 γ 型干擾素的關鍵轉錄因子。 EBV 編碼的 miR-BART20-5p 抑制了 T-bet 轉譯,同時抑制 p53 並造成 NNL 的侵襲行為。透過全基因 shRNA 文庫篩選,我們篩選出五個 shRNAs可以誘導 T-bet 表現。因此,受 shRNAs 標的的基因可能參與 miR-BART20-5p 抑制 T-bet 的路徑。其中,BCL11B 是一個可能的標的基因並且扮演抑制 T-bet的調節因子,透過與 T-bet 3'-UTR 的交互作用進而抑制 T-bet。我們預估BCL11B 的模擬蛋白可以阻斷 BCL11B 的調節功能並誘導 NNL 的 T-bet 作為治療。
以 BCL11B 鋅指結構域(ZFD)-EGFP 轉染的 YT 細胞可誘導 T-bet 和 p53 的表現。在我們的初步數據中,我們提出 ZFD 做為 NNL 的治療藥物的可能性。在相關文獻中,KIR2DL4 (CD158d) 在 NNL 中具有較高的表現量,而且人類白血球抗原 –G (HLA-G) 為 CD158d 的配體。結合 HLA-G 的 ZFD 可以更有效地誘導 YT 細胞凋亡。除此之外,透過細菌純化的 HLA-G-EGFP-ZFD 蛋白可在較高濃度下誘導 YT 細胞凋亡或壞死。 在進一步的實驗當中,我們將 HLA-G-EGFP-ZFD 的純化蛋白靜脈注射到動物模型中,發現此蛋白具有抑制腫瘤生長的效果。因此,我們預期這些結果的運用將可能開發作為 NNL 的替代治療。 | zh_TW |
dc.description.abstract | Nasal NK-cell lymphoma (NNL) is an aggressive lymphoma infected with Epstein-Barr virus (EBV). T-bet is a key transcription factor for production of interferon-gamma on NK cells. EBV-encoded miR-BART20-5p inhibits T-bet translation with secondary suppression of p53 and causes an invasive behavior of NNL. By genome-wide shRNA library screening, we identified five shRNAs which could induce T-bet. ShRNAs-targeted genes may engage in the T-bet inhibition pathway triggered by miR-BART20-5p. BCL11B was a potential target gene and it was identified as a regulator to inhibit T-bet via interaction with 3’-UTR. We estimated that a mimic protein of BCL11B could block the regulator function of BCL11B and induce T-bet on NNL as a treatment.
T-bet and p53 were induced on BCL11B zinc finger domains (ZFD)-EGFP transfected YT cells. In the preliminary data, we propose that ZFD might be a therapeutic for NNL. In the relevant literature, KIR2DL4 (CD158d) has higher expression on NNL and human leukocyte antigen -G (HLA-G) was known as CD158d ligand. HLA-G conjugated ZFD can induce YT cells apoptosis more effectively. In addition, HLA-G-EGFP-ZFD protein purified from bacteria can induce apoptosis or necrosis on YT cells under higher concentration. In the further experiments, we intravenously injected HLA-G-EGFP-ZFD into animal model and the tumor growth was inhibited. It is expected that we could use these results to develop an alternative therapeutic trial for NNL. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:39:19Z (GMT). No. of bitstreams: 1 ntu-107-R05444006-1.pdf: 4686105 bytes, checksum: f902cbac6e0028c1dd81d91f87acbeff (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | Contents....... I
誌謝... III 中文摘要 ...IV Abstract....... V Chapter 1: Introduction. 1 Chapter 2: Materials and Methods....... 9 2.1 Cell culture....... 9 2.2 Preparation of competent cells E. coli JM109 strain (ARROWTEC, Cat. No. A5828100) or E. coli Rosetta (DE3) strain (Novagen, Cat. No. 70954)....... 10 2.3 Transformation..... 10 2.4 Miniprep... 11 2.5 Silica based maxiprep plasmid extraction[57]....... 11 2.6 Plasmid constructs (Fig 1A)........ 14 2.7 Transfection of YT cells (Fig 1B).. 14 2.8 Sorting (Fig 1C)... 15 2.9 Western blotting (Fig 1D).. 15 2.10 Eukaryotic protein expression in 293T cells (Fig 2A, 2B).... 17 2.11 Flow cytometry for Annexin-V & PI (Fig 2C & 3D)... 19 2.12 Plasmid constructs (Fig 3A)....... 20 2.13 Bacterial system for protein expression (Fig 3A).. 20 2.14 Large Scale purification (Fig 3B). 21 2.15 Fine needle aspiration for smears and cell blocks (Fig 4C & D)........ 23 2.16 Autopsy (Fig 4 C & D)..... 24 2.17 Immunohistochemistry (Fig 4 E & F)........ 24 Chapter 3: Results..... 27 3.1 Overexpression of Zinc Finger Domain (ZFD) induces T-bet and p53 in YT cells.... 27 3.2 EGFP-ZFD-HLA-G in culture medium induces death of YT cells.. 28 3.3 HLA-G-EGFP-ZFD may induce concentration-dependent apoptosis /or death of YT cells........ 29 3.4 Systemic HLA-G-EGFP-ZFD injection inhibits invasion and growth of YT cells implanted subcutaneously in SCID mice ...........30 Chapter 4: Discussion.. 32 Chapter 5: Conclusion.. 37 Figures ................38 Reference.............. 63 Appendix............... 72 | - |
dc.language.iso | en | - |
dc.title | BCL11B 模擬蛋白於鼻 NK 細胞淋巴癌誘導 T-bet | zh_TW |
dc.title | BCL11B mimic protein induces T-bet in nasal NK-cell lymphoma | en |
dc.type | Thesis | - |
dc.date.schoolyear | 106-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 黃聖懿;謝明書 | zh_TW |
dc.contributor.oralexamcommittee | ;; | en |
dc.subject.keyword | 鼻NK 細胞淋巴癌,T-bet,BCL11B 鋅指結構域,HLA-G,細胞凋亡, | zh_TW |
dc.subject.keyword | Nasal NK-cell lymphoma,T-bet,BCL11B zinc finger domains (ZFD),HLA-G,apoptosis., | en |
dc.relation.page | 103 | - |
dc.identifier.doi | 10.6342/NTU201803241 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2018-08-14 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 病理學研究所 | - |
dc.date.embargo-lift | 2023-10-11 | - |
Appears in Collections: | 病理學科所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-106-2.pdf Restricted Access | 4.58 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.