請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79042完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅凱尹 | |
| dc.contributor.author | Yi-Ting Chou | en |
| dc.contributor.author | 周奕廷 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:39:04Z | - |
| dc.date.available | 2023-08-16 | |
| dc.date.copyright | 2018-08-16 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-13 | |
| dc.identifier.citation | 1. Ali, S.F., Jairaj, K., Newport, G.D., Lipe, G.W., and Slikker, W., Jr. (1990). Thallium intoxication produces neurochemical alterations in rat brain. Neurotoxicology 11, 381-390.
2. Amin, M.A., Matsunaga, S., Ma, N., Takata, H., Yokoyama, M., Uchiyama, S., and Fukui, K. (2007). Fibrillarin, a nucleolar protein, is required for normal nuclear morphology and cellular growth in HeLa cells. Biochem Biophys Res Commun 360, 320-326. 3. An, H., and Harper, J.W. (2018). Systematic analysis of ribophagy in human cells reveals bystander flux during selective autophagy. Nat Cell Biol 20, 135-143. 4. Anderson, J.T., and Wang, X. (2009). Nuclear RNA surveillance: no sign of substrates tailing off. Crit Rev Biochem Mol Biol 44, 16-24. 5. Appenroth, D., Gambaryan, S., Winnefeld, K., Leiterer, M., Fleck, C., and Braunlich, H. (1995). Functional and morphological aspects of thallium-induced nephrotoxicity in rats. Toxicology 96, 203-215. 6. Aranda, A., Sequedo, L., Tolosa, L., Quintas, G., Burello, E., Castell, J.V., and Gombau, L. (2013). Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay: a quantitative method for oxidative stress assessment of nanoparticle-treated cells. Toxicol In Vitro 27, 954-963. 7. Atkinson, G.C., Baldauf, S.L., and Hauryliuk, V. (2008). Evolution of nonstop, no-go and nonsense-mediated mRNA decay and their termination factor-derived components. BMC Evol Biol 8, 290. 8. Barroso-Moguel, R., Mendez-Armenta, M., Villeda-Hernandez, J., Rios, C., and Galvan-Arzate, S. (1996). Experimental neuromyopathy induced by thallium in rats. Journal of applied toxicology : JAT 16, 385-389. 9. Barth, S., Glick, D., and Macleod, K.F. (2010). Autophagy: assays and artifacts. J Pathol 221, 117-124. 10. Bassler, J., Kallas, M., and Hurt, E. (2006). The NUG1 GTPase reveals and N-terminal RNA-binding domain that is essential for association with 60 S pre-ribosomal particles. J Biol Chem 281, 24737-24744. 11. Brook, M., McCracken, L., Reddington, J.P., Lu, Z.L., Morrice, N.A., and Gray, N.K. (2012). The multifunctional poly(A)-binding protein (PABP) 1 is subject to extensive dynamic post-translational modification, which molecular modelling suggests plays an important role in co-ordinating its activities. Biochem J 441, 803-812. 12. Bruick, R.K. (2000). Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci U S A 97, 9082-9087. 13. Burwick, N., Shimamura, A., and Liu, J.M. (2011). Non-Diamond Blackfan anemia disorders of ribosome function: Shwachman Diamond syndrome and 5q- syndrome. Semin Hematol 48, 136-143. 14. Carneiro, T., Carvalho, C., Braga, J., Rino, J., Milligan, L., Tollervey, D., and Carmo-Fonseca, M. (2007). Depletion of the yeast nuclear exosome subunit Rrp6 results in accumulation of polyadenylated RNAs in a discrete domain within the nucleolus. Mol Cell Biol 27, 4157-4165. 15. Castilho, B.A., Shanmugam, R., Silva, R.C., Ramesh, R., Himme, B.M., and Sattlegger, E. (2014). Keeping the eIF2 alpha kinase Gcn2 in check. Biochim Biophys Acta 1843, 1948-1968. 