請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79039完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴亮全(Liang-Chuan Lai) | |
| dc.contributor.author | Chung-Hsien Shih | en |
| dc.contributor.author | 石忠賢 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:38:49Z | - |
| dc.date.available | 2025-08-18 | |
| dc.date.copyright | 2020-09-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-18 | |
| dc.identifier.citation | 1. W. Chen, R. Zheng, P. D. Baade, S. Zhang, H. Zeng, F. Bray, A. Jemal, X. Q. Yu, and J. He. (2016, Mar-Apr). Cancer statistics in China, 2015. CA Cancer J Clin, 66:115. 2. Y. Sun. (2016, Sep 28). Tumor microenvironment and cancer therapy resistance. Cancer Lett, 380:205. 3. F. Chen, X. Zhuang, L. Lin, P. Yu, Y. Wang, Y. Shi, G. Hu, and Y. Sun. (2015, Mar 5). New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med, 3:45. 4. T. Wu, and Y. Dai. (2017, Feb 28). Tumor microenvironment and therapeutic response. Cancer Lett, 387:61. 5. C. Shao, F. Yang, S. Miao, W. Liu, C. Wang, Y. Shu, and H. Shen. (2018, Aug 11). Role of hypoxia-induced exosomes in tumor biology. Mol Cancer, 17:120. 6. R. J. Gillies, D. Verduzco, and R. A. Gatenby. (2012, Jun 14). Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nat Rev Cancer, 12:487. 7. A. L. Harris. (2002, Jan). poxia--a key regulatory factor in tumour growth. Nat Rev Cancer, 2:38. 8. B. Muz, P. de la Puente, F. Azab, and A. K. Azab. (2015, The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl), 3:83. 9. N. Masson, and P. J. Ratcliffe. (2014, Feb 4). Hypoxia signaling pathways in cancer metabolism: the importance of co-selecting interconnected physiological pathways. Cancer Metab, 2:3. 10. Y. Jiang, G. H. Wu, G. D. He, Q. L. Zhuang, Q. L. Xi, B. Zhang, Y. S. Han, and J. Fang. (2015, The Effect of Silencing HIF-1alpha Gene in BxPC-3 Cell Line on Glycolysis-Related Gene Expression, Cell Growth, Invasion, and Apoptosis. Nutr Cancer, 67:1314. 11. H. J. Knowles, and A. L. Harris. (2001, Hypoxia and oxidative stress in breast cancer. Hypoxia and tumourigenesis. Breast Cancer Res, 3:318. 12. G. L. Semenza. (2012, Feb 3). Hypoxia-inducible factors in physiology and medicine. Cell, 148:399. 13. G. L. Semenza. (2003, Oct). Targeting HIF-1 for cancer therapy. Nat Rev Cancer, 3:721. 14. J. Yang, L. Zhang, P. J. Erbel, K. H. Gardner, K. Ding, J. A. Garcia, and R. K. Bruick. (2005, Oct 28). Functions of the Per/ARNT/Sim domains of thehypoxia-inducible factor. J Biol Chem, 280:36047. 15. A. Chapman-Smith, J. K. Lutwyche, and M. L. Whitelaw. (2004, Feb 13). Contribution of the Per/Arnt/Sim (PAS) domains to DNA binding by the basic helix-loop-helix PAS transcriptional regulators. J Biol Chem, 279:5353. 16. G. L. Wang, B. H. Jiang, E. A. Rue, and G. L. Semenza. (1995, Jun 6). Hypoxiainducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A, 92:5510. 17. R. Guan, J. Wang, Z. Li, M. Ding, D. Li, G. Xu, T. Wang, Y. Chen, Q. Yang, Z. Long, Z. Cai, C. Zhang, X. Liang, L. Dong, L. Zhao, H. Zhang, D. Sun, and W. Lu. (2018, Sodium Tanshinone IIA Sulfonate Decreases Cigarette Smoke-Induced Inflammation and Oxidative Stress via Blocking the Activation of MAPK/HIF-1α Signaling Pathway. Front Pharmacol, 9:263. 18. Z. Zhang, L. Yao, J. Yang, Z. Wang, and G. Du. (2018, Oct). PI3K/Akt and HIF1 signaling pathway in hypoxiaischemia (Review). Mol Med Rep, 18:3547. 19. T. Sakamoto, J. S. Weng, T. Hara, S. Yoshino, H. Kozuka-Hata, M. Oyama, and M. Seiki. (2014, Jan). Hypoxia-inducible factor 1 regulation through cross talk between mTOR and MT1-MMP. Mol Cell Biol, 34:30. 20. P. Büchler, H. A. Reber, M. Büchler, S. Shrinkante, M. W. Büchler, H. Friess, G. L. Semenza, and O. J. Hines. (2003, Jan). Hypoxia-inducible factor 1 regulates vascular endothelial growth factor xpression in human pancreatic cancer. Pancreas, 26:56. 21. C. Lin, and L. Yang. (2018, Apr). Long Noncoding RNA in Cancer: Wiring Signaling Circuitry. Trends Cell Biol, 28:287. 22. D. Terracciano, S. Terreri, F. de Nigris, V. Costa, G. A. Calin, and A. Cimmino. (2017, Dec). The role of a new class of long noncoding RNAs transcribed from ultraconserved regions in cancer. Biochim Biophys Acta Rev Cancer, 1868:449. 