Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79031
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江昭皚
dc.contributor.authorTzu-Shiang Linen
dc.contributor.author林子翔zh_TW
dc.date.accessioned2021-07-11T15:38:07Z-
dc.date.available2023-08-24
dc.date.copyright2018-08-24
dc.date.issued2018
dc.date.submitted2018-08-14
dc.identifier.citation王景儀。2010。運用GSM技術之田間斜紋夜蛾監測系統設計與實現。碩士論文。臺北:臺灣大學生物產業機電工程學系。
方煒、林詠勝。2005。田間伺服器與無線感測網路應用於環境監測與控制。九十四學年度生物機電工程研討會論文集。pp. 119-120。
林子翔。2009。覆蓋率優先動態路由演算法應用於無線感測器網路之研究。碩士論文。臺北:臺灣大學生物產業機電工程學系。
陳立儀。2014。發現臺灣農業競爭力—臺灣優質水果潛力無窮,創造水果新生命。農政與農情 260: 25-30。
陳義祥。2005。遠端微氣候無線監測系統之開發。碩士論文。臺北:臺灣大學生物產業機電工程學系。
張輊祥。2003。遠距精準農業資訊監控系統設計與實現。碩士論文。臺北:臺灣大學生物產業機電工程學系。
黃資國與林明仁。2005。農業生產自動化發展與應用。農政與農情 第157期。
農糧署。2018。健康農業-發展有機農業。台北:行政院農委會農糧署。網址:https://www.afa.gov.tw/cht/index.php?code=list&ids=285。上網日期:2018-05-15。
蕭介宗。1995。稻米收穫後處理技術。
蕭仲興。2007。生物環境無線感測伺服器之建構。碩士論文。臺北:臺灣大學生物產業機電工程學系。
盧福明。1986。農產加工工程學,國立編譯館。
盧福明。1995。稻穀儲存管理技術稻穀儲藏技術手冊,財團法人農業機械化發展中心,27-39頁。
鍾美麗。2007。稻米調製機械擴增與改善計畫執行成果。農政與農情。第183期。
Abu-Elkheir, M., M. Hayajneh, and N. A. Ali. 2013. Data management for the internet of things: Design primitives and solution. Sensors. 13(11): 15582-15612.
Ahlgren, P., B. Jarneving, and R. Rousseau. 2003. Requirements for a cocitation similarity measure, with special reference to Pearson's correlation coefficient. Journal of the Association for Information Science and Technology. 54(6): 550-560.
Akyildiz, I.F., W. Su, Y. Sankarasubramaniam, and E. Cayirci. 2002. A survey on Sensor Networks. IEEE Communications Magazine. 40(8): 102-114.
Al-Agtash, S. Y. 2012. PC-Based Automated Control System for Jordan Northern Grain Silo. Engineering. 4(12): 914-919.
Al-Karaki, J. N. and A. E. Kamel. 2004. Routing techniques in wireless sensor networks: A Survey. IEEE Wireless Communications. 11(6): 6-28.
Armstrong, P. 2003. Wireless data transmission of networked sensors in grain storage. In ASAE Annual International Meeting.
Baker, T. C. and K. F. Haynes. 1996. Pheromone-mediated optomotor anemotaxis and altitude control exhibited by male oriental fruit moths in the field. Physiological Entomology. 21(1): 20-32.
Baranwal, T. and P. K. Pateriya. 2016. Development of IoT based smart security and monitoring devices for agriculture. In Cloud System and Big Data Engineering (Confluence), 2016 6th International Conference. pp. 597-602.
Baronti, P., P. Pillai, V. W. C. Chook, S. Chessa, A. Gotta, and Y. F. Hu. 2007. Wireless sensor networks: A survey on the state of the art and the 802.15.4 and ZigBee standards. Computer Communication Networks. 30(7): 1655-1695.
Belgium: Melexis. 2018. MLX90614 infrared thermometer. Available at: https://www.melexis.com/en/product/MLX90614/Digital-Plug-Play-Infrared-Thermometer-TO-Can. Accessed 01 June 2018.
Bell, W. J. 1991. Searching Behaviour: The behavioural ecology of finding resources. London: Chapman and Hall.
Boukerche, A., H. A. B. F. Oliveira, E. F. Nakamura, A. A. F. Loureiro. 2007. Localization systems for wireless sensor networks. IEEE Wireless Communications. 14(6): 6-12.
Cardei, M., and J. Wu. 2005. Handbook of Sensor Networks. CRC Press: New York. 1(19): 1-12.
Canada: OPIsystems. 2018. Advancing Grain Storage Management. OPIsystems Inc. Available at: www.advancedgrainmanagement.com/contact-us/. Accessed 01 June 2018.
Chen, X., K. Makki, K. Yen, and N. Pissinou. 2009. Sensor network security: a survey . IEEE Communications Surveys & Tutorials. 11(2): 52-73.