16. Chiang, W.C., Chan, P., Wissinger, B., Vincent, A., Skorczyk-Werner, A., Krawczynski, M.R., Kaufman, R.J., Tsang, S.H., Heon, E., Kohl, S., et al. (2017). Achromatopsia mutations target sequential steps of ATF6 activation. Proc Natl Acad Sci U S A 114, 400-405. 17. Chun, H.S., Lee, H., and Son, J.H. (2001). Manganese induces endoplasmic reticulum (ER) stress and activates multiple caspases in nigral dopaminergic neuronal cells, SN4741. Neurosci Lett 316, 5-8. 18. Cobelo-Garcia, A., Filella, M., Croot, P., Frazzoli, C., Du Laing, G., Ospina-Alvarez, N., Rauch, S., Salaun, P., Schafer, J., and Zimmermann, S. (2015). COST action TD1407: network on technology-critical elements (NOTICE)--from environmental processes to human health threats. Environmental science and pollution research international 22, 15188-15194. 19. Cole, S.E., LaRiviere, F.J., Merrikh, C.N., and Moore, M.J. (2009). A convergence of rRNA and mRNA quality control pathways revealed by mechanistic analysis of nonfunctional rRNA decay. Mol Cell 34, 440-450. 20. Dai, M.S., Sears, R., and Lu, H. (2007). Feedback regulation of c-Myc by ribosomal protein L11. Cell Cycle 6, 2735-2741. 21. Dai, M.S., Shi, D., Jin, Y., Sun, X.X., Zhang, Y., Grossman, S.R., and Lu, H. (2006). Regulation of the MDM2-p53 pathway by ribosomal protein L11 involves a post-ubiquitination mechanism. J Biol Chem 281, 24304-24313. 22. Dang, C.V. (1999). c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol 19, 1-11. 23. Deisenroth, C., and Zhang, Y. (2010). Ribosome biogenesis surveillance: probing the ribosomal protein-Mdm2-p53 pathway. Oncogene 29, 4253-4260. 24. Dimova, D.K., and Dyson, N.J. (2005). The E2F transcriptional network: old acquaintances with new faces. Oncogene 24, 2810-2826. 25. Drygin, D., Rice, W.G., and Grummt, I. (2010). The RNA polymerase I transcription machinery: an emerging target for the treatment of cancer. Annu Rev Pharmacol Toxicol 50, 131-156. 26. Fujii, K., Kitabatake, M., Sakata, T., and Ohno, M. (2012). 40S subunit dissociation and proteasome-dependent RNA degradation in nonfunctional 25S rRNA decay. EMBO J 31, 2579-2589. 27. Fulda, S., Gorman, A.M., Hori, O., and Samali, A. (2010). Cellular stress responses: cell survival and cell death. Int J Cell Biol 2010, 214074. 28. Fung, T.S., Liao, Y., and Liu, D.X. (2014). The endoplasmic reticulum stress sensor IRE1alpha protects cells from apoptosis induced by the coronavirus infectious bronchitis virus. J Virol 88, 12752-12764. 29. Galvan-Arzate, S., Martinez, A., Medina, E., Santamaria, A., and Rios, C. (2000). Subchronic administration of sublethal doses of thallium to rats: effects on distribution and lipid peroxidation in brain regions. Toxicology letters 116, 37-43. 30. Galvan-Arzate, S., Pedraza-Chaverri, J., Medina-Campos, O.N., Maldonado, P.D., Vazquez-Roman, B., Rios, C., and Santamaria, A. (2005). Delayed effects of thallium in the rat brain: regional changes in lipid peroxidation and behavioral markers, but moderate alterations in antioxidants, after a single administration. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 43, 1037-1045. 31. Gamalinda, M., Ohmayer, U., Jakovljevic, J., Kumcuoglu, B., Woolford, J., Mbom, B., Lin, L., and Woolford, J.L., Jr. (2014). A hierarchical model for assembly of eukaryotic 60S ribosomal subunit domains. Genes Dev 28, 198-210. 32. Gow, A., and Wrabetz, L. (2009). CHOP and the endoplasmic reticulum stress response in myelinating glia. Curr Opin Neurobiol 19, 505-510. 