23. A. E. Kornienko, P. M. Guenzl, D. P. Barlow, and F. M. Pauler. (2013, May 30). Gene regulation by the act of long non-coding RNA transcription. BMC Biol, 11:59. 24. S. Xu, C. Jin, X. Shen, F. Ding, J. Zhu, and G. Fu. (2012, Jul). MicroRNAs as potential novel therapeutic targets and tools for regulating paracrine function of endothelial progenitor cells. Med Sci Monit, 18:HY27. 25. T. R. Mercer, M. E. Dinger, and J. S. Mattick. (2009, Mar). Long non-coding RNAs: insights into functions. Nat Rev Genet, 10:155. 26. J. E. Wilusz, H. Sunwoo, and D. L. Spector. (2009, Jul 1). Long noncoding RNAs: functional surprises from the RNA world. Genes Dev, 23:1494. 27. Y. Liang, X. Song, Y. Li, Y. Sang, N. Zhang, H. Zhang, Y. Liu, Y. Duan, B. Chen, R. Guo, W. Zhao, L. Wang, and Q. Yang. (2018, May 1). A novel long noncoding RNA-PRLB acts as a tumor promoter through regulating miR-4766-5p/SIRT1 axis in breast cancer. Cell Death Dis, 9:563. 28. W. Li, L. Zhai, H. Wang, C. Liu, J. Zhang, W. Chen, and Q. Wei. (2016, May 10). Downregulation of LncRNA GAS5 causes trastuzumab resistance in breast cancer. Oncotarget, 7:27778. 29. S. Chen, L. L. Wang, K. X. Sun, Y. Liu, X. Guan, Z. H. Zong, and Y. Zhao. (2018, LncRNA PCGEM1 Induces Ovarian Carcinoma Tumorigenesis and Progression Through RhoA Pathway. Cell Physiol Biochem, 7:1578. 30. J. W. Shih, W. F. Chiang, A. T. H. Wu, M. H. Wu, L. Y. Wang, Y. L. Yu, Y. W. Hung, W. C. Wang, C. Y. Chu, C. L. Hung, C. A. Changou, Y. Yen, and H. J. Kung. (2017, Jun 22). Long noncoding RNA ncHIFCAR/MIR31HG is a HIF-1α co-activator driving oral cancer progression. Nat Commun, 8:15874. 31. M. Lv, Z. Zhong, M. Huang, Q. Tian, R. Jiang, and J. Chen. (2017, Oct). lncRNA H19 regulates epithelial-mesenchymal transition and metastasis of bladder cancer by miR-29b-3p as competing endogenous RNA. Biochim Biophys Acta Mol Cell Res, 1864:1887. 32. C. J. Wang, C. C. Zhu, J. Xu, M. Wang, W. Y. Zhao, Q. Liu, G. Zhao, and Z. Z. Zhang. (2019, Jul 4). The lncRNA UCA1 promotes proliferation, migration, immune escape and inhibits apoptosis in gastric cancer by sponging anti-tumor miRNAs. Mol Cancer, 18:115. 33. B. Zhang, G. Arun, Y. S. Mao, Z. Lazar, G. Hung, G. Bhattacharjee, X. Xiao, C. J. Booth, J. Wu, C. Zhang, and D. L. Spector. (2012, Jul 26). The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cisregulatory role in the adult. Cell Rep, 2:111. 34. P. Ji, S. Diederichs, W. Wang, S. Böing, R. Metzger, P. M. Schneider, N. Tidow, B. Brandt, H. Buerger, E. Bulk, M. Thomas, W. E. Berdel, H. Serve, and C. Müller-Tidow. (2003, Sep 11). MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 22:8031. 35. P. Schorderet, and D. Duboule. (2011, May). Structural and functional differences in the long non-coding RNA hotair in mouse and human. PLoS Genet, 7:e1002071. 36. L. Fan, K. Strasser-Weippl, J. J. Li, J. St Louis, D. M. Finkelstein, K. D. Yu, W. Q. Chen, Z. M. Shao, and P. E. Goss. (2014, Jun). Breast cancer in China. Lancet Oncol, 15:e279. 37. L. Ying, Q. Chen, Y. Wang, Z. Zhou, Y. Huang, and F. Qiu. (2012, Sep). Upregulated MALAT-1 contributes to bladder cancer cell migration by inducing epithelial-to-mesenchymal transition. Mol Biosyst, 8:2289. 38. L. H. Schmidt, T. Spieker, S. Koschmieder, S. Schäffers, J. Humberg, D. Jungen, E. Bulk, A. Hascher, D. Wittmer, A. Marra, L. Hillejan, K. Wiebe, W. E. Berdel, R. Wiewrodt, and C. Muller-Tidow. (2011, Dec). The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth. J Thorac Oncol, 6:1984. 39. C. Xu, M. Yang, J. Tian, X. Wang, and Z. Li. (2011, Jul). MALAT-1: a long noncoding RNA and its important 3' end functional motif in colorectal cancer metastasis. Int J Oncol, 39:169. 40. J. Fellenberg, L. Bernd, G. Delling, D. Witte, and A. Zahlten-Hinguranage. (2007, Oct). Prognostic significance of drug-regulated genes in high-grade osteosarcoma. Mod Pathol, 20:1085. 41. R. Lin, S. Maeda, C. Liu, M. Karin, and T. S. Edgington. (2007, Feb 8). A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas. Oncogene, 26:851. 42. Y. Lee, C. Ahn, J. Han, H. Choi, J. Kim, J. Yim, J. Lee, P. Provost, O. Rådmark, S. Kim, and V. N. Kim. (2003, Sep 25). The nuclear RNase III Drosha initiates microRNA processing. Nature, 425:415. 