請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79038完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃信富 | |
| dc.contributor.author | Pin-Hsien Lee | en |
| dc.contributor.author | 李品賢 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:38:44Z | - |
| dc.date.available | 2023-08-21 | |
| dc.date.copyright | 2018-08-21 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-14 | |
| dc.identifier.citation | [1] S. V. Ho, P. W. Sheridan, C. J. Athmer, M. A. Heitkamp, J. M. Brackin, D. Weber, and P. H. Brodsky, “Integrated in situ soil remediation technology: The Lasagna process,” Environmental Science and Technology, vol. 29, no. 10, pp. 2528–2534, 1995.
[2] J. Virkutyte, M. Sillanpää, and P. Latostenmaa, “Electrokinetic soil remediation—critical overview,” Science of the Total Environment, vol. 289, no. 1, pp. 97–121, 2002. [3] M. A. Oyanader, P. E. Arce, and A. Dzurik, “Design criteria for soil cleaning operations in electrokinetic remediation: Hydrodynamic aspects in an annular geometry,” Industrial and Engineering Chemistry Research, vol. 44, no. 16, pp. 6200–6211, 2005. [4] S. Yao and J. G. Santiago, “Porous glass electroosmotic pumps: Theory,” Journal of Colloid and Interface Science, vol. 268, no. 1, pp. 133–142, 2003. [5] C. L. A. Berli, “Output pressure and efficiency of electrokinetic pumping of non-Newtonian fluids,” Microfluidics and Nanofluidics, vol. 8, no. 2, pp. 197–207, 2009. [6] L. Chen, J. Choo, and B. Yan, “The microfabricated electrokinetic pump: A potential promising drug delivery technique,” Expert Opinion on Drug Delivery, vol. 4, no. 2, pp. 119– 129, 2007. [7] V. Hoshyargar, S. Nezameddin Ashrafizadeh, and A. Sadeghi, “Diffusioosmotic flow in rectangular microchannels,” Electrophoresis, vol. 37, no. 5, pp. 809–17, 2016. [8] S.-W. Jian and H.-F. Huang, “Boundary slip effects on electrokinetic diffusioosmosis in a micro-annulus,” in Proceedings of the 34th National Conference on Mechanical Engineering and Annual Meeting of the Chinese Society of Mechanical Engineers, December 1-2, 2017, National Chin-Yi University of Technology, Taichung, Taiwan, 2017, p. 10 809. [9] D. C. Prieve, J. Anderson, J. Ebel, and M. Lowell, “Motion of a particle generated by chemical gradients Part 2. Electrolytes,” Journal of Fluid Mechanics, vol. 148, pp. 247– 269, 1984. [10] H.-J. Keh and H.-C. Ma, “Diffusioosmosis of electrolyte solutions in fine capillaries,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 233, no. 1, pp. 87– 95, 2004. [11] H.-C. Ma and H.-J. Keh, “Diffusioosmosis of electrolyte solutions in a fine capillary slit,” Journal of Colloid and Interface Science, vol. 298, no. 1, pp. 476–86, 2006. [12] R. F. Probstein, Physicochemical Hydrodynamics: An Introduction, 2nd ed. New York, NY: John Wiley and Sons, 2005. [13] H.-J. Keh and J.-H. Wu, “Electrokinetic flow in fine capillaries caused by gradients of electrolyte concentration,” Langmuir, vol. 17, no. 14, pp. 4216–4222, 2001. [14] H.-F. Huang, “Electrokinetic diffusioosmotic flow of Ostwald-de Waele fluids near a charged flat plate in the thin double layer limit,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 392, no. 1, pp. 25–37, 2011. [15] Y.-J. Chang, P.-W. Yang, and H.-F. Huang, “Finite double layer and non-Newtonian power-law effects on electrokinetic diffusioosmotic flows in parallel plate microchannels,” Journal of Non-Newtonian Fluid Mechanics, vol. 194, pp. 32–41, 2013. [16] P.