33. Gratz, N.G. (1973). A critical review of currently used single-dose rodenticides. Bull World Health Organ 48, 469-477. 34. Green, R., Samaha, R.R., and Noller, H.F. (1997). Mutations at nucleotides G2251 and U2585 of 23 S rRNA perturb the peptidyl transferase center of the ribosome. J Mol Biol 266, 40-50. 35. Hedges, J., Chen, Y.I., West, M., Bussiere, C., and Johnson, A.W. (2006). Mapping the functional domains of yeast NMD3, the nuclear export adapter for the 60 S ribosomal subunit. J Biol Chem 281, 36579-36587. 36. Hedges, J., West, M., and Johnson, A.W. (2005). Release of the export adapter, Nmd3p, from the 60S ribosomal subunit requires Rpl10p and the cytoplasmic GTPase Lsg1p. EMBO J 24, 567-579. 37. Hegde, A.N., and Upadhya, S.C. (2007). The ubiquitin-proteasome pathway in health and disease of the nervous system. Trends Neurosci 30, 587-595. 38. Henras, A.K., Plisson-Chastang, C., O'Donohue, M.F., Chakraborty, A., and Gleizes, P.E. (2015). An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdiscip Rev RNA 6, 225-242. 39. Henras, A.K., Soudet, J., Gerus, M., Lebaron, S., Caizergues-Ferrer, M., Mougin, A., and Henry, Y. (2008). The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell Mol Life Sci 65, 2334-2359. 40. Hitchen, J., Ivakine, E., Melekhovets, Y.F., Lalev, A., and Nazar, R.N. (1997). Structural features in the 3' external transcribed spacer affecting intragenic processing of yeast rRNA. J Mol Biol 274, 481-490. 41. Ho, J.H., and Johnson, A.W. (1999). NMD3 encodes an essential cytoplasmic protein required for stable 60S ribosomal subunits in Saccharomyces cerevisiae. Mol Cell Biol 19, 2389-2399. 42. Houseley, J., and Tollervey, D. (2008). The nuclear RNA surveillance machinery: the link between ncRNAs and genome structure in budding yeast? Biochim Biophys Acta 1779, 239-246. 43. Huang, S., Xu, X., Wang, G., Lu, G., Xie, W., Tao, W., Zhang, H., Jiang, Q., and Zhang, C. (2016). DNA replication initiator Cdc6 also regulates ribosomal DNA transcription initiation. J Cell Sci 129, 1429-1440. 44. Hultin, T., and Naslund, P.H. (1974). Effects of thallium (I) on the structure and functions of mammalian ribosomes. Chem Biol Interact 8, 315-328. 45. Inagi, R., Ishimoto, Y., and Nangaku, M. (2014). Proteostasis in endoplasmic reticulum--new mechanisms in kidney disease. Nat Rev Nephrol 10, 369-378. 46. James, A., Wang, Y., Raje, H., Rosby, R., and DiMario, P. (2014). Nucleolar stress with and without p53. Nucleus 5, 402-426. 47. Jin, A., Itahana, K., O'Keefe, K., and Zhang, Y. (2004). Inhibition of HDM2 and activation of p53 by ribosomal protein L23. Mol Cell Biol 24, 7669-7680. 48. Johnson, A.W. (2014). Ribosomes: lifting the nuclear export ban. Curr Biol 24, R127-129. 49. Kallstrom, G., Hedges, J., and Johnson, A. (2003). The putative GTPases Nog1p and Lsg1p are required for 60S ribosomal subunit biogenesis and are localized to the nucleus and cytoplasm, respectively. Mol Cell Biol 23, 4344-4355. 50. Kim, J., Goo, S.Y., Chung, H.J., Yang, H.W., Yong, T.S., Lee, K.H., and Park, S.J. (2006). Interaction of beta-giardin with the Bop1 protein in Giardia lamblia. Parasitol Res 98, 138-144. 51. Kitamura, M. (2008). Endoplasmic reticulum stress and unfolded protein response in renal pathophysiology: Janus faces. Am J Physiol Renal Physiol 295, F323-334. 