43. D. P. Bartel. (2004, Jan 23). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116:281. 44. W. Lou, J. Liu, Y. Gao, G. Zhong, D. Chen, J. Shen, C. Bao, L. Xu, J. Pan, J. Cheng, B. Ding, and W. Fan. (2017, Dec 29). MicroRNAs in cancer metastasis and angiogenesis. Oncotarget, 8:115787. 45. A. Mahdian-Shakib, R. Dorostkar, M. Tat, M. S. Hashemzadeh, and N. Saidi. (2016, Dec). Differential role of microRNAs in prognosis, diagnosis, and therapy of ovarian cancer. Biomed Pharmacother, 84:592. 46. B. P. Lewis, I. H. Shih, M. W. Jones-Rhoades, D. P. Bartel, and C. B. Burge. (2003, Dec 26). Prediction of mammalian microRNA targets. Cell, 115:787. 47. Y. W. Kim, E. Y. Kim, D. Jeon, J. L. Liu, H. S. Kim, J. W. Choi, and W. S. Ahn. (2014, Differential microRNA expression signatures and cell type-specific association with Taxol resistance in ovarian cancer cells. Drug Des Devel Ther, 8:293. 48. L. Mulrane, S. F. McGee, W. M. Gallagher, and D. P. O'Connor. (2013, Nov 15). miRNA dysregulation in breast cancer. Cancer Res, 73:6554. 49. K. Srivastava, and A. Srivastava. (2012, Comprehensive review of genetic association studies and meta-analyses on miRNA polymorphisms and cancer risk. PLoS One, 7:e50966. 50. S. Khan, H. Ayub, T. Khan, and F. Wahid. (2019, Dec). MicroRNA biogenesis, gene silencing mechanisms and role in breast, ovarian and prostate cancer. Biochimie, 167:12. 51. M. S. Kumar, E. Armenteros-Monterroso, P. East, P. Chakravorty, N. Matthews, M. M. Winslow, and J. Downward. (2014, Jan 9). HMGA2 functions as a competing endogenous RNA to promote lung cancer progression. Nature, 505:212. 52. E. Giovannetti, A. Erozenci, J. Smit, R. Danesi, and G. J. Peters. (2012, Feb). Molecular mechanisms underlying the role of microRNAs (miRNAs) in anticancer drug resistance and implications for clinical practice. Crit Rev Oncol Hematol, 81:103. 53. Y. C. Chan, S. Khanna, S. Roy, and C. K. Sen. (2011, Jan 21). miR-200b targets Ets-1 and is down-regulated by hypoxia to induce angiogenic response of endothelial cells. J Biol Chem, 286:2047. 54. Z. Lei, B. Li, Z. Yang, H. Fang, G. M. Zhang, Z. H. Feng, and B. Huang. (2009, Oct 29). Regulation of HIF-1alpha and VEGF by miR-20b tunes tumor cells to adapt to the alteration of oxygen concentration. PLoS One, 4:e7629. 55. P. Zhang, M. Ha, L. Li, X. Huang, and C. Liu. (2020, Jan). MicroRNA-3064-5p sponged by MALAT1 suppresses angiogenesis in human hepatocellular carcinoma by targeting the FOXA1/CD24/Src pathway. FASEB J, 34:66. 56. M. Dunagin, M. N. Cabili, J. Rinn, and A. Raj. (2015, Visualization of lncRNA by single-molecule fluorescence in situ hybridization. Methods Mol Biol, 1262:3. 57. N. Amodio, L. Raimondi, G. Juli, M. A. Stamato, D. Caracciolo, P. Tagliaferri, and P. Tassone. (2018, May 8). MALAT1: a druggable long non-coding RNA for targeted anti-cancer approaches. J Hematol Oncol, 11:63. 58. D. K. Singh, and K. V. Prasanth. (2013, Dec). Functional insights into the role of nuclear-retained long noncoding RNAs in gene expression control in mammalian cells. Chromosome Res, 21:695. 59. X. Zong, V. Tripathi, and K. V. Prasanth. (2011, Nov-Dec). RNA splicing control: yet another gene regulatory role for long nuclear noncoding RNAs. RNA Biol, 8:968. 60. L. Bai, H. Wang, A. H. Wang, L. Y. Zhang, and J. Bai. (2017, MicroRNA-532 and microRNA-3064 inhibit cell proliferation and invasion by acting as direct regulators of human telomerase reverse ranscriptase in ovarian cancer. PLoS One, 12:e0173912. 61. A. Bhan, M. Soleimani, and S. S. Mandal. (2017, Aug 1). Long Noncoding RNA and Cancer: A New Paradigm. Cancer Res, 77:3965. 62. C. L. Hung, L. Y. Wang, Y. L. Yu, H. W. Chen, S. Srivastava, G. Petrovics, and H. J. Kung. (2014, Dec 30). A long noncoding RNA connects c-Myc to tumor metabolism. Proc Natl Acad Sci U S A, 111:18697. 63. L. Yang, C. Lin, C. Jin, J. C. Yang, B. Tanasa, W. Li, D. Merkurjev, K. A. Ohgi, D. Meng, J. Zhang, C. P. Evans, and M. G. Rosenfeld. (2013, Aug 29). lncRNA dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature, 500:598. 