-W. Yang, Y.-J. Chang, and H.-F. Huang, “Wall polymer depletion effects on electrokinetic diffusioosmosis of power-law liquids in cylindrical capillaries,” Microfluidics and Nanofluidics, vol. 17, no. 1, pp. 149–165, 2013. [17] D. W. Inglis, E. M. Goldys, and N. P. Calander, “Simultaneous concentration and separation of proteins in a nanochannel,” Angewandte Chemie International Edition in English, vol. 50, no. 33, pp. 7546–7550, 2011. [18] J. J. McDermott, A. Kar, M. Daher, S. Klara, G. Wang, A. Sen, and D. Velegol, “Self-generated diffusioosmotic flows from calcium carbonate micropumps,” Langmuir, vol. 28, no. 44, pp. 15 491–15 497, 2012. [19] D. Michler, N. Shahidzadeh, R. Sprik, and D. Bonn, “Directed vesicle transport by diffusioosmosis,” Europhysics Letters, vol. 110, no. 2, p. 28 001, 2015. [20] C. Zhou, H. Zhang, Z. Li, and W. Wang, “Chemistry pumps: A review of chemically powered micropumps,” Lab on a Chip, vol. 16, no. 10, pp. 1797–1811, 2016. [21] K. K. Dey and A. Sen, “Chemically propelled molecules and machines,” Journal of the American Chemical Society, vol. 139, no. 23, pp. 7666–7676, 2017. [22] V. Yadav, J. D. Freedman, M. Grinstaff, and A. Sen, “Bone-crack detection, targeting, and repair using ion gradients,” Angewandte Chemie International Edition in English, vol. 52, no. 42, pp. 10 997–11 001, 2013. [23] V. Yadav, R. A. Pavlick, S. M. Meckler, and A. Sen, “Triggered detection and deposition: Toward the repair of microcracks,” Chemistry of Materials, vol. 26, no. 15, pp. 4647–4652, 2014. [24] A. Kar, T.-Y. Chiang, I. Ortiz Rivera, A. Sen, and D. Velegol, “Enhanced transport into and out of dead-end pores,” ACS Nano, vol. 9, no. 1, pp. 746–753, 2015. [25] A. Kar, R. Guha, N. Dani, D. Velegol, and M. Kumar, “Particle deposition on microporous membranes can be enhanced or reduced by salt gradients,” Langmuir, vol. 30, no. 3, pp. 793– 799, 2014. [26] D. Feldmann, S. R. Maduar, M. Santer, N. Lomadze, O. I. Vinogradova, and S. Santer, “Manipulation of small particles at solid liquid interface: Light driven diffusioosmosis,” Scientific Reports, vol. 6, p. 36 443, 2016. [27] B. Derjagin, S. Dukhin, and A. Korotkova, “Diffusiophoresis in electrolyte solutions and its role in mechanism of film formation from rubber latexes by method of ionic deposition,” Kolloidnyi Zhurnal, vol. 23, no. 1, pp. 53–58, 1961. [28] S. Dukhin and B. Derjaguin, “Electrokinetic phenomena,” in Surface and Colloid Science, E. Matijevic, Ed., vol. 7, New York, NY: John Wiley, 1974. [29] D. C. Prieve, “Migration of a colloidal particle in a gradient of electrolyte concentration,” Advances in Colloid and Interface Science, vol. 16, no. 1, pp. 321–335, 1982. [30] D. C. Prieve, “Particle transport: Salt and migrate,” Nature Materials, vol. 7, no. 10, pp. 769– 770, 2008. [31] H.-J. Keh and H.-C. Ma, “Diffusioosmosis of electrolyte solutions along a charged plane wall,” Langmuir, vol. 21, no. 12, pp. 5461–5467, 2005. [32] H.-J. Keh and H.-C. Ma, “Diffusioosmosis of electrolyte solutions in a fine capillary tube,” Langmuir, vol. 23, no. 5, pp. 2879–2886, 2007. [33] H.-F. Huang and C.