52. Kressler, D., Hurt, E., and Bassler, J. (2010). Driving ribosome assembly. Biochim Biophys Acta 1803, 673-683. 53. Kubota, H., Obata, T., Ota, K., Sasaki, T., and Ito, T. (2003). Rapamycin-induced translational derepression of GCN4 mRNA involves a novel mechanism for activation of the eIF2 alpha kinase GCN2. J Biol Chem 278, 20457-20460. 54. Kufel, J., Dichtl, B., and Tollervey, D. (1999). Yeast Rnt1p is required for cleavage of the pre-ribosomal RNA in the 3' ETS but not the 5' ETS. RNA 5, 909-917. 55. Kuperberg, J.M., Ngong, J.M., Rutledge, L.P., Stino, F.K.R., Soliman, K.F.A., and Kolta, M.G. (1998). Central and peripheral alteration of the cholinergic enzymes activities of the rat in response to repeated and acute thallium exposure. Tox Subst Mech 17, 285-298. 56. LaCava, J., Houseley, J., Saveanu, C., Petfalski, E., Thompson, E., Jacquier, A., and Tollervey, D. (2005). RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121, 713-724. 57. Lafontaine, D.L. (2010). A 'garbage can' for ribosomes: how eukaryotes degrade their ribosomes. Trends Biochem Sci 35, 267-277. 58. LaRiviere, F.J., Cole, S.E., Ferullo, D.J., and Moore, M.J. (2006). A late-acting quality control process for mature eukaryotic rRNAs. Mol Cell 24, 619-626. 59. Laurencikiene, J., Kallman, A.M., Fong, N., Bentley, D.L., and Ohman, M. (2006). RNA editing and alternative splicing: the importance of co-transcriptional coordination. EMBO Rep 7, 303-307. 60. Li, Z.F., and Lam, Y.W. (2015). A new rapid method for isolating nucleoli. Methods Mol Biol 1228, 35-42. 61. Lindstrom, M.S. (2011). NPM1/B23: A Multifunctional Chaperone in Ribosome Biogenesis and Chromatin Remodeling. Biochem Res Int 2011, 195209. 62. Lo, S.J., Fan, L.C., Tsai, Y.F., Lin, K.Y., Huang, H.L., Wang, T.H., Liu, H., Chen, T.C., Huang, S.F., Chang, C.J., et al. (2013). A novel interaction of nucleophosmin with BCL2-associated X protein regulating death evasion and drug sensitivity in human hepatoma cells. Hepatology 57, 1893-1905. 63. Loewith, R., and Hall, M.N. (2011). Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 189, 1177-1201. 64. MacIntosh, G.C., and Bassham, D.C. (2011). The connection between ribophagy, autophagy and ribosomal RNA decay. Autophagy 7, 662-663. 65. Manikas, R.G., Thomson, E., Thoms, M., and Hurt, E. (2016). The K(+)-dependent GTPase Nug1 is implicated in the association of the helicase Dbp10 to the immature peptidyl transferase centre during ribosome maturation. Nucleic Acids Res 44, 1800-1812. 66. Marine, J.C., and Lozano, G. (2010). Mdm2-mediated ubiquitylation: p53 and beyond. Cell Death Differ 17, 93-102. 67. Mathis, A.D., Naylor, B.C., Carson, R.H., Evans, E., Harwell, J., Knecht, J., Hexem, E., Peelor, F.F., 3rd, Miller, B.F., Hamilton, K.L., et al. (2017). Mechanisms of In Vivo Ribosome Maintenance Change in Response to Nutrient Signals. Mol Cell Proteomics 16, 243-254. 68. Matsuo, Y., Granneman, S., Thoms, M., Manikas, R.G., Tollervey, D., and Hurt, E. (2014). Coupled GTPase and remodelling ATPase activities form a checkpoint for ribosome export. Nature 505, 112-116. 69. Michalec-Wawiorka, B., Wawiorka, L., Derylo, K., Krokowski, D., Boguszewska, A., Molestak, E., Szajwaj, M., and Tchorzewski, M. (2015). Molecular behavior of human Mrt4 protein, MRTO4, in stress conditions is regulated by its C-terminal region. Int J Biochem Cell Biol 69, 233-240. 70. Mourelle, M., Favari, L., and Amezcua, J.L. (1988). Protection against thallium hepatotoxicity by silymarin. Journal of applied toxicology : JAT 8, 351-354. 