Chen, X., K. Makki, K. Yen, and N. Pissinou. 2009. Sensor network security: a survey. IEEE Communications Surveys & Tutorials. 11(2).
Cheng, C. T., C. K. Tse, F. C. M. Lau. 2011. A Clustering Algorithm for Wireless Sensor Networks Based on Social Insect Colonies. IEEE Sensors Journal. 11(3): 711-721.
China: AOSONG. 2016. DHT11 Temperature and humidity module. Guangzhou Aosong Electronics Co., Ltd. Available at: http://www.aosong.com/en/products-21.html. Accessed 01 June 2018.
Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein. 2009. Introduction to algorithms. MIT press.
Culler, D., D. Estrin, and M. Srivastava. 2004. Overview of Sensor Networks. IEEE Computer Society. 37(8): 41-49.
Denmark: SuperTech. 2018. Temperature Monitoring Systems. Supertech Agroline Ltd Available at: supertechagroline.com/products/temperature-monitoring-systems/. Accessed 01 June 2018.
Devine, P. 2000. Radar level measurement: the user's guide. Vega Controls.
Diamond, S. M., and M. G. Ceruti. 2007. Application of wireless sensor network to military information integration. In Industrial Informatics, 2007 5th IEEE International Conference on Vol. 1. pp. 317-322.
Eisenhauer, M., P. Rosengren, and P. Antolin. 2009. A development platform for integrating wireless devices and sensors into ambient intelligence systems. In Sensor, Mesh and Ad Hoc Communications and Networks Workshops, 2009. SECON Workshops' 09. 6th Annual IEEE Communications Society Conference on. pp. 1-3.
Ghayvat, H., S. Mukhopadhyay, X. Gui, and N. Suryadevara. 2015. WSN-and IOT-based smart homes and their extension to smart buildings. Sensors. 15(5): 10350-10379.
Gubbi, J., R. Buyya, S. Marusic, and M. Palaniswami. 2013. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems. 29(7): 1645-1660.
Hardie, J. and G. Powell. 2002. Video analysis of aphid flight behavior. Computers and Electronics in Agriculture. 35(2): 229-242.
Handy, M. J., M. Haase, and D. Timmermann. 2002. Low energy adaptive clustering hierarchy with deterministic cluster-head selection. In Mobile and Wireless Communications Network. In Proc. of 4th International Workshop. pp. 368-372.
Hassanalieragh, M., A. Page, T. Soyata, G. Sharma, M. Aktas, G. Mateos, B. Kantarci, and S. Andreescu. 2015. Health monitoring and management using Internet-of-Things (IoT) sensing with cloud-based processing: Opportunities and challenges. In Services Computing (SCC), 2015 IEEE International Conference on. pp. 285-292.
Hauke, J., and T. Kossowski. 2011. Comparison of values of Pearson's and Spearman's correlation coefficients on the same sets of data. Quaestiones geographicae. 30(2): 87-93.
Heinzelman, W. B., A. Chandrakasan, and H. Balakrishnan. 2002. An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications. 1(4): 660-670.
Hendricks, D. E. 1989. Development of an electronic system for detecting Heliothis spp. moths (Lepidoptera: Noctuidae) and transferring incident information from the field to a computer. Journal of Economic Entomology. 82(2): 672-684.
Himrane, N., D. E. Ameziani, and R. Bennacer. 2014. Effect of the weather conditions on natural convection in storage silo. In Proceedings of 3rd International Symposium Environmental Friendly Energies and Applications (EFEA). pp. 1-6.
Hirafuji, M. 2005a. Field server-standard of hardware, sensors and application. International Symposium of Asia Pacific Advanced Network (APAN).
Hirafuji, M. 2005b. Toward total global sensor network. International Symposium of Asia Pacific Advanced Network (APAN).
Huang, P., L. Xiao, S. Soltani, M. W. Mutka, and N. Xi. 2013. The evolution of MAC protocols in wireless sensor networks: A survey. IEEE communications surveys & tutorials. 15(1): 101-120.
Hung, K. S. and K. S. Lui. 2010. On Perimeter Coverage in Wireless Sensor Networks. IEEE Transactions on Wireless Communications. 9(7): 2156-2164.
Jayas, D. S. and N. D. White. 2003. Storage and drying of grain in Canada: low cost approaches. Food control. 14(4): 255-261.
Jian, F., D. S. Jayas, and N. D. White. 2009. Temperature fluctuations and moisture migration in wheat stored for 15 months in a metal silo in Canada.Journal of stored products research. 45(2): 82-90.
Jiang, J. A., C. L. Tseng, F. M. Lu, E. C. Yang, Z. S. Wu, C. P. Chen, S. H. Lin, K. C. Lin, and C. S. Liao. 2008. A GSM-based remote wireless automatic monitoring system for field information: A case study for ecological monitoring of the oriental fruit fly, Bactrocera dorsalis (Hendel). Computers and electronics in agriculture. 62(2): 243-259.