-H. Yao, “Electrokinetic diffusioosmosis of viscoelastic Phan-Thien—Tanner liquids in slit microchannels,” Journal of Non-Newtonian Fluid Mechanics, vol. 206, pp. 1–10, 2014. [34] M. A. Hussain, S. Kar, and R. R. Puniyani, “Relationship between power law coefficients and major blood constituents affecting the whole blood viscosity,” Journal of Biosciences, vol. 24, no. 3, pp. 329–337, 1999. [35] S. Chakraborty, “Dynamics of capillary flow of blood into a microfluidic channel,” Lab on a Chip, vol. 5, no. 4, pp. 421–430, 2005. [36] Y. Kang, C. Yang, and X. Huang, “Electroosmotic flow in a capillary annulus with high zeta potentials,” Journal of Colloid and Interface Science, vol. 253, no. 2, pp. 285–94, 2002. [37] A. Shenoy, J. Chakraborty, and S. Chakraborty, “Influence of streaming potential on pulsatile pressure-gradient driven flow through an annulus,” Electrophoresis, vol. 34, no. 5, pp. 691–699, 2013. [38] E. Donath and A. Voigt, “Streaming current and streaming potential on structured surfaces,” Journal of Colloid and Interface Science, vol. 109, no. 1, pp. 122–139, 1986. [39] H. Ohshima and T. Kondo, “Electrokinetic flow between two parallel plates with surface charge layers: Electro-osmosis and streaming potential,” Journal of Colloid and Interface Science, vol. 135, no. 2, pp. 443–448, 1990. [40] H.-J. Keh and Y.-C. Liu, “Electrokinetic flow in a circular capillary with a surface charge layer,” Journal of Colloid and Interface Science, vol. 172, no. 1, pp. 222–229, 1995. [41] H.-J. Keh and J.-M. Ding, “Electrokinetic flow in a capillary with a charge-regulating surface polymer layer,” Journal of Colloid and Interface Science, vol. 263, no. 2, pp. 645–660, 2003. [42] J.-H. Wu and H.-J. Keh, “Diffusioosmosis and electroosmosis in a capillary slit with surface charge layers,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 212, no. 1, pp. 27–42, 2003. [43] S. Chanda, S. Sinha, and S. Das, “Streaming potential and electroviscous effects in soft nanochannels: Towards designing more efficient nanofluidic electrochemomechanical energy converters,” Soft Matter, vol. 10, no. 38, pp. 7558–7568, 2014. [44] F. Li, Y. Jian, L. Chang, G. Zhao, and L. Yang, “Alternating current electroosmotic flow in polyelectrolyte-grafted nanochannel,” Colloids Surf B Biointerfaces, vol. 147, pp. 234–41, 2016. [45] H. Ohshima, “Electrical phenomena in a suspension of soft particles,” Soft Matter, vol. 8, no. 13, pp. 3511–3514, 2012. [46] H. Ohshima and S. Ohki, “Donnan potential and surface potential of a charged membrane,” Biophysical Journal, vol. 47, no. 5, p. 673, 1985. [47] H. Ohshima and T. Kondo, “Membrane potential and Donnan potential,” Biophysical Chemistry, vol. 29, no. 3, pp. 277–281, 1988. [48] H. Ohshima and T. Kondo, “Electrophoretic mobility and Donnan potential of a large colloidal particle with a surface charge layer,” Journal of Colloid and Interface Science, vol. 116, no. 2, pp. 305–311, 1987. [49] H. Ohshima, K. Makino, and T. Kondo, “Electrostatic interaction of two parallel plates with surface charge layers,” Journal of Colloid and Interface Science, vol. 116, no. 1, pp. 196– 199, 1987. [50] J. F. Duval and H. P. van Leeuwen, “Electrokinetics of diffuse soft interfaces. I. Limit of low Donnan potentials,” Langmuir, vol. 20, no. 23, pp. 10 324–10 336, 2004. [51] H. Ohshima, “Electrical phenomena of soft particles. A soft step function model,” Journal of Physical Chemistry A, vol. 116, no. 25, pp. 6473–6480, 2012. [52] H.-C. Ma and H.-J. Keh, “Diffusioosmosis of electrolyte solutions in a capillary slit with surface charge layers,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 267, no. 1, pp. 4–15, 2005. [53] H.-C. Ma and H.-J. Keh, “Diffusioosmosis of electrolyte solutions in a capillary slit with adsorbed polyelectrolyte layers,” Journal of Colloid and Interface Science, vol. 313, no. 2, pp. 686–696, 2007. [54] H. J. Busscher, D. J. White, H. J. Kamminga-Rasker, A. T. Poortinga, and H. C. van der Mei, “Influence of oral detergents and chlorhexidine on soft-layer electrokinetic parameters of the acquired enamel pellicle,” Caries Research, vol. 37, no. 6, pp. 431–436, 2003. [55] J. A. Lux, H. Yin, and G. Schomburg, “Influence of polymer coating of capillary surfaces on migration behavior in micellar electrokinetic capillary chromatography,” Journal of Separation Science, vol. 13, no. 2, pp. 145–147, 1990. [56] B. Thierry, F. M. Winnik, Y. Merhi, and M. Tabrizian, “Nanocoatings onto arteries via layer-by-layer deposition: Toward the in vivo repair of damaged blood vessels,” Journal of the American Chemical Society, vol. 125, no. 25, pp. 7494–7495, 2003. [57] R. Nehmé, C. Perrin, H. Cottet, M. Blanchin, and H. Fabre, “Influence of polyelectrolyte capillary coating conditions on protein analysis in CE,” Electrophoresis, vol. 30, no. 11, pp. 1888–1898, 2009. [58] O. Aoyanagi, N. Muramatsu, H. Ohshima, and T. Kondo, “Electrophoretic behavior of polyA-graft-polyB-type microcapsules,” Journal of Colloid and Interface Science, vol. 162, no. 1, pp. 222–226, 1994. [59] S. Moya, E. Donath, G. B. Sukhorukov, M. Auch, H. Bäumler, H. Lichtenfeld, and H. Möhwald, “Lipid coating on polyelectrolyte surface modified colloidal particles and polyelectrolyte capsules,” Macromolecules, vol. 33, no. 12, pp. 4538–4544, 2000. [60] S. L. Barker, D. Ross, M. J. Tarlov, M. Gaitan, and L. E. Locascio, “Control of flow direction in microfluidic devices with polyelectrolyte multilayers,” Analytical Chemistry, vol. 72, no. 24, pp. 5925–5929, 2000. [61] L.-H. Yeh, M. Zhang, N. Hu, S.-W. Joo, S. Qian, and J.-P. Hsu, “Electrokinetic ion and fluid transport in nanopores functionalized by polyelectrolyte brushes,” Nanoscale, vol. 4, no. 16, pp. 5169–5177, 2012. [62] G. K. Batchelor, An Introduction to Fluid Dynamics, 1st ed. Cambridge, UK: Cambridge University Press, 2000. [63] W. Qu and D. Li, “A model for overlapped EDL fields,” Journal of Colloid and Interface Science, vol. 224, no. 2, pp. 397–407, 2000. [64] F. Baldessari, “Electrokinetics in nanochannels: Part I. electric double layer overlap and channel-to-well equilibrium,” Journal of Colloid and Interface Science, vol. 325, no. 2, pp. 526–538, 2008. [65] S. Movahed and D. Li, “Electrokinetic transport through nanochannels,” Electrophoresis, vol. 32, no. 11, pp. 1259–1267, 2011. [66] R. Nosrati, M. Hadigol, M. Raisee, and A. Nourbakhsh, “Numerical modeling of electroosmotic nanoflows with overlapped electric double layer,” Journal of Computational and Theoretical Nanoscience, vol. 9, no. 12, pp. 2228–2239, 2012. [67] M. Johnson and S. Mangkoesoebroto, “Analysis of lubrication theory for the power law fluid,” Journal of Tribology, vol. 115, pp. 71–71, 1993. [68] D. J. Griffiths, Introduction to electrodynamics, 3rd ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2005. [69] R. P. Chhabra and J. F. Richardson, Non-Newtonian Flow and Applied Rheology: Engineering Applications, 2nd ed. Oxford, UK: Butterworth-Heinemann, 2011. [70] R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids. Vol. 1: Fluid Mechanics, 2nd ed. New York, NY: John Wiley and Sons, 1987. [71] J. Koplik, “Viscosity renormalization in the Brinkman equation,” Physics of Fluids, vol. 26, no. 10, 1983. [72] S. S. Dukhin, R. Zimmermann, J. F. Duval, and C. Werner, “On the applicability of the Brinkman equation in soft surface electrokinetics,” Journal of Colloid and Interface Science, vol. 350, no. 1, pp. 1–4, 2010. [73] N. W. McLachlan, Bessel Functions for Engineers, 2nd ed. Oxford, UK: Clarendon Press Oxford, 1955. [74] P. V. O’Neil, Advanced Engineering Mathematics, 7th ed. Boston, MA: Cengage Learning, 2011. [75] Wolfram Research, Inc., Mathematica, version 10.4, Champaign, IL, 2016. [76] H.-K. Tsao, “Electroosmotic flow through an annulus,” Journal of Colloid and Interface Science, vol. 225, no. 1, pp. 247–250, 2000. [77] S. Kawahata, H. Ohshima, N. Muramatsu, and T. Kondo, “Charge distribution in the surface region of human erythrocytes as estimated from electrophoretic mobility data,” Journal of Colloid and Interface Science, vol. 138, no. 1, pp. 182–186, 1990. [78] K. Morita, N. Muramatsu, H. Ohshima, and T. Kondo, “Electrophoretic behavior of rat lymphocyte subpopulations,” Journal of Colloid and Interface Science, vol. 147, no. 2, pp. 457–461, 1991. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79038 | - |
| dc.description.abstract | 本文旨在藉由研究具壁面吸附層的同心圓管內冪律流體擴散滲透流現象,了解吸附層對於管內非牛頓流體流況的影響,並冀望將其應用於驅動微流道中的流體以及控制管內的流向。本理論模型將同心圓管分為三個流體層,由內而外依次為內管壁面吸附層、核心流體層以及外管壁面吸附層。此外,流道上下游存在一固定的濃度梯度,因此會產生擴散滲透流動。工作流體方面,在內外吸附層中本文以牛頓流體作模擬,而核心流體層則使用冪律流體模型。再者,內外管壁面上的帶電高分子吸附層假設為存在平均分佈的固定電荷、電解液離子可自由通透且流體流動會受阻的多孔性介質層。基於上述物理模型,再藉由線性化的帕松-波茲曼方程組、布林克曼方程式以及柯西動量方程式可解得同心圓管內的電位、速度分佈及體積流率,並且以無因次內管半徑、無因次內外吸附層厚度、外管半徑與德拜長度比值、無因次內外吸附層阻力係數、無因次離子擴散係數差參數、無因次內外管壁面電位、無因次吸附層特徵電位、流動特性指數及稠度指數表達。研究結果顯示:具吸附層的同心圓管模型可近似為平行板、圓管及無吸附層同心圓管模型,故具通用性。再者,我們發現變動無因次離子擴散係數差參數與無因次吸附層特徵電位能改變管內的流率方向。不僅如此,藉由降低流動特性指數、降低稠度指數或者提高無因次吸附層阻力係數皆會使零體積流率線圖中無因次離子擴散係數差參數與無因次內外吸附層特徵電位同號區域 (第一與三象限) 內的正流率區面積變大。最後,變動外吸附層的帶電與阻力特性 (無因次的外吸附層阻力係數與特徵電位) 造成管內體積流率的最大變動範圍相較於變動內吸附層特性 (無因次的內吸附層阻力係數與特徵電位) 大。 | zh_TW |
| dc.description.abstract | Our research aims to theoretically analyze the diffusioosmotic flow of power-law fluids in an annular channel coated with polyelectrolyte layers (PELs). Through the investigations, we can realize the role of polyelectrolyte layers in non-Newtonian fluid transport and look forward to applying our work on fluid pumping or flow direction control in microfluidic devices. In the theoretical model, the annular channel was assumed to be composed by three different fluid layers, which are the inner PEL, the core flow region, and the outer PEL. Apart from that, a constant concentration gradient of the electrolyte was conducted downstream, so diffusioosmotic flows would be generated. Furthermore, we implemented the Newtonian fluid model in the inner and outer PELs and the power-law fluid model in the central flow region respectively. The polyelectrolyte layers mentioned above were defined as ion-penetrable and solute-permeable porous media where fluid would be subjected to frictional forces. On the basis of the physical model, we introduced modified Poisson-Boltzmann equations, Brink-man equations, and Cauchy momentum equation to obtain the analytical solutions to electric potentials and the semi-analytical solutions to velocity field and volume flow rate in terms of dimensionless inner radius, dimensionless thickness of the inner and outer PELs, ratio of the outer radius to Debye length, dimensionless drag coefficients of the inner and outer PELs, diffusivity difference parameter, dimensionless inner and outer wall zeta potentials, dimensionless characteristic potentials in the inner and outer PELs, flow behavior index, and flow consistency index. The results showed that our model was proved to be general that it could approach several simple models. Besides, we found that the choice of the diffusivity difference parameter and the dimensionless characteristic potentials in the inner and outer PELs could lead to different flow directions in the channel. Furthermore, by decreasing the flow behavior index, decreasing the flow consistency index or increasing the dimensionless drag coefficients of the inner and outer PELs would enlarge the 'toward downstream' area in the zero flow rate border curve plot where the diffusivity difference parameter and the dimensionless characteristic potentials in the inner and outer PELs are of the same sign. At last, the change of outer PEL properties (the dimensionless drag coefficient and characteristic potential in the outer PEL) causes a wider range of flow rate values than the change of inner PEL properties (the dimensionless drag coefficient and characteristic potential in the inner PEL). | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:38:44Z (GMT). No. of bitstreams: 1 ntu-107-R05522309-1.pdf: 22902569 bytes, checksum: 2d44a5707eaf955471f3f621086e02b8 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 iii 摘要 v Abstract vii 目錄 ix 圖目錄 xiii 表目錄 xxi 使用符號與定義 xxiii 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 5 第二章 理論模型 7 2.1 模型幾何與理論假設 7 2.2 電位分佈-帕松-波茲曼方程式 9 2.3 誘導電場-能斯特-普朗克方程式 11 2.4 徑向動量平衡 13 2.5 流體本構方程式 14 2.6 軸向動量平衡 15 2.6.1 核心流體層為冪律流體的情況 15 2.6.2 核心流體層為牛頓流體的情況 17 第三章 研究方法與參數介紹 19 3.1 電位分佈 19 3.2 軸向誘導電場 22 3.3 壓力分佈 23 3.4 速度分佈與體積流率 26 3.4.1 核心流體層為冪律流體的情況 26 3.4.2 核心流體層為牛頓流體的情況 35 3.4.3 體積流率 38 3.5 參數介紹 38 第四章 驗證與比較 41 4.1 近似平行板間的牛頓流體擴散滲透流 42 4.2 近似園管內的冪律流體擴散滲透流 42 4.3 近似無壁面吸附層的同心圓管內牛頓流體擴散滲透流 43 第五章 結果與討論 49 5.1 電位分佈 50 5.2 壓力分佈、誘導電場與流體受力來源項分析 51 5.3 流向探討一 53 5.4 無因次離子擴散係數差參數 53 5.4.1 無因次速度場 53 5.4.2 無因次體積流率 55 5.5 無因次的吸附層特徵電位 56 5.5.1 無因次速度場 56 5.5.2 無因次體積流率 57 5.6 冪律流體-流動特性指數與稠度指數 58 5.6.1 無因次速度場 58 5.6.2 無因次體積流率 59 5.7 無因次的吸附層阻力係數 60 5.7.1 無因次速度場 60 5.7.2 無因次體積流率 61 5.8 流向的探討二 62 5.9 內外吸附層參數不相等的情況 63 5.9.1 無因次速度場 63 5.9.2 無因次體積流率 64 第六章 總結 95 6.1 結論 95 6.2 未來展望 96 參考文獻 97 | |
| dc.language.iso | zh-TW | |
| dc.subject | 冪律流體 | zh_TW |
| dc.subject | 同心圓管 | zh_TW |
| dc.subject | 微管塗層 | zh_TW |
| dc.subject | 擴散滲透流 | zh_TW |
| dc.subject | 吸附層 | zh_TW |
| dc.subject | capillary coating | en |
| dc.subject | annulus | en |
| dc.subject | power-law fluid | en |
| dc.subject | polyelectrolyte layer | en |
| dc.subject | diffusioosmosis | en |
| dc.title | 具壁面吸附層的同心圓管內冪律流體擴散滲透流探究 | zh_TW |
| dc.title | Diffusioosmosis of Power-law Fluids in an Annular Channel Coated with Polyelectrolyte Layers | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉建豪,蔡協澄 | |
| dc.subject.keyword | 同心圓管,微管塗層,擴散滲透流,吸附層,冪律流體, | zh_TW |
| dc.subject.keyword | annulus,capillary coating,diffusioosmosis,polyelectrolyte layer,power-law fluid, | en |
| dc.relation.page | 102 | |
| dc.identifier.doi | 10.6342/NTU201801723 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-08-21 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-R05522309-1.pdf 未授權公開取用 | 22.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