71. Mu, R., Wang, Y.B., Wu, M., Yang, Y., Song, W., Li, T., Zhang, W.N., Tan, B., Li, A.L., Wang, N., et al. (2014). Depletion of pre-mRNA splicing factor Cdc5L inhibits mitotic progression and triggers mitotic catastrophe. Cell Death Dis 5, e1151. 72. Mulkey, J.P., and Oehme, F.W. (1993). A review of thallium toxicity. Vet Hum Toxicol 35, 445-453. 73. Narasimhan, J., Staschke, K.A., and Wek, R.C. (2004). Dimerization is required for activation of eIF2 kinase Gcn2 in response to diverse environmental stress conditions. J Biol Chem 279, 22820-22832. 74. Nigro, J.M., Baker, S.J., Preisinger, A.C., Jessup, J.M., Hostetter, R., Cleary, K., Bigner, S.H., Davidson, N., Baylin, S., Devilee, P., et al. (1989). Mutations in the p53 gene occur in diverse human tumour types. Nature 342, 705-708. 75. Olivero, O.A., Tejera, A.M., Fernandez, J.J., Taylor, B.J., Das, S., Divi, R.L., and Poirier, M.C. (2005). Zidovudine induces S-phase arrest and cell cycle gene expression changes in human cells. Mutagenesis 20, 139-146. 76. Ossareh-Nazari, B., Bonizec, M., Cohen, M., Dokudovskaya, S., Delalande, F., Schaeffer, C., Van Dorsselaer, A., and Dargemont, C. (2010). Cdc48 and Ufd3, new partners of the ubiquitin protease Ubp3, are required for ribophagy. EMBO Rep 11, 548-554. 77. Pakos-Zebrucka, K., Koryga, I., Mnich, K., Ljujic, M., Samali, A., and Gorman, A.M. (2016). The integrated stress response. EMBO Rep 17, 1374-1395. 78. Pizarro, J.G., Folch, J., de la Torre, A.V., Junyent, F., Verdaguer, E., Jordan, J., Pallas, M., and Camins, A. (2010). ATM is involved in cell-cycle control through the regulation of retinoblastoma protein phosphorylation. J Cell Biochem 110, 210-218. 79. Pourahmad, J., Eskandari, M.R., and Daraei, B. (2010). A comparison of hepatocyte cytotoxic mechanisms for thallium (I) and thallium (III). Environmental toxicology 25, 456-467. 80. Pulk, A., Liiv, A., Peil, L., Maivali, U., Nierhaus, K., and Remme, J. (2010). Ribosome reactivation by replacement of damaged proteins. Mol Microbiol 75, 801-814. 81. Qian, Y., Falahatpisheh, M.H., Zheng, Y., Ramos, K.S., and Tiffany-Castiglioni, E. (2001). Induction of 78 kD glucose-regulated protein (GRP78) expression and redox-regulated transcription factor activity by lead and mercury in C6 rat glioma cells. Neurotox Res 3, 581-589. 82. Ramirez, M., Wek, R.C., and Hinnebusch, A.G. (1991). Ribosome association of GCN2 protein kinase, a translational activator of the GCN4 gene of Saccharomyces cerevisiae. Mol Cell Biol 11, 3027-3036. 83. Ramu, H., Vazquez-Laslop, N., Klepacki, D., Dai, Q., Piccirilli, J., Micura, R., and Mankin, A.S. (2011). Nascent peptide in the ribosome exit tunnel affects functional properties of the A-site of the peptidyl transferase center. Mol Cell 41, 321-330. 84. Rosado, I.V., Kressler, D., and de la Cruz, J. (2007). Functional analysis of Saccharomyces cerevisiae ribosomal protein Rpl3p in ribosome synthesis. Nucleic Acids Res 35, 4203-4213. 85. Rothe, G., and Valet, G. (1990). Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2',7'-dichlorofluorescin. J Leukoc Biol 47, 440-448. 86. Rubbi, C.P., and Milner, J. (2003). Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J 22, 6068-6077. 87. Saveanu, C., Bienvenu, D., Namane, A., Gleizes, P.E., Gas, N., Jacquier, A., and Fromont-Racine, M. (2001). Nog2p, a putative GTPase associated with pre-60S subunits and required for late 60S maturation steps. EMBO J 20, 6475-6484. 