Jiang, J. A., T. S. Lin, E. C. Yang, C. L. Tseng, C. P. Chen, C. W. Yen, X. Y. Zheng, C. Y. Liu, R. H. Liu, Y. C. Chen, W. Y. Chang. 2013. Application of a web-based remote agro-ecological monitoring system for observing spatial distribution and dynamics of Bactrocera dorsalis in fruit orchards. Precision agriculture. 14(3): 323-342.
Kelly, S. D. T., N. K. Suryadevara, and S. C. Mukhopadhyay. 2013. Towards the implementation of IoT for environmental condition monitoring in homes. IEEE Sensors Journal. 13(10): 3846-3853.
Kim, Y., R. G. Evans, and W. M. Iversen 2008. Remote Sensing and Control of an Irrigation System Using a Distributed Wireless Sensor Network. IEEE Transactions on Instrumentation and Measurement. 57(7): 1379-1387.
Kuorilehto, M., M. Hännikäinen, and T. D. Hämäläinen. 2005. A Survey of Application Distribution in Wireless Sensor Networks. EURASIP Journal on Wireless Communications and Networking. 2005(5): 774-788.
Lazarescu, M. T. 2013. Design of a WSN platform for long-term environmental monitoring for IoT applications. IEEE Journal on emerging and selected topics in circuits and systems. 3(1): 45-54.
Lazzari, F. A., S. M. N. Lazzari, and A. F. Karkle. 2006. Artificial cooling to control coleopterans in paddy rice stored in metallic silo. In Proceedings of the Ninth International Working Conference on Stored Product Protection, 15-18.
Lazzari, F. A., S. M. N. Lazzari, and F. N. Lazzari. 2010. Environmentally friendly technologies to maintain stored paddy rice quality. Julius-Kühn-Archiv. 425: 710.
Lee, I. and K. Lee. 2015. The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons. 58(4): 431-440.
Lewis Sr, J. D. 2004. Technology Review Level Measurement of Bulk Solids in Bins, Silos and Hoppers. 2004 Monitor Technologies LLC.
Li, M., I. Koutsopoulos, and R. Poovendran. 2010. Optimal Jamming Attack Strategies and Network Defense Policies in Wireless Sensor Networks. IEEE Transactions on Mobile Computing. 9(8): 1119-1133.
Lin, Z., J. Huang, and S. Zhang. 2008. Design and Application of Distributive Wireless Monitoring System for Grain Status. Electronic Engineer, 7, 024.
Lingren, P. D., J. R. Raulston, T. W. Popham, W. W. Wolf, P. S. Lingren, and J. F. Esquivel. 1995. Flight behaviour of corn earworm (Lepidoptera: Noctuidae) moths under low wind speed conditions. Environmental Entomology. 24(4): 851-860.
Ma, M., P. Wang, and C. H. Chu. 2013. Data management for internet of things: Challenges, approaches and opportunities. In Green Computing and Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Physical and Social Computing. pp. 1144-1151.
Madakam, S., R. Ramaswamy, and S. Tripathi. 2015. Internet of Things (IoT): A literature review. Journal of Computer and Communications. 3(5): 164-173.
Marais, H. 2008. RS-485/RS-422 circuit implementation guide. Analog Devices, Norwood, MA, App. Note AN-960.
Martínez-Sala, A. S., E. Egea-López, F. García-Sánchez, and J. García-Haro. 2009. Tracking of returnable packaging and transport units with active RFID in the grocery supply chain. Computers in Industry. 60(3): 161-171.
Mirabella, O. and M. Brischetto. 2011. Hybrid Wired/Wireless Networking Infrastructure for Greenhouse Management. IEEE Transactions on Instrumentation and Measurement. 60(2): 398-407.
Mohanraj, I., K. Ashokumar, and J. Naren. 2016. Field Monitoring and Automation Using IOT in Agriculture Domain. Procedia Computer Science. 93: 931-939.
Muir, W., 1998. Grain Preservation Biosystems. Universityof Manitoba, Winnipeg.
Onur, E., C. Ersoy, H. Deliç, and L. Akarun. 2007. Surveillance wireless sensor networks: Deployment quality analysis. IEEE Network, 21(6): 48-53.
Rappaport, T. S. 1996. Wireless communications: principles and practice (Vol. 2). New Jersey: prentice hall PTR. 103-104.
Rajendran, S., and N. Muralidharan. 2001. Performance of phosphine in fumigation of bagged paddy rice in indoor and outdoor stores. Journal of Stored Products Research. 37(4): 351-358.
Riley, J. R. 1993. Flying insects in the field. In: Wratten, S.D. (Ed.), Video Techniques in Animal Ecology and Behaviour. 1-15. London: Chapman and Hall
Romer, K. and F. Mattern. 2004. The Design Space of Wireless Sensor Networks. IEEE Wireless Communications. 11(6): 54-61.
Room, P. M., J. S. Hanan, and A. Clarke. 1998. Pest Management, Future Challenges. Brisbane: University of Queensland Press.
Sanchez, M. C. R., S. Borromeo, and J. A. H. Tamames. 2011. Wireless Sensor Networks for Conservation and Monitoring Cultural Assets. IEEE Sensors Journal. 11(6): 1382-1389.
Sangwan, A. and R. P. Singh. 2015. Survey on coverage problems in wireless sensor networks. Wireless Personal Communications. 80(4): 1475-1500.
Satran, J., and K. Meth. 2004. Internet small computer systems interface (iSCSI).
Sedgwick, P. 2012. Pearson's correlation coefficient. BMJ: British Medical Journal (Online), 345.
Schouest, L. P. and T. A. Miller. 1994. Automated pheromone traps show male pink bollworm (Lepidoptera: Gelechiidae) mating response is dependent on weather conditions. Journal of Economic Entomology. 87(4): 965-974.
Shi, E. and A. Perrig. 2004. Designing Secure Sensor Networks. IEEE Wireless Communications. 11(6): 38-43.
Singh, S. K., M. P. Singh, and D. K. Singh. 2010. Routing protocols in wireless sensor networks–A survey. International journal of computer science & engineering survey (IJCSE). 1: 29-31.
Skatulla, U. and E. Fiecht. 1995. Observations of the flight behaviour of Lymantria monacha L. (Lep.,Lymantriidae) to pheromone baited traps. Journal of Applied Entomology. 119(1): 17-19.
Soltero, M., J. Zhang,and C. Cockrill. 2002. 422 and 485 standards overview and system configurations. Texas Instruments Application Report, 1-33.
Srbinovska, M., C. Gavrovski, V. Dimcev, A. Krkoleva, and V. Borozan. 2015. Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production. 88: 297-307.
Switzerland: Sensirion AG. 2018. Digital Humidity Sensor SHT 3x. Sensirion AG. Available at: https://www.sensirion.com/en/environmental-sensors/humidity-sensors/digital-humidity-sensors-for-various-applications/. Accessed 01 June 2018.
Tsai, Y. R. 2007. Coverage-Preserving Routing Protocols for Randomly Distributed Wireless Sensor Networks. IEEE Transactions on Wireless Communications. 6(4): 1240-1245.
Taiwan: AMOD technology. 2015. ADH8066 Quad band GSM/GPRS Module. AMOD technology. Available at: http://module.amod.com.tw/Product/. Accessed 01 June 2018.
Taiwan: CYTC. 2018. Temperature Monitoring Systems for Grain Storage. Chang-Yu Technology Company. Available at: cytcpro.com/en/. Accessed 01 June 2018.
Taiwan: KSH. 2015. E-P132-100 Serial to Ethernet Module. KSH International Co., Ltd. Available at: http://www.tcpipweb.com/index.php/phased-out-products/e-p132-100-serial-to-etherneet. Accessed 01 June 2018.
Taiwan: OPTI-Solar. 2015. SC-05SM Solar Charger. OPTI International Corporation. Available at: http://www.opti-solar.com/english/pt_SCSM.en.html. Accessed 01 June 2018.
Taiwan: Ritek. 2015. Photovoltaic Module. RITEK technology. Available at: http://www.ritek.com.tw/green.htm. Accessed 01 June 2018.
TongKe, F. 2013. Smart agriculture based on cloud computing and IOT. Journal of Convergence Information Technology. 8(2).
USA: Debian. 2016. Debain 7.0. Software in the Public Interest, Inc. Available at: https://www.debian.org/releases/wheezy/. Accessed 01 June 2018.
USA: Honeywell. 2017. HIH-4000 Series Humidity Sensors. Maxim Integrated. Available at: https://sensing.honeywell.com/honeywell-sensing-hih4000-series-product-sheet-009017-5-en.pdf. Accessed 01 June 2018.
USA: La Crosse Technology. 2017. La Crosse Weather Stations. La Crosse Technology Ltd. Available at: https://www.lacrossetechnology.com/products/weather/weather-stations. Accessed 01 June 2018.
USA: Maxim. 2016. DS18B20 Programmable Resolution 1-Wire Digital Thermometer. Maxim Integrated. Available at: https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf. Accessed 01 June 2018.
USA: Maxim. 2017. DS28EA00 1-Wire Digital Thermometer Maxim Integrated. Available at: https://datasheets.maximintegrated.com/en/ds/DS28EA00.pdf. Accessed 01 June 2018.
USA: Maxim. 2018. DS2438 Smart Battery Monitor. Maxim Integrated. Available at: https://datasheets.maximintegrated.com/en/ds/DS2438.pdf. Accessed 01 June 2018.
USA: Microchip. 2015. PIC24F16KA101Microcontroller. Microchip Technology Inc. Available at: http://ww1.microchip.com/downloads/en/DeviceDoc/39927c.pdf. Accessed 01 June 2018.
USA: NGINX. 2018. NGINX. NGINX Inc. Available at: https://www.nginx.com/products/nginx/. Accessed 01 June 2018.
USA: Oracle. 2018. MySQL. Oracle Corporation Available at: http://www.opti-solar.com/english/pt_SCSM.en.html. Accessed 01 June 2018.
USA: Rolfes. 2018. Grain Temperature Monitoring. Rolfes. Available at: www.boonegroup.com/index.cfm?fuseaction=cEcommerce.dspProducts&CategoryID=1000. Accessed 01 June 2018.
USA: SafeGrain. 2018. Wireless Grain Monitor System. Safe-Grain, Inc. Available at: safegrain.com/grain-temperature-monitoring/radio-safetrack/. Accessed 01 June 2018.
USA: Texas Instruments. 2013a. MSP430G2553 Mixed Signal Microcontroller. Texas Instruments. Available at: http://www.ti.com/lit/ds/symlink/msp430g2553.pdf. Accessed 01 June 2018.
USA: Texas Instruments. 2013b. MSP430G2452 Mixed Signal Microcontroller. Texas Instruments. Available at: http://www.ti.com/lit/ds/symlink/msp430g2452.pdf. Accessed 01 June 2018.
USA: Texas Instruments. 2014. CC2420 Single-Chip 2.4 GHz IEEE 802.15.4 Compliant and ZigBee™ Ready RF Transceiver. Texas Instruments. Available at: http://www.ti.com/general/docs/lit/getliterature.tsp?genericPartNumber=cc2420&fileType=pdf. Accessed 01 June 2018.
USA: Texas Instruments. 2018. MSP430 F5438 Datasheet. Texas Instruments. Available at: http://www.ti.com/lit/ds/symlink/msp430f5438.pdf. Accessed 01 June 2018.
USA: Waitress. 2018. Waitress. Agendaless Consulting, Inc. Available at: http://waitress.readthedocs.io/en/latest/. Accessed 01 June 2018.
Vijayakumar, N., and R. Ramya. 2015. The real time monitoring of water quality in IoT environment. In Circuit, Power and Computing Technologies (ICCPCT), 2015 International Conference on. pp. 1-4.
Vogt, M., T. Neumann, and M. Gerding. 2013. Frequency-diversity technique for reliable radar level measurement of bulk solids in silos. In Proceedings of 2013 European Radar Conference (EuRAD). pp. 129-132.
Waddington, K. D., H. Esch, and J. E. Burns. 1996. The effects of season, pretraining, and scent on the efficiency of traps for capturing recruited honey bees (Hymenoptera: Apidae). Journal of Insect Behavior. 9(3): 451-455.
Warrier, A., S. Park, J. Min, and I. Rhee. 2007. How much energy saving does topology control offer for wireless sensor network? – A practical study. Computer Communication. 30(14-15): 2867-2879.
Wang, J., R. K. Ghosh, and S. K. Das. 2010. A survey on sensor localization. Journal of Control Theory and Applications. 8(1): 2-11.
White, N. 2000. Protection of Farm-Stored Grains, Oilseeds, and Pulses from Insects, Mites and Molds. Cereal Research Centre, Agriculture and Agri-Food Canada.
Widjaja, R., J. D. Craske, and M. Wootton. 1996. Changes in volatile components of paddy, brown and white fragrant rice during storage. Journal of the Science of Food and Agriculture. 71(2). 218-224.
Willis, M. A., C. T. David, J. Murlis, and R. T. Carde´. 1994. Effects of pheromone plume structure and visual stimuli on the pheromone-modulated upwind flight of male gypsy moths (Lymantria dispar L.) in a forest. Journal of Insect Behavior. 7(3): 385-409.
Wixted, A. J., P. Kinnaird, H. Larijani, A. Tait, A. Ahmadinia, and N. Strachan. 2016. Evaluation of LoRa and LoRaWAN for wireless sensor networks. In SENSORS, 2016 IEEE. pp. 1-3.
Yadav, R., S. Varma, and N. Malaviya. 2010. Performance Analysis of Optimized Medium Access Control for Wireless Sensor Network. IEEE Sensors Journal. 10(12): 1863-1868.
Yan, H., H. Huo, Y. Xu, and G. M. 2010. Wireless sensor network based E-health system ─ implementation and experimental results. IEEE Transactions on Consumer Electronics. 56(4): 2288-2295.
Yi, W., J. Heidemann, and D. Estrin. 2004. Medium Access Control with Coordinated Adaptive Sleeping for Wireless Sensor Networks. IEEE/ACM Transaction on Networking. 12(3): 493-506.
Yigit, E., H. Isiker, A. Toktas, and S. Tjuatja. 2015. CS-based radar measurement of silos level. In Proceedings of 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 3746-3749.
Yigit, E. 2018. A novel compressed sensing based quantity measurement method for grain silos. Computers and Electronics in Agriculture. 145: 179-186.
Young, S., Hardie, J., and G. Gibson. 1993. Flying insects in the laboratory. In: Wratten, S.D. (Ed.), Video Techniques in Animal Ecology and Behaviour. 17-32. London: Chapman and Hall.
Zhao, J. C., J. F. Zhang, Y. Feng, and J. X. Guo. 2010. The study and application of the IOT technology in agriculture. In Computer Science and Information Technology (ICCSIT), 2010 3rd IEEE International Conference on Vol. 2. pp. 462-465.
Zhou, Z., K. Robards, S. Helliwell, and C. Blanchard. 2003. Effect of rice storage on pasting properties of rice flour. Food Research International. 36(6): 625-634.
Zhoul, H., X. Chen, X. Liu, and J. Yang. 2008. Applications of Zigbee wireless technology tomeasurement system in grain storage. In International Conference on Computer and Computing Technologies in Agriculture. pp. 2021-2029.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79031-
dc.description.abstract物聯網技術在近年開始被廣泛研究,並在各領域中已開始有各種應用實施案例,臺灣所提出的農業4.0方針,即是要以物聯網技術為基礎發展智慧科技農業。本研究首先針對物聯網核心技術進行研究與探討,提出一感測網高覆蓋路由演算法及低複雜度的定位演算法。高覆蓋率路由演算法可應用於高敏感區域之監測,定位驗算法可同時應用於集中式或分散式感測網路,依據應用端需求精度及響應時間,可以調度錨節點數量及演算複雜度。本研究分別以模擬及實作針對各類演算法進行驗證,結果顯示各演算法確實有效提升監測網路的運作時間,也可於室內場域達到定位成效,相關核心技術亦導入後續的實際應用中使用。
本研究運用機電整合技術,導入資通訊及物聯網相關技術應用於農業生態監測、害蟲監測及穀物儲藏管理監控。針對農業生態暨害蟲監測系統,本研究整合環境感測器、無線通訊晶片、微控制器等各式電子零組件,開發出適用於田間環境及害蟲監測之各式設備。所有監測資訊,能即時透過手機通信網路或區域無線通訊網路即時將資料回傳到資料庫系統內,使用者可透過網站平台即時監看資料。並可於網站平台上,進行歷史資料分析查閱、警報動作設定、取得蟲害預測資訊等進階功能操作。該系統在臺灣主要應用於東方果實蠅之自動化監測,可適用於露天栽培農業區、網室設施、有機農場等進行微氣候及果實蠅的棲群密度監測。透過即時且精確的監測系統,將有助於提升管理品質,並可透過後續資料分析,輔助管理者進行作業改善及提升作業效能。
歐美等地主要受到地中海果實蠅危害,也持續對地中海果實蠅實施誘引撲殺及人工監測,相關應用十分適合導入本研究所開發之農業生態暨害蟲監測系統使用。本研究首先針對地中海果實蠅設計專屬誘引通道,並導入已開發完成之監測設備與後臺系統,設計適用於地中海果實蠅之自動化監測系統。本研究與美國農業部太平洋研究中心的專家合作,試驗期間內多次於夏威夷大島及可愛島等地,進行地中海果實蠅監測試驗。試驗項目包括挑選適用自動化誘捕器之誘引劑、於野外環境進行自動化誘捕計數試驗、於網室內進行高密度誘捕試驗等。經多次試驗已找出適用於自動化誘捕計數裝置之蟲道尺寸,經野外試驗,驗證裝置可自動化計數地中 海果實蠅,且計數準確率達90%以上。且在大型網室內,以人工飼養的果實蠅進行高密度試驗,計數準確率可達70%以上。相關系統搭配各地的無線通訊系統後,即可進行長時間的自動化監測。
穀物倉儲因作業及管理方便之需求,國內目前大多將穀物存放於大型圓筒倉內。稻穀存放時必須控管穀物的溫度及濕度,才能確保稻穀碾製後的口感及風味。本研究導入物聯網感知技術及資通訊技術,建立智慧型穀物倉儲監控暨管理系統。針對監測需求,開發適用於筒倉的溫度線及濕度線、資料收集電路、管理平台及雲端分析平台等。本研究針對系統各式通訊功能完成性能測試及驗證,系統可依據未來使用者規模大小需求,彈性配置系統裝置及線路。監控系統可依據使用者需求,訂定穀物倉儲控溫區間、冷氣運作區間、異常通報模式等功能。透過導入智慧型穀倉監控與管理系統,未來將可提升穀倉系統管理之品質,除了能夠降低人工操作時造成的失誤損失,更能有效提升穀物存放時之保鮮率,並可降低穀物存放時之受損率,使產品更具有價值,進而能夠提高相關業者與農民之收益。
本研究所建立之各項物聯網監控系統,均已實際應用於各類農業領域,各系統可即時提供監測資訊供使用者作為生產管理修正依據,使農糧產品品質得以精進。針對長期的監測資料,後續更能透過大數據分析,找出有助於精進或改善各農業生產管理之方式,使農業生產作業管理更具效益,提升農產品品質及增加經濟效益。
zh_TW
dc.description.abstractIn recent year, the researches for Internet of Things (IOTs) were increasing, and application of IOTs were used in a lot of area. The Agriculture 4.0 policy which is focused on intelligent agriculture based on the IOTs, was presented by Taiwan government. In the first, this research focused on the kernel technology of IOTs. The coverage preservation routing algorithm and low time complexity locating algorithm were presented. The upmost mission is to ensure that the network is fully functional providing reliable transmission of the sensed data without the risk of data loss. In this study, we propose a routing protocol to accommodate both energy-balance and coverage-preservation for sensor nodes in WSNs. The locating algorithm was able to apply in disturbed or centralized sensor networks. The number of anchor nodes and the time complexity can be adjusted based on the accuracy and response time of applications. The algorithms were evaluated by simulated and implementation, respectably. The results shows that the routing protocol can be improve working time for sensor network, and the localization protocol can be used in indoor localization application.
Improving fruit farm profitability through integrated pest management (IPM) programs is always an important issue to modern agriculture systems. In order to enhance IPM programs against Bactrocera dorsalis, an automatic infield monitoring system is required to efficiently capture long-term and up-to-the-minute environmental fluctuations in a fruit farm. In this study, a remote agro-ecological monitoring system built upon IOTs has been developed to provide precision agriculture (PA) services with large-scale, long-distance, long-term, scalable, and real-time infield data collection capabilities. Historical data with spatial information is available through a web-based decision support program built upon a database. Pest population forecast results are also provided so that farmers and government officials would be able to accurately respond to infield variations.
Compared with the previous version of the system, various useful functions have been added into the system, and its accuracy has been improved when measuring different parameters in the field. The system could provide a valuable framework for farmers and pest control officials to analyze the relations between population dynamics of the fruit fly and meteorological events. Based on the analysis, a better insect pest risk assessment and accurate decision-making strategy can be made as an aid to PA against B. dorsalis. Researchers could receive messages of the predicted data for prevent the outbreak of the fruit fly. Moreover, the pest management will be more efficient in the future.
In this ex-site research, the pest population and attraction behavior of the Mediterranean fruit fly will be researched. The researchers work with Pacific Basin Agriculture Research Center, USDA. The automatic monitoring technology is constructed in this project, and we also establish the automatic monitoring system for the Mediterranean fruit fly in Hawaii, USA. The counting accuracy of automatic counting devices for the Ceratitits capitata (Mediterranean fruit fly) was presented. The researchers investigated the population and attraction behavior via video record and monitoring system for Mediterranean fruit fly. Moreover, the researchers done the tests in different population of the wild area (Coffee Farm, Hawaii) and also test in the cage of PBARC, USDA. In field tests, the counting accuracy is higher than 90%, and the counting accuracy is also higher than 70% with high density of medfly for the cage tests. Users are able to monitoring population of Mediterranean fruit fly by the automatic monitoring system, and the weather of the testing sites will be also monitored by the devices. Hence, the users could manage the farms by these monitoring data. Moreover, the population of Mediterranean fruit fly can be predict by historical monitoring data. Before the huge damage of Mediterranean fruit fly, the users could do some prevention measures.
IOT were taken into the storage management for grain storages. Following with the designed grain storage monitoring system, the management system will be able to improve the fresh level and will decrease the damage level for the grain storage. This research has finished scheduled works about automatic management system for the grain silos, environmental monitoring system for grain silos, automatic monitoring platform for storage procedure, control strategy for temperature and humidity of silos, warning and alerting system for system fault. The monitoring database and central monitoring center for grain storage were also be establish. The users could monitor storage management system by web-based system, and users could setup different functions for the temperature control, chilling machine control, and model for alerting. The grain quality will be improvement, when the users start to use this management system for grain storage. The damage of grain storage will be also decrease, and the price of grain will be increase.
The IOTs monitoring and control systems which were presented in this research were applied for agriculture solutions. The systems could offer real-time monitoring data for users, and the users are able to do different works according to the sensing and analysis data. The big data analysis and data mining will be applied for the long-term monitoring data, and the analysis results are able to improve the management methods and enhance the efficiency of the works. Moreover, the quality of agriculture products will be improvement, and the economic benefit will be also increased.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:38:07Z (GMT). No. of bitstreams: 1
ntu-107-D98631001-1.pdf: 36964423 bytes, checksum: cd765fa959d55e466c0b934da7a320cd (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iv
Abstract vi
目錄 ix
圖目錄 xiii
表目錄 xxi
第一章 前言 1
1.1研究背景 1
1.2文獻探討 3
1.2.1 機電整合與物聯網技術應用於農業監測 4
1.2.2 穀物倉儲現況及穀物監控系統介紹 6
1.3研究動機及目的 8
1.4論文架構 11
第二章 物聯網路由協定與定位演算法之研究 13
2.1感測器網路路由演算法 13
2.1.1 比較之演算法介紹 13
2.1.2 覆蓋率模型 14
2.1.3 覆蓋率優先動態路由演算法 17
2.1.3 演算法模擬環境 22
2.1.4 ECHR演算法中使用不同權重設定值之性能驗證 24
2.1.5 ECHR演算法性能驗證 29
2.1.6 小結 34
2.2無線感測器定位演算法 35
2.2.1 封包信號強度 35
2.2.2 定位系統各裝置運作方式 38
2.2.3 定位演算法 41
2.2.4 實際實驗驗證分析 46
2.2.6 結果討論 53
第三章 植基於物聯網技術之害蟲及環境監測系統開發與應用 54
3.1東方果實蠅監測系統架構 54
3.2監測系統硬體設備 55
3.2.1 MSP430-F5438A微處理機 58
3.2.2微型氣象模組 59
3.2.3溫溼度感測模組 61
3.2.4無線通訊模組 62
3.2.5太陽能充電模組 64
3.2.6蟲數計數模組 66
3.2.7感測節點模組 69
3.3 監測系統軟體與控制流程 71
3.3.1 監測系統之資料庫 72
3.3.2裝置控制流程 73
3.4.東方果實蠅監測系統實際安裝與運作情況 74
3.4.1裝置設置情況 74
3.4.2監測資料查詢暨警報發布系統 77
3.5相關試驗分析及監控實施案例 83
3.5.1硬體性能測試 83
3.5.2系統安裝實施案例及數據分析 86
3.6小結 93
第四章 物聯網監測系統應用於地中海果實蠅之自動化監測 94
4.1 地中海果實蠅之誘引通道設計 94
4.2 於美國進行地中海果實蠅自動化監測暨誘捕性能驗證 98
4.3 於野外場域進行地中海果實蠅自動化監測暨誘捕性能驗證 111
4.4第二次於野外場域進行地中海果實蠅自動化監測暨誘捕性能驗證 123
4.5 針對自動化監測系統進行高密度誘捕試驗 135
4.6 監測數據分析 144
4.7 小結 150
第五章 植基於IoT技術之穀物倉儲監控管理系統之開發與應用 152
5.1 穀物倉儲監控與管理系統架構 152
5.2 監控系統硬體開發 154
5.2.1 穀倉內溫度感測器 154
5.2.2濕度感測線 159
5.2.3資料收集版 163
5.3 監控系統之晶片控制程式開發與設計 167
5.3.1穀倉內溫度感測器之控制程式開發 168
5.3.2穀倉內濕度感測器之控制程式開發 171
5.3.3感測器資料收集電路板之控制程式開發 175
5.4 穀倉監控系統之軟體及監控平台之開發 179
5.4.1現場端監控軟體架構 179
5.4.2穀倉監控系統資料庫系統 186
5.4.3監控介面功能 188
5.5 穀倉監控系統之性能測試與驗證 194
5.5.1 感測線長距離傳輸功能試驗 194
5.5.2 資料收集電路模組多組串並聯資料傳輸功能驗證 198
5.6 穀倉監控系統實際應用監測情形 200
5.7 運用穀倉環境監測數據進行穀物儲量推估及狀態分析 205
5.7.1 穀物監測資料分析 206
5.7.2 穀物存量分析模型 210
5.8 小結 220
第六章 結論與未來工作 221
參考文獻 224
附錄一 公式符號表 239
附錄二 作者簡歷 242
dc.language.isozh-TW
dc.subject果實蠅監測zh_TW
dc.subject害蟲監測系統zh_TW
dc.subject穀物倉儲監控系統zh_TW
dc.subject農業4.0zh_TW
dc.subject物聯網zh_TW
dc.subject無線感測器網路zh_TW
dc.subjectgrain storage management systemen
dc.subjectInternet of Things(IoTs)en
dc.subjectagriculture 4.0en
dc.subjectwireless sensor network(WSN)en
dc.subjectecological monitoringen
dc.subjectfruit fly monitoring systemen
dc.title物聯網技術於農業領域之監測系統開發與應用zh_TW
dc.titleDevelopment and Application of Monitoring Systems for Agriculture Based on IoT Solutionsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree博士
dc.contributor.oralexamcommittee艾群,林達德,林聖泉,蕭瑛東,王永鐘
dc.subject.keyword物聯網,農業4.0,無線感測器網路,害蟲監測系統,果實蠅監測,穀物倉儲監控系統,zh_TW
dc.subject.keywordInternet of Things(IoTs),agriculture 4.0,wireless sensor network(WSN),ecological monitoring,fruit fly monitoring system,grain storage management system,en
dc.relation.page261
dc.identifier.doi10.6342/NTU201803296
dc.rights.note有償授權
dc.date.accepted2018-08-14
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
dc.date.embargo-lift2023-08-24-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-D98631001-1.pdf
  未授權公開取用
36.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved