Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79021
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅凱尹
dc.contributor.authorYun-Ting Tsengen
dc.contributor.author曾筠庭zh_TW
dc.date.accessioned2021-07-11T15:37:17Z-
dc.date.available2023-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-14
dc.identifier.citationAgrawal, M.G., and L.H. Bowman. 1987. Transcriptional and translational regulation of ribosomal protein formation during mouse myoblast differentiation. J Biol Chem. 262:4868-4875.
Alter, B.P., N. Giri, S.A. Savage, and P.S. Rosenberg. 2009. Cancer in dyskeratosis congenita. Blood. 113:6549-6557.
Altmann, M., N. Schmitz, C. Berset, and H. Trachsel. 1997. A novel inhibitor of cap-dependent translation initiation in yeast: P20 competes with eIF4G for binding to eIF4E. EMBO Journal. 16:1114-1121.
Altmann, M., and H. Trachsel. 1989. Altered mRNA cap recognition activity of initiation factor 4E in the yeast cell cycle division mutant cdc33. Nucleic Acids Res. 17:5923-5931.
Amaldi, F., and P. Pierandrei-Amaldi. 1990. Translational regulation of the expression of ribosomal protein genes in Xenopus laevis. Enzyme. 44:93-105.
Asano, K., A. Shalev, L. Phan, K. Nielsen, J. Clayton, L. Valasek, T.F. Donahue, and A.G. Hinnebusch. 2001. Multiple roles for the C-terminal domain of eIF5 in translation initiation complex assembly and GTPase activation. EMBO Journal. 20:2326-2337.
Badura, M., S. Braunstein, J. Zavadil, and R.J. Schneider. 2012. DNA damage and eIF4G1 in breast cancer cells reprogram translation for survival and DNA repair mRNAs. Proc Natl Acad Sci U S A. 109:18767-18772.
Barrio-Garcia, C., M. Thoms, D. Flemming, L. Katerl, O. Berninghausenl, J. Bassler, R. Beckmann, and E. Hurt. 2016. Architecture of the Rix1-Rea1 checkpoint machinery during pre-60S-ribosome remodeling. Nat Struct Mol Biol. 23:37-44.
Bassler, J., P. Grandi, O. Gadal, T. Lessmann, E. Petfalski, D. Tollervey, J. Lechner, and E. Hurt. 2001. Identification of a 60S preribosomal particle that is closely linked to nuclear export. Mol Cell. 8:517-529.
Bauer, C., N. Brass, I. Diesinger, K. Kayser, F.A. Grasser, and E. Meese. 2002. Overexpression of the eukaryotic translation initiation factor 4G (eIF4G-1) in squamous cell lung carcinoma. Int J Cancer. 98:181-185.
Ben-Shem, A., N. Garreau de Loubresse, S. Melnikov, L. Jenner, G. Yusupova, and M. Yusupov. 2011. The structure of the eukaryotic ribosome at 3.0 A resolution. Science. 334:1524-1529.
Benelli, D., S. Marzi, C. Mancone, T. Alonzi, A. la Teana, and P. Londei. 2009. Function and ribosomal localization of aIF6, a translational regulator shared by archaea and eukarya. Nucleic Acids Res. 37:256-267.
Berset, C., A. Zurbriggen, S. Djafarzadeh, M. Altmann, and H. Trachsel. 2003. RNA-binding activity of translation initiation factor eIF4G1 from Saccharomyces cerevisiae. RNA. 9:871-880.
Bogengruber, E., P. Briza, E. Doppler, H. Wimmer, L. Koller, F. Fasiolo, B. Senger, J.H. Hegemann, and M. Breitenbach. 2003. Functional analysis in yeast of the Brix protein superfamily involved in the biogenesis of ribosomes. FEMS Yeast Res. 3:35-43.
Bohl, F., C. Kruse, A. Frank, D. Ferring, and R.P. Jansen. 2000. She2p, a novel RNA-binding protein tethers ASH1 mRNA to the Myo4p myosin motor via She3p. EMBO J. 19:5514-5524.
Bolze, A., N. Mahlaoui, M. Byun, B. Turner, N. Trede, S.R. Ellis, A. Abhyankar, Y. Itan, E. Patin, S. Brebner, P. Sackstein, A. Puel, C. Picard, L. Abel, L. Quintana-Murci, S.N. Faust, A.P. Williams, R. Baretto, M. Duddridge, U. Kini, A.J. Pollard, C. Gaud, P. Frange, D. Orbach, L.F. Emile, J.L. Stephan, R. Sorensen, A. Plebani, L. Hammarstrom, E. Mary, L. Selleri, and J.L. Casanova. 2013. Ribosomal Protein SA Haploinsufficiency in Humans with Isolated Congenital Asplenia. Science. 340:976-978.
Boon, K., H.N. Caron, R. van Asperen, L. Valentijn, M.C. Hermus, P. van Sluis, I. Roobeek, I. Weis, P.A. Voute, M. Schwab, and R. Versteeg. 2001. N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis. EMBO J. 20:1383-1393.
Booth, D.S., Y.F. Cheng, and A.D. Frankel. 2014. The export receptor Crm1 forms a dimer to promote nuclear export of HIV RNA. Elife. 3.
Brogna, S., T.A. Sato, and M. Rosbash. 2002. Ribosome components are associated with sites of transcription. Mol Cell. 10:93-104.
Byrd, M.P., M. Zamora, and R.E. Lloyd. 2002. Generation of multiple isoforms of eukaryotic translation initiation factor 4GI by use of alternate translation initiation codons. Mol Cell Biol. 22:4499-4511.
Caldas, T., E. Binet, P. Bouloc, and G. Richarme. 2000. Translational defects of Escherichia coli mutants deficient in the Um(2552) 23S ribosomal RNA methyltransferase RrmJ/FTSJ. Biochem Bioph Res Co. 271:714-718.
Clarkson, B.K., W.V. Gilbert, and J.A. Doudna. 2010. Functional Overlap between eIF4G Isoforms in Saccharomyces cerevisiae. Plos One. 5.
Coleno-Costes, A., S.M. Jang, A. de Vanssay, J. Rougeot, T. Bouceba, N.B. Randsholt, J.M. Gibert, S. Le Crom, E. Mouchel-Vielh, S. Bloyer, and F. Peronnet. 2012. New partners in regulation of gene expression: the enhancer of Trithorax and Polycomb Corto interacts with methylated ribosomal protein l12 via its chromodomain. PLoS Genet. 8:e1003006.
Coller, H.A., C. Grandori, P. Tamayo, T. Colbert, E.S. Lander, R.N. Eisenman, and T.R. Golub. 2000. Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc Natl Acad Sci U S A. 97:3260-3265.
Connolly, M., R. Paul, R. Farre-Garros, S.A. Natanek, S. Bloch, J. Lee, J.P. Lorenzo, H. Patel, C. Cooper, A.A. Sayer, S.J. Wort, M. Griffiths, M.I. Polkey, and P.R. Kemp. 2017. miR-424-5p reduces ribosomal RNA and protein synthesis in muscle wasting. J Cachexia Sarcopenia Muscle.
Contreras, V., M.A. Richardson, E. Hao, and B.D. Keiper. 2008. Depletion of the cap-associated isoform of translation factor eIF4G induces germline apoptosis in C. elegans. Cell Death Differ. 15:1232-1242.
Das, S., U. Saha, and B. Das. 2014. Cbc2p, Upf3p and eIF4G are components of the DRN (Degradation of mRNA in the Nucleus) in Saccharomyces cerevisiae. FEMS Yeast Res. 14:922-932.
Dauwerse, J.G., J. Dixon, S. Seland, C.A.L. Ruivenkamp, A. van Haeringen, L.H. Hoefsloot, D.J.M. Peters, A.C.D. Boers, C. Daumer-Haas, R. Maiwald, C. Zweier, B. Kerr, A.M. Cobo, J.F. Toral, A.J.M. Hoogeboom, D.R. Lohmann, U. Hehr, M.J. Dixon, M.H. Breuning, and D. Wieczorek. 2011. Mutations in genes encoding subunits of RNA polymerases I and III cause Treacher Collins syndrome. Nat Genet. 43:20-22.
De Keersmaecker, K., S.O. Sulima, and J.D. Dinman. 2015. Ribosomopathies and the paradox of cellular hypo- to hyperproliferation. Blood. 125:1377-1382.
De, S., and S. Brogna. 2010. Are ribosomal proteins present at transcription sites on or off ribosomal subunits? Biochem Soc Trans. 38:1543-1547.
De, S., W. Varsally, F. Falciani, and S. Brogna. 2011. Ribosomal proteins' association with transcription sites peaks at tRNA genes in Schizosaccharomyces pombe. RNA. 17:1713-1726.