88. Schafer, K.A. (1998). The cell cycle: a review. Vet Pathol 35, 461-478. 89. Shao, S., and Hegde, R.S. (2016). Target Selection during Protein Quality Control. Trends Biochem Sci 41, 124-137. 90. Shi, Z., Azuma, A., Sampath, D., Li, Y.X., Huang, P., and Plunkett, W. (2001). S-Phase arrest by nucleoside analogues and abrogation of survival without cell cycle progression by 7-hydroxystaurosporine. Cancer Res 61, 1065-1072. 91. Smirnov, A., Entelis, N., Martin, R.P., and Tarassov, I. (2011). Biological significance of 5S rRNA import into human mitochondria: role of ribosomal protein MRP-L18. Genes Dev 25, 1289-1305. 92. Sudo, H., Nozaki, A., Uno, H., Ishida, Y., and Nagahama, M. (2016). Interaction properties of human TRAMP-like proteins and their role in pre-rRNA 5'ETS turnover. FEBS Lett 590, 2963-2972. 93. Tafforeau, L., Zorbas, C., Langhendries, J.L., Mullineux, S.T., Stamatopoulou, V., Mullier, R., Wacheul, L., and Lafontaine, D.L. (2013). The complexity of human ribosome biogenesis revealed by systematic nucleolar screening of Pre-rRNA processing factors. Mol Cell 51, 539-551. 94. Talkish, J., Zhang, J., Jakovljevic, J., Horsey, E.W., and Woolford, J.L., Jr. (2012). Hierarchical recruitment into nascent ribosomes of assembly factors required for 27SB pre-rRNA processing in Saccharomyces cerevisiae. Nucleic Acids Res 40, 8646-8661. 95. Tamas, M.J., Sharma, S.K., Ibstedt, S., Jacobson, T., and Christen, P. (2014). Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules 4, 252-267. 96. Tanida, I., Ueno, T., and Kominami, E. (2008). LC3 and Autophagy. Methods Mol Biol 445, 77-88. 97. Trotta, C.R., Lund, E., Kahan, L., Johnson, A.W., and Dahlberg, J.E. (2003). Coordinated nuclear export of 60S ribosomal subunits and NMD3 in vertebrates. EMBO J 22, 2841-2851. 98. Tsai, Y.T., Huang, C.C., Kuo, H.C., Wang, H.M., Shen, W.S., Shih, T.S., and Chu, N.S. (2006). Central nervous system effects in acute thallium poisoning. Neurotoxicology 27, 291-295. 99. Tummala, H., Walne, A.J., Williams, M., Bockett, N., Collopy, L., Cardoso, S., Ellison, A., Wynn, R., Leblanc, T., Fitzgibbon, J., et al. (2016). DNAJC21 Mutations Link a Cancer-Prone Bone Marrow Failure Syndrome to Corruption in 60S Ribosome Subunit Maturation. Am J Hum Genet 99, 115-124. 100. Turinetto, V., Porcedda, P., Orlando, L., De Marchi, M., Amoroso, A., and Giachino, C. (2009). The cyclin-dependent kinase inhibitor 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole induces nongenotoxic, DNA replication-independent apoptosis of normal and leukemic cells, regardless of their p53 status. BMC Cancer 9, 281. 101. USEPA (2009). Toxicological review of thallium and compounds (Washinton, DC). 102. Van Hoewyk, D. (2016). Use of the non-radioactive SUnSET method to detect decreased protein synthesis in proteasome inhibited Arabidopsis roots. Plant Methods 12, 20. 103. van Schadewijk, A., van't Wout, E.F., Stolk, J., and Hiemstra, P.S. (2012). A quantitative method for detection of spliced X-box binding protein-1 (XBP1) mRNA as a measure of endoplasmic reticulum (ER) stress. Cell Stress Chaperones 17, 275-279. 104. Vanacova, S., Wolf, J., Martin, G., Blank, D., Dettwiler, S., Friedlein, A., Langen, H., Keith, G., and Keller, W. (2005). A new yeast poly(A) polymerase complex involved in RNA quality control. PLoS Biol 3, e189. 105. Vanhaesebroeck, B., Stephens, L., and Hawkins, P. (2012). PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol 13, 195-203. 106. Verstraeten, S.V. (2006). Relationship between thallium(I)-mediated plasma membrane fluidification and cell oxidants production in Jurkat T cells. Toxicology 222, 95-102. 107. Wanzel, M., Russ, A.C., Kleine-Kohlbrecher, D., Colombo, E., Pelicci, P.G., and Eilers, M. (2008). A ribosomal protein L23-nucleophosmin circuit coordinates Mizl function with cell growth. Nat Cell Biol 10, 1051-1061. 108. Wilson, D.N., and Doudna Cate, J.H. (2012). The structure and function of the eukaryotic ribosome. Cold Spring Harb Perspect Biol 4. 109. Woods, J.S., and Fowler, B.A. (1986). Alteration of hepatocellular structure and function by thallium chloride: ultrastructural, morphometric, and biochemical studies. Toxicology and applied pharmacology 83, 218-229. 110. Xiao, J., Zhang, Z., Chen, G.G., Zhang, M., Ding, Y., Fu, J., Li, M., and Yun, J.P. (2009). Nucleophosmin/B23 interacts with p21WAF1/CIP1 and contributes to its stability. Cell Cycle 8, 889-895. 111. Yoshida, M., Igeta, S., Kawashima, R., Akama, Y., and Yoshida, K. (1997). Changes in adenosine triphosphate (ATP) concentration and its activity in murine tissue after thallium administration. Bulletin of environmental contamination and toxicology 59, 268-273. 112. Youngman, E.M., Brunelle, J.L., Kochaniak, A.B., and Green, R. (2004). The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release. Cell 117, 589-599. 113. Zhang, Y., and Lu, H. (2009). Signaling to p53: ribosomal proteins find their way. Cancer Cell 16, 369-377. 114. Zhang, Z., Wang, H., Li, M., Rayburn, E.R., Agrawal, S., and Zhang, R. (2005). Stabilization of E2F1 protein by MDM2 through the E2F1 ubiquitination pathway. Oncogene 24, 7238-7247. 115. Zhou, Y., and MacKinnon, R. (2004). Ion binding affinity in the cavity of the KcsA potassium channel. Biochemistry-Us 43, 4978-4982. 116. Zhu, S., and Wek, R.C. (1998). Ribosome-binding domain of eukaryotic initiation factor-2 kinase GCN2 facilitates translation control. J Biol Chem 273, 1808-1814. 117. Zielonka, J., and Kalyanaraman, B. (2010). Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radic Biol Med 48, 983-1001. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79042 | - |
| dc.description.abstract | 鉈 ( Thallium, Tl ) 為 3A 族之稀有金屬元素,多以一價 ( Tl(I) ) 或三價 ( Tl(III) ) 的形式在環境中廣泛分佈。因為可應用於超導體合金,於高科技產業上的需求與日間進,而被認為是新興的汙染物。鉈影響許多的代謝途徑,且對於生物具有高毒性。因此我們分析鉈如何影響細胞的生理功能。在研究中發現,處於鉈毒性之細胞有 eIF2α 磷酸化現象,以及蛋白質合成量減少的趨勢,曾有研究提到,鉈會和蛋白質上的硫醇基 ( -SH ) 結合而抑制蛋白質功能。雖然大量累積變性蛋白會活化內質網壓力,但在我們的實驗條件下卻無觀察到。值得注意的,研究中發現核醣體的60S 次單元與40S 次單元比例,隨著鉈濃度的增加而下降。因為Tl+和鉀離子擁有相似電性及離子半徑,曾有研究說鉈會取代核醣體上鉀的結合位而抑制核醣體的活性。但是,經由自噬作用或蛋白酶體降解核醣體的情形並沒有被觀察到。有趣的是,鉈處理後,RNA 聚合酶 I 的活性沒有改變,但 rRNA 的成熟過程則出現嚴重缺失;核仁蛋白的細胞位置改變且累積量下降。因此,我們提出鉈降低蛋白質合成率的機制,主要是導致不正長的核醣體生成,進而造成細胞生長停止及死亡。 | zh_TW |
| dc.description.abstract | Thallium is a metal classified in the group III A, distributed in the environment as monovalent Tl(I) and trivalent Tl(III) state. Thallium is considered as an emergent contamination because of its potential use in superconducting alloys, with increasing demand from high-technology industry. Tl(I) is highly toxic to the animals since it can affect numerous metabolic processes. We dissect how Tl(I) impacts physiological functions of the cells. We observed that protein synthesis was highly decreased and eIF2α was phosphorylated after thallium treatment. It has been proposed that Tl(I) can interact with sulfhydryl groups to inactivate the protein functions. Although accumulation of denature proteins would activate ER stress, it was not observed in our experimental conditions. Notably, the ratio of ribosomal large subunit (60S) to small subunit (40S) was decreased with increasing amount of thallium. Due to Tl(I) shares similarities with potassium (K) in ionic charge and atomic radius, it has been proposed that Tl(I) occupies certain K+-binding sites and inactivates ribosome function. Thallium may impact 60S levels from triggering degradation of inactive 60S. However, activation of autophagy or proteasomal degradation of large subunits was not observed. Interestingly, while the activity of RNA polymerase I was not altered, rRNA processing was severely blocked after Tl(I) treatment. In addition, nucleolar proteins mislocalized in the cells and under-accumulated. Therefore, we proposed that Tl(I) decreased protein synthesis from abnormal ribosome synthesis, resulting cell growth inhibition and lethality. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:39:04Z (GMT). No. of bitstreams: 1 ntu-107-R05623021-1.pdf: 5544951 bytes, checksum: 936b3484b6e039c2a5cdac3e4f2ef51e (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝 i
Abstract ii 摘要 iii 目錄 iv 圖目錄 vi 表目錄 vii 一、文獻回顧 1 1.1 鉈的基本性質與毒性與探討 1 1.2 鉈的毒性機制 2 1.3 細胞的壓力調控機制 3 1.4 核醣體組成及生合成 4 1.5 核仁壓力 (Nucleolar stress) 5 1.6 核醣體生合異常造成的疾病 ( Ribosomopathy ) 7 1.7 核醣體品質控制機制 (Ribosome quality control mechanisms) 8 二、研究動機 11 三、材料與方法 12 1. 配製鉈溶液 12 2. 細胞培養 12 3. 細胞活性測試 (MTT assay) 12 4. 質體 DNA轉染 12 5. qPCR 基因表達分析 14 6. 西方墨點法 15 7. 細胞核質分離 15 8. 北方墨點法 16 9. 多核醣體圖譜分析 (Polysome Profiling Analysis) 18 10. 核醣體次單元圖譜分析 ( Monosome Profiling Analysis ) 18 11. 免疫螢光染色 19 12. 氧化壓力指標測定 19 13. 細胞週期分析 19 14. TUNEL assay 20 15. 統計分析 20 16. 次世代定序分析 20 四、結果 22 4.1 金屬鉈影響哺乳類細胞的生長 22 4.2 金屬鉈使細胞產生氧化壓力 24 4.3 金屬鉈抑制細胞蛋白質合成 25 4.4 金屬鉈未使細胞產生內質網壓力 (ER stress) 26 4.5 金屬鉈影響細胞中核醣體大次單元的量 27 4.6 金屬鉈亦減少其他細胞株之60S核醣體的量 28 4.7 鉈並非因為增加核醣體的降解而造成60S核醣體減少 29 4.8 新生核醣體的量受到鉈影響 32 4.9 金屬鉈引發核仁壓力 (Nucleolar stress) 33 4.10 rRNA 裁切過程出現異常 36 4.11 核醣體運輸異常 37 4.12 次世代定序(next generation sequencing, NGS)分析鉈毒性所改變之基因表達 39 4.13 核醣體生合成因子及組成成份表現異常 41 五、討論 43 5.1 鉈處理對細胞週期的影響 43 5.2 鉈非由內質網壓力途徑啟動 eIF2α 蛋白質磷酸化 46 5.3 金屬鉈對60S損傷影響較大 48 5.4 異常核醣體的降解機制 51 六、結論 53 七、參考文獻 55 八、附錄 90 | |
| dc.language.iso | zh-TW | |
| dc.subject | 核仁壓力 | zh_TW |
| dc.subject | 一價金屬鉈 | zh_TW |
| dc.subject | 核醣體 | zh_TW |
| dc.subject | 鉈毒性 | zh_TW |
| dc.subject | 核醣體生合成 | zh_TW |
| dc.subject | Thallium toxicity | en |
| dc.subject | Nucleolar stress | en |
| dc.subject | Ribosome biogenesis | en |
| dc.subject | Protein synthesis | en |
| dc.subject | Thallium [Tl(I)] | en |
| dc.title | 一價金屬鉈抑制核醣體生合成進而影響蛋白質生成 | zh_TW |
| dc.title | Thallium (I) impacts protein synthesis via blocking of ribosome biogenesis pathway | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉奕方,朱家瑩,廖憶純 | |
| dc.subject.keyword | 一價金屬鉈,鉈毒性,核醣體,核醣體生合成,核仁壓力, | zh_TW |
| dc.subject.keyword | Thallium [Tl(I)],Thallium toxicity,Protein synthesis,Ribosome biogenesis,Nucleolar stress, | en |
| dc.relation.page | 94 | |
| dc.identifier.doi | 10.6342/NTU201803213 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-14 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-08-16 | - |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-R05623021-1.pdf 未授權公開取用 | 5.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