64. X. Fu, L. Ravindranath, N. Tran, G. Petrovics, and S. Srivastava. (2006, Mar). Regulation of apoptosis by a prostate-specific and prostate cancer-associated noncoding gene, PCGEM1. DNA Cell Biol, 25:135. 65. I. J. Matouk, S. Mezan, A. Mizrahi, P. Ohana, R. Abu-Lail, Y. Fellig, N. Degroot, E. Galun, and A. Hochberg. (2010, Apr). The oncofetal H19 RNA connection: hypoxia, p53 and cancer. Biochim Biophys Acta, 1803:443. 66. D. Barsyte-Lovejoy, S. K. Lau, P. C. Boutros, F. Khosravi, I. Jurisica, I. L. Andrulis, M. S. Tsao, and L. Z. Penn. (2006, May 15). The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis. Cancer Res, 66:5330. 67. N. Berteaux, S. Lottin, D. Monté, S. Pinte, B. Quatannens, J. Coll, H. Hondermarck, J. J. Curgy, T. Dugimont, and E. Adriaenssens. (2005, Aug 19). H19 mRNA-like noncoding RNA promotes breast cancer cell proliferation through positive control by E2F1. J Biol Chem, 280:29625. 68. I. Ariel, M. Sughayer, Y. Fellig, G. Pizov, S. Ayesh, D. Podeh, B. A. Libdeh, C. Levy, T. Birman, M. L. Tykocinski, N. de Groot, and A. Hochberg. (2000, Dec). The imprinted H19 gene is a marker of early recurrence in human bladder carcinoma. Mol Pathol, 53:320. 69. P. Chen, D. Wan, D. Zheng, Q. Zheng, F. Wu, and Q. Zhi. (2016, Oct). Long non-coding RNA UCA1 promotes the tumorigenesis in pancreatic cancer. Biomed Pharmacother, 83:1220. 70. H. Liu, G. Wang, L. Yang, J. Qu, Z. Yang, and X. Zhou. (2016, Knockdown of Long Non-Coding RNA UCA1 Increases the Tamoxifen Sensitivity of Breast Cancer Cells through Inhibition of Wnt/β-Catenin Pathway. PLoS One, 11:e0168406. 71. Y. Fan, B. Shen, M. Tan, X. Mu, Y. Qin, F. Zhang, and Y. Liu. (2014, Apr). Long non-coding RNA UCA1 increases chemoresistance of bladder cancer cells by regulating Wnt signaling. FEBS J, 281:1750. 72. A. Maicher, L. Kastner, and B. Luke. (2012, Jun). Telomeres and disease: enter TERRA. RNA Biol, 9:843. 73. R. Arora, C. M. Brun, and C. M. Azzalin. (2011, TERRA: Long Noncoding RNA at Eukaryotic Telomeres. Prog Mol Subcell Biol, 51:65. 74. N. Miyoshi, H. Wagatsuma, S. Wakana, T. Shiroishi, M. Nomura, K. Aisaka, T.Kohda, M. A. Surani, T. Kaneko-Ishino, and F. Ishino. (2000, Mar). Identification of an imprinted gene, Meg3/Gtl2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes Cells, 5:211. 75. F. Ye, L. Tian, Q. Zhou, and D. Feng. (2019, Dec 30). LncRNA FER1L4 induces apoptosis and suppresses EMT and the activation of PI3K/AKT pathway in osteosarcoma cells via inhibiting miR-18a-5p to promote SOCS5. Gene, 721:144093. 76. W. Ma, C. Q. Zhang, H. L. Li, J. Gu, G. Y. Miao, H. Y. Cai, J. K. Wang, L. J. Zhang, Y. M. Song, Y. H. Tian, and Y. H. Song. (2018, May). LncRNA FER1L4 suppressed cancer cell growth and invasion in esophageal squamous cell carcinoma. Eur Rev Med Pharmacol Sci, 22:2638. 77. X. J. Huang, Y. Xia, G. F. He, L. L. Zheng, Y. P. Cai, Y. Yin, and Q. Wu. (2018, Nov). MALAT1 promotes angiogenesis of breast cancer. Oncol Rep, 40:2683. 78. H. Fan, J. Li, J. Wang, and Z. Hu. (2019, Oct 11). Long Non-Coding RNAs (lncRNAs) Tumor-Suppressive Role of lncRNA on Chromosome 8p12 (TSLNC8) Inhibits Tumor Metastasis and Promotes Apoptosis by Regulating Interleukin 6 (IL-6)/Signal Transducer and Activator of Transcription 3 (STAT3)/Hypoxia-Inducible Factor 1-alpha (HIF-1α) Signaling Pathway in Non-Small Cell Lung Cancer. Med Sci Monit, 25:7624. 79. L. Huang, W. Wang, Z. Hu, C. Guan, W. Li, and X. Jiang. (2019, Dec). Hypoxia and lncRNAs in gastrointestinal cancers. Pathol Res Pract, 215:152687. 80. J. Zhang, H. Y. Jin, Y. Wu, Z. C. Zheng, S. Guo, Y. Wang, D. Yang, X. Y. Meng, X. Xu, and Y. Zhao. (2019, Sep). Hypoxia-induced LncRNA PCGEM1 promotes invasion and metastasis of gastric cancer through regulating SNAI1. Clin Transl Oncol, 21:1142. 81. S. J. Deng, H. Y. Chen, Z. Ye, S. C. Deng, S. Zhu, Z. Zeng, C. He, M. L. Liu, K. Huang, J. X. Zhong, F. Y. Xu, Q. Li, Y. Liu, C. Y. Wang, and G. Zhao. (2018, Nov). Hypoxia-induced LncRNA-BX111 promotes metastasis and progression of pancreatic cancer through regulating ZEB1 transcription. Oncogene, 37:5811. 82. W. Zhang, W. Yuan, J. Song, S. Wang, and X. Gu. (2018, Jan). LncRNA CPS1-IT1 suppresses EMT and metastasis of colorectal cancer by inhibiting hypoxiainduced autophagy through inactivation of HIF-1α. iochimie, 144:21. 83. M. Xue, W. Chen, A. Xiang, R. Wang, H. Chen, J. Pan, H. Pang, H. An, X. Wang, H. Hou, and X. Li. (2017, Aug 25). Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1. Mol Cancer, 16:143. 84. H. Li, X. Wang, C. Wen, Z. Huo, W. Wang, Q. Zhan, D. Cheng, H. Chen, X.Deng, C. Peng, and B. Shen. (2017, Nov 9). Long noncoding RNA NORAD, a novel competing endogenous RNA, enhances the hypoxia-induced epithelialmesenchymal transition to promote metastasis in pancreatic cancer. Mol Cancer, 16:169. 85. H. Choudhry, A. Albukhari, M. Morotti, S. Haider, D. Moralli, J. Smythies, J. Schödel, C. M. Green, C. Camps, F. Buffa, P. Ratcliffe, J. Ragoussis, A. L. Harris, and D. R. Mole. (2015, Aug 20). Tumor hypoxia induces nuclear paraspeckle formation through HIF-2α dependent transcriptional activation of NEAT1 leading to cancer cell survival. Oncogene, 34:4482. 86. L. Hu, J. Tang, X. Huang, T. Zhang, and X. Feng. (2018, Jul). Hypoxia exposure upregulates MALAT-1 and regulates the transcriptional activity of PTBassociated splicing factor in A549 lung adenocarcinoma cells. Oncol Lett, 16:294. 87. M. C. Brahimi-Horn, and J. Pouysségur. (2007, Feb 1). Harnessing the hypoxiainducible factor in cancer and ischemic disease. Biochem Pharmacol, 73:450. 88. D. J. Manalo, A. Rowan, T. Lavoie, L. Natarajan, B. D. Kelly, S. Q. Ye, J. G. Garcia, and G. L. Semenza. (2005, Jan 15). Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood, 105:659. 89. G. L. Semenza. (2004, Aug). Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology (Bethesda), 19:176. 90. I. Diebold, A. Petry, K. Sabrane, T. Djordjevic, J. Hess, and A. Görlach. (2012, Feb 15). The HIF1 target gene NOX2 promotes angiogenesis through urotensin-II. J Cell Sci, 125:956. 91. H. Zhao, Y. Wu, Y. Chen, and H. Liu. (2015, Dec). Clinical significance of hypoxia-inducible factor 1 and VEGF-A in osteosarcoma. Int J Clin Oncol, 20:1233. 92. I. Mimura, Y. Hirakawa, Y. Kanki, N. Kushida, R. Nakaki, Y. Suzuki, T. Tanaka, H. Aburatani, and M. Nangaku. (2017, Apr). Novel lnc RNA regulated by HIF-1 inhibits apoptotic cell death in the renal tubular epithelial cells under hypoxia. Physiol Rep, 5:1. 93. Y. Wang, X. Liu, H. Zhang, L. Sun, Y. Zhou, H. Jin, H. Zhang, H. Zhang, J. Liu, H. Guo, Y. Nie, K. Wu, D. Fan, H. Zhang, and L. Liu. (2014, Dec). Hypoxiainducible lncRNA-AK058003 promotes gastric cancer metastasis by targeting γ-synuclein. Neoplasia, 16:1094. 94. C. Voellenkle, J. M. Garcia-Manteiga, S. Pedrotti, A. Perfetti, I. De Toma, D. Da Silva, B. Maimone, S. Greco, P. Fasanaro, P. Creo, G. Zaccagnini, C. Gaetano, and F. Martelli. (2016, Apr 11). Implication of Long noncoding RNAs in the endothelial cell response to hypoxia revealed by RNA-sequencing. SciRep, 6:24141. 95. A. Krämer, J. Green, J. Pollard, Jr., and S. Tugendreich. (2014, Feb 15). Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics, 30:523. 96. T. Sasagawa, T. Nagamatsu, K. Morita, N. Mimura, T. Iriyama, T. Fujii, and M. Shibuya. (2018, Nov 26). HIF-2alpha, but not HIF-1alpha, mediates hypoxiainduced up-regulation of Flt-1 gene expression in placental trophoblasts. Sci Rep, 8:17375. 97. J. L. Boddy, S. B. Fox, C. Han, L. Campo, H. Turley, S. Kanga, P. R. Malone, and A. L. Harris. (2005, Nov 1). The androgen receptor is significantly associated with vascular endothelial growth factor and hypoxia sensing via hypoxia-inducible factors HIF-1a, HIF-2a, and the prolyl hydroxylases in human prostate cancer. Clin Cancer Res, 11:7658. 98. D. Bernard, K. V. Prasanth, V. Tripathi, S. Colasse, T. Nakamura, Z. Xuan, M. Q. Zhang, F. Sedel, L. Jourdren, F. Coulpier, A. Triller, D. L. Spector, and A. Bessis. (2010, Sep 15). A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. Embo j, 29:3082. 99. K. Tano, R. Mizuno, T. Okada, R. Rakwal, J. Shibato, Y. Masuo, K. Ijiri, and N. Akimitsu. (2010, Nov 19). MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes. FEBS Lett, 584:4575. 100. F. Guo, Y. Li, Y. Liu, J. Wang, Y. Li, and G. Li. (2010, Mar 15). Inhibition of metastasis-associated lung adenocarcinoma transcript 1 in CaSki human cervical cancer cells suppresses cell proliferation and invasion. Acta Biochim Biophys Sin (Shanghai), 42:224. 101. M. Y. Yao, W. H. Zhang, W. T. Ma, Q. H. Liu, L. H. Xing, and G. F. Zhao. (2020, Apr 21). Long non-coding RNA MALAT1 exacerbates acute respiratory distress syndrome by upregulating ICAM-1 expression via microRNA-150-5p downregulation. Aging (Albany NY), 12:6570. 102. W. Xie, L. Chen, L. Chen, and Q. Kou. (2020, Feb). Silencing of long noncoding RNA MALAT1 suppresses inflammation in septic mice: role of microRNA-23a in the down-regulation of MCEMP1 expression. Inflamm Res, 69:179. 103. F. Luo, X. Liu, M. Ling, L. Lu, L. Shi, X. Lu, J. Li, A. Zhang, and Q. Liu. (2016, Sep). The lncRNA MALAT1, acting through HIF-1α stabilization, enhances arsenite-induced glycolysis in human hepatic L-02 cells. Biochim Biophys Acta, 1862:1685. 104. P. Yuan, W. Cao, Q. Zang, G. Li, X. Guo, and J. Fan. (2016, Sep 23). The HIF-2α-MALAT1-miR-216b axis regulates multi-drug resistance of hepatocellular carcinoma cells via modulating autophagy. Biochem Biophys Res Commun, 478:1067. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79039 | - |
| dc.description.abstract | 缺氧是腫瘤生長中的常見過程,可促進腫瘤侵襲性並與不良癒後緊密相關。長片段非編碼核糖核苷酸(long non-coding RNA, lncRNA)其長度大於200 鹼基對,且其無法轉譯成蛋白質,已知其調控的生理機制非常的廣泛且影響許多細胞的功能,其中可作為吸附微小RNA (microRNA, miRNA)的海綿。先前我們實驗室使用次世代定序技術(NGS)發現在MCF-7 乳癌細胞株中,lncRNAMALAT1 會被缺氧誘導表現,但MALAT1 在乳腺癌中的調控機制和功能仍不清楚。因此本研究的目的是探討MALAT1 是否可透過miRNA 調節乳腺癌細胞的功能。第一,以定量即時聚合酶鏈鎖反應檢測正常乳腺細胞MCF-10A 中以及乳 癌細胞株MCF-7 和MAD-MB-231 中MALAT1 內生性表現量。在不同氧濃度中以定量即時聚合酶鏈鎖反應檢測MCF-7 的MALAT1 表現量。接著,以定量即時聚合酶鏈鎖反應檢測過表現HIF-1A 或 HIF-2A 的MCF-7 中MALAT1 表現量。並且以冷光酶報導基因分析法檢測HIF-1α 或 HIF-2α 是否與MALAT1 啟動子之間的交互作用。第三,以核質分離檢測MALAT1 的分布情況,第四,細胞在MALAT1 基因靜默後,透過次世代定序檢測受到MALAT1 影響的miRNA,接著運用AGO2 蛋白質(miRNA 誘導的沉默複合體次單元)抗體進行RNA 免疫沉澱分析法。最後以細胞存活率分析以及傷口癒合測定細胞的增殖以及遷移能力。以流式細胞儀檢測乳癌細胞的細胞週期分布狀況。 由結果發現,MALAT1 表現量在MDA-MB-231 中高於MCF-7 以及MCF-10A。乳癌細胞在缺氧條件下會促使MALAT1 的表現量顯著性的上升,且缺氧誘導因子1α (HIF-1α) 或 HIF-2α 可以促進MALAT1 轉錄的表現量。透過核質分離檢測和螢光原位雜交發現MALAT1 分佈於細胞質。為了檢測受MALAT1 影響的miRNA,在缺氧的環境下將MALAT1 進行基因靜默並進行次世代定序。由NGS 結果發現五個明顯差異表達的miRNA,包括miR-3150a-3p、miR-4325、miR-378c、miR-3064-5p 和miR-7855-5p。探討MALAT1 是否能作為吸附 miRNA,利用AGO2 蛋白抗體進行RNA 免疫沉澱(RIP)分析法檢測,過度表現MALAT1 後,發現AGO2 結合MALAT1 的能力高於IgG,結果指出MALAT1 能作為吸附miRNA 的角色。最後,功能性檢測結果顯示MALAT1 可以促使乳癌細胞的遷移和增殖,且利用流式細胞儀檢測MALAT1 基因靜默的乳癌細胞株時,發現細胞週期G1 期的百分比顯著增加,表明MALAT1 沉默導致G1 停滯。因此,MALAT1 可能是抑制乳腺癌進展的目標候選藥物。 | zh_TW |
| dc.description.abstract | Hypoxia, a common process during tumor growth, can lead to tumor aggressiveness and is tightly associated with poor prognosis. Long noncoding RNAs (lncRNAs) are ribonucleotide (>200 base) with limited ability to translate proteins, and lncRNAs are known to affect many aspects of cellular functions. One of the regulatory mechanisms is functioned as microRNA (miRNA) sponge to modulate the biological functions. Previously, we used next-generation sequencing (NGS) technology to identify oxygen-responsive lncRNAs in breast cancer MCF7 cells, and identified MALAT1 in the top five up-regulated lncRNAs under hypoxia. However, the regulatory mechanism and functions of MALAT1 in breast cancer were still unclear. Therefore, the aim of this study is to explore whether MALAT1 can regulate the functions of breast cancer cells through miRNA. First, the endogenous expression levels of MALAT1 of MCF-10A, MCF-7, MDA-MB-231 cells were determined by quantitative RT-PCR. The expression levels of MALAT1 in MCF-7 grown in different oxygen concentrations were examined by quantitative RT-PCR. Next, expression levels of MALAT1 in MCF7 expressing HIF-1A or HIF-2A were examined by quantitative RT-PCR. Luciferase reporter assays were used to validate the transcriptionally interaction of HIF-1α or HIF-2α with MALAT1 promoter. Third, distribution of MALAT1 were examined by nuclear-cytoplasmic RNA fractionation assays. Fourth, to identify the miRNAs affected by MALAT1, next-generation sequencing was performed in MALAT1-knockdown cells, and followed by RNAbinding protein immunoprecipitation (RIP) assays using antibody against AGO2 protein, an essential component of the miRNA-induced silencing complex, and by quantitative RT-PCR. Lastly, cellular proliferation and migration of breast cancer cells were examined by MTT assays and wound healing assays. Cell cycle distribution of breast cancer cells were determined by flow cytometry. Regarding the results of this study, the expression levels of MALAT1 of MDAMB-231 cells were more than MCF-7 and MCF-10A. The expression levels of MALAT1 were significantly upregulated under hypoxia. Next, HIF-1α or HIF-2α could promote the transcriptional levels of MALAT1. Third, the nuclear and cytoplasm fraction assays and fluorescence in situ hybridization indicated that distributions of MALAT1 were located at cytoplasm. Fourth, five differentially expressed miRNAs, including miR-3150a-3p, miR-4325, miR-378c, miR-3064-5p and miR-7855-5p, were identified using NGS and validated by qPCR, when MALAT1 was knocked down under hypoxia. The binding between MALAT1 and AGO2 enhanced in cells overexpressing MALAT1, indicating MALAT1 may function as miRNA sponge. Lastly, functional assays revealed that MALAT1 could promote cellular migration and proliferation of breast cancer cells via miRNAs. When MALAT1 was knocked down in MDA-MB-231 cells, the percentage of G1 phase of cell cycle significant increased, indicating silence of MALAT1 resulted in G1 arrest. Therefore, MALAT1 may be the candidate of therapeutic target for inhibiting the progress of breast cancer. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:38:49Z (GMT). No. of bitstreams: 1 U0001-1708202022292400.pdf: 3039014 bytes, checksum: 37690b1a85fd0bd421e6b671d26caf43 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝................................................................................................................................ I 摘要................................................................................................................................ II Abstract ........................................................................................................................ IV List of Tables .............................................................................................................. VIII List of Figures ............................................................................................................... IX Chapter 1 Introduction ................................................................................................... 1 1.1 Hypoxia leads to advance in tumor aggressiveness ......................................... 1 1.2 The roles of long non-coding RNA in physiological mechanism .................... 2 1.3 MiRNA plays important roles in regulating gene expression .......................... 4 1.4 The aim of study .............................................................................................. 5 Chapter 2 Materials and Methods .................................................................................. 7 2.1 Cell culture and treatments .............................................................................. 7 2.2 Plasmid construct ............................................................................................. 8 2.3 Lentiviral shRNAs ........................................................................................... 9 2.3 Transfection...................................................................................................... 9 2.3 Lentivirus production and infection ............................................................... 10 2.4 Site-directed mutagenesis .............................................................................. 10 2.5 Luciferase reporter assay ............................................................................... 11 2.6 RNA extraction, reverse transcription and quantitative RT-PCR .................. 12 2.7 Nuclear-cytoplasmic RNA fractionation ........................................................ 12 2.8 RNA Fluorescence In Situ Hybridization (RNA FISH) ................................. 13 2.9 Colony formation ........................................................................................... 14 2.10 Wound healing assay .................................................................................... 14 2.11 Cell proliferation assay (MTT) .................................................................... 14 2.12 Cell cycle ..................................................................................................... 15 2.13 RNA immunoprecipitation (RIP) ................................................................. 15 2.14 Statistical analysis ........................................................................................ 16 Chapter 3 Results ......................................................................................................... 17 3.1 MALAT1 was upregulated under hypoxia at different breast cancer cell lines.. .............................................................................................................................. 17 3.2 Hypoxia inducible factors (HIFs) upregulated MALAT1 expression ............. 17 3.3 Distribution of MALAT1 lncRNA in MCF-7 and MDA-MB-231 cells under normoxia or hypoxia ...................................................................................... 18 3.4 The expression levels of miRNA were increased by downregulating MALAT1 in MCF-7 cells under hypoxia ....................................................................... 19 3.5 MALAT1 downregulated miRNA expression levels ...................................... 20 3.6 MALAT1 could serve as miRNA sponge ........................................................ 20 3.7 Over-expressing MALAT1 promoted cell functions of MCF-7 cells ............. 21 3.8 Knockdown of MALAT1 inhibited cell functions of MDA-MB-231 cells .... 22 Chapter 4 Discussion ................................................................................................... 24 4.1 MALAT1 was oxygen-responsive lncRNAs in breast cancer cells ................ 24 4.2 MALAT1 could not be the nucleus marker in breast cancer cells .................. 27 4.3 MALAT1 could sponge miRNAs .................................................................... 28 4.4 MALAT1 promoted the malignancy of breast cancer cells ............................ 29 4.6 Limitations of this study ................................................................................ 30 4.7 Summary ........................................................................................................ 31 Tables ........................................................................................................................... 32 Figures.......................................................................................................................... 34 References .................................................................................................................... 43 | |
| dc.language.iso | en | |
| dc.subject | HIF-2α | zh_TW |
| dc.subject | HIF-1α | zh_TW |
| dc.subject | 常氧 | zh_TW |
| dc.subject | 乳腺癌 | zh_TW |
| dc.subject | MALAT1 | zh_TW |
| dc.subject | 長片段非編碼核糖核苷酸 | zh_TW |
| dc.subject | 微小RNA海綿 | zh_TW |
| dc.subject | 缺氧 | zh_TW |
| dc.subject | 微小RNA | zh_TW |
| dc.subject | normoxia | en |
| dc.subject | Hypoxia | en |
| dc.subject | long non-coding RNA | en |
| dc.subject | MALAT1 | en |
| dc.subject | breast cancer | en |
| dc.subject | HIF-1α | en |
| dc.subject | HIF-2α | en |
| dc.subject | miRNA | en |
| dc.subject | miRNA sponge | en |
| dc.title | 受缺氧誘導因子調控的MALAT1藉由抑制微小RNA來促進乳癌細胞的惡性 | zh_TW |
| dc.title | Investigation of Hypoxia-Inducible Factors Regulated MALAT1 Promoted the Malignancy of Breast Cancer Cells by Inhibiting MicroRNAs | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡孟勳(Mong-Hsun Tsai),胡孟君(Meng-Chun Hu),楊鎧鍵(Kai-Chien Yang) | |
| dc.subject.keyword | 缺氧,長片段非編碼核糖核苷酸,MALAT1,乳腺癌,HIF-1α,HIF-2α,微小RNA,微小RNA海綿,常氧, | zh_TW |
| dc.subject.keyword | Hypoxia,long non-coding RNA,MALAT1,breast cancer,HIF-1α,HIF-2α,miRNA,miRNA sponge,normoxia, | en |
| dc.relation.page | 52 | |
| dc.identifier.doi | 10.6342/NTU202003875 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-18 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-18 | - |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1708202022292400.pdf 未授權公開取用 | 2.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