Decatur, W.A., and M.J. Fournier. 2002. rRNA modifications and ribosome function. Trends Biochem Sci. 27:344-351.
Demoinet, E., A. Jacquier, G. Lutfalla, and M. Fromont-Racine. 2007. The Hsp40 chaperone Jjj1 is required for the nucleo-cytoplasmic recycling of preribosomal factors in Saccharomyces cerevisiae. Rna. 13:1570-1581.
Deutschbauer, A.M., D.F. Jaramillo, M. Proctor, J. Kumm, M.E. Hillenmeyer, R.W. Davis, C. Nislow, and G. Giaever. 2005. Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics. 169:1915-1925.
Dominguez, D., M. Altmann, J. Benz, U. Baumann, and H. Trachsel. 1999. Interaction of translation initiation factor eIF4G with eIF4A in the yeast Saccharomyces cerevisiae. Journal of Biological Chemistry. 274:26720-26726.
Dominguez, D., E. Kislig, M. Altmann, and H. Trachsel. 2001. Structural and functional similarities between the central eukaryotic initiation factor (eIF)4A-binding domain of mammalian eIf4G and the eIf4A-binding domain of yeast eIF4G. Biochem J. 355:223-230.
Donadieu, J., T. Leblanc, B.B. Meunier, M. Barkaoui, O. Fenneteau, Y. Bertrand, M. Maier-Redelsperger, M. Micheau, J.L. Stephan, N. Phillipe, P. Bordigoni, A. Babin-Boilletot, P. Bensaid, A.M. Manel, E. Vilmer, I. Thuret, S. Blanche, E. Gluckman, A. Fischer, F. Mechinaud, B. Joly, T. Lamy, O. Hermine, B. Cassinat, C. Bellanne-Chantelot, C. Chomienne, and F.S.C. Neutropenia. 2005. Analysis of risk factors for myelodysplasias, leukemias and death from infection among patients with congenital neutropenia. Experience of the French Severe Chronic Neutropenia Study Group. Haematologica. 90:45-53.
Dragon, F., J.E. Gallagher, P.A. Compagnone-Post, B.M. Mitchell, K.A. Porwancher, K.A. Wehner, S. Wormsley, R.E. Settlage, J. Shabanowitz, Y. Osheim, A.L. Beyer, D.F. Hunt, and S.J. Baserga. 2002. A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature. 417:967-970.
Ebert, B.L., J. Pretz, J. Bosco, C.Y. Chang, P. Tamayo, N. Galili, A. Raza, D.E. Root, E. Attar, S.R. Ellis, and T.R. Golub. 2008. Identification of RPS14 as a 5q(-) syndrome gene by RNA interference screen. Nature. 451:335-U337.
Eibauer, M., M. Pellanda, Y. Turgay, A. Dubrovsky, A. Wild, and O. Medalia. 2015. Structure and gating of the nuclear pore complex. Nature Communications. 6.
Eisenhaber, F., C. Wechselberger, and G. Kreil. 2001. The Brix domain protein family -- a key to the ribosomal biogenesis pathway? Trends Biochem Sci. 26:345-347.
Fatica, A., A.D. Cronshaw, M. Dlakic, and D. Tollervey. 2002. Ssf1p prevents premature processing of an early pre-60S ribosomal particle. Mol Cell. 9:341-351.
Fatica, A., and D. Tollervey. 2003. Insights into the structure and function of a guide RNP. Nat Struct Biol. 10:237-239.
Filipowicz, W., and V. Pogacic. 2002. Biogenesis of small nucleolar ribonucleoproteins. Curr Opin Cell Biol. 14:319-327.
Fortes, P., D. Bilbao-Cortes, M. Fornerod, G. Rigaut, W. Raymond, B. Seraphin, and I.W. Mattaj. 1999. Luc7p, a novel yeast U1 snRNP protein with a role in 5' splice site recognition. Genes Dev. 13:2425-2438.
Fortes, P., T. Inada, T. Preiss, M.W. Hentze, I.W. Mattaj, and A.B. Sachs. 2000. The yeast nuclear cap binding complex can interact with translation factor elF4G and mediate translation initiation. Mol Cell. 6:191-196.
Fromont-Racine, M., B. Senger, C. Saveanu, and F. Fasiolo. 2003. Ribosome assembly in eukaryotes. Gene. 313:17-42.
Gadal, O., D. Strauss, J. Kessl, B. Trumpower, D. Tollervey, and E. Hurt. 2001. Nuclear export of 60S ribosomal subunits depends on Xpo1p and requires a nuclear export sequence-containing factor, Nmd3p that associates with the large subunit protein Rpl10p. Molecular and Cellular Biology. 21:3405-3415.
Galani, K., T.A. Nissan, E. Petfalski, D. Tollervey, and E. Hurt. 2004. Rea1, a dynein-related nuclear AAA-ATPase, is involved in late rRNA processing and nuclear export of 60 S subunits. J Biol Chem. 279:55411-55418.
Gallagher, J.E., D.A. Dunbar, S. Granneman, B.M. Mitchell, Y. Osheim, A.L. Beyer, and S.J. Baserga. 2004. RNA polymerase I transcription and pre-rRNA processing are linked by specific SSU processome components. Genes Dev. 18:2506-2517.
Gamerdinger, M. 2016. Protein quality control at the ribosome: focus on RAC, NAC and RQC. Essays Biochem. 60:203-212.
Gavin, A.C., P. Aloy, P. Grandi, R. Krause, M. Boesche, M. Marzioch, C. Rau, L.J. Jensen, S. Bastuck, B. Dumpelfeld, A. Edelmann, M.A. Heurtier, V. Hoffman, C. Hoefert, K. Klein, M. Hudak, A.M. Michon, M. Schelder, M. Schirle, M. Remor, T. Rudi, S. Hooper, A. Bauer, T. Bouwmeester, G. Casari, G. Drewes, G. Neubauer, J.M. Rick, B. Kuster, P. Bork, R.B. Russell, and G. Superti-Furga. 2006. Proteome survey reveals modularity of the yeast cell machinery. Nature. 440:631-636.
Gavin, A.C., M. Bosche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, J. Schultz, J.M. Rick, A.M. Michon, C.M. Cruciat, M. Remor, C. Hofert, M. Schelder, M. Brajenovic, H. Ruffner, A. Merino, K. Klein, M. Hudak, D. Dickson, T. Rudi, V. Gnau, A. Bauch, S. Bastuck, B. Huhse, C. Leutwein, M.A. Heurtier, R.R. Copley, A. Edelmann, E. Querfurth, V. Rybin, G. Drewes, M. Raida, T. Bouwmeester, P. Bork, B. Seraphin, B. Kuster, G. Neubauer, and G. Superti-Furga. 2002. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature. 415:141-147.
Gingras, A.C., B. Raught, and N. Sonenberg. 1999. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem. 68:913-963.
Gonzalo, P., and J.P. Reboud. 2003. The puzzling lateral flexible stalk of the ribosome. Biol Cell. 95:179-193.
Gottschalk, A., J. Tang, O. Puig, J. Salgado, G. Neubauer, H.V. Colot, M. Mann, B. Seraphin, M. Rosbash, R. Luhrmann, and P. Fabrizio. 1998. A comprehensive biochemical and genetic analysis of the yeast U1 snRNP reveals five novel proteins. RNA. 4:374-393.
Goyer, C., M. Altmann, H.S. Lee, A. Blanc, M. Deshmukh, J.L. Woolford, Jr., H. Trachsel, and N. Sonenberg. 1993. TIF4631 and TIF4632: two yeast genes encoding the high-molecular-weight subunits of the cap-binding protein complex (eukaryotic initiation factor 4F) contain an RNA recognition motif-like sequence and carry out an essential function. Mol Cell Biol. 13:4860-4874.
Grandi, P., V. Rybin, J. Bassler, E. Petfalski, D. Strauss, M. Marzioch, T. Schafer, B. Kuster, H. Tschochner, D. Tollervey, A.C. Gavin, and E. Hurt. 2002. 90S pre-ribosomes include the 35S pre-rRNA, the U3 snoRNP, and 40S subunit processing factors but predominantly lack 60S synthesis factors. Mol Cell. 10:105-115.
Gross, J.D., N.J. Moerke, T. von der Haar, A.A. Lugovskoy, A.B. Sachs, J.E. McCarthy, and G. Wagner. 2003a. Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E. Cell. 115:739-750.
Gross, J.D., N.J. Moerke, T. von der Haar, A.A. Lugovskoy, A.B. Sachs, J.E.G. McCarthy, and G. Wagner. 2003b. Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E. Cell. 115:739-750.
Harnpicharnchai, P., J. Jakovljevic, E. Horsey, T. Miles, J. Roman, M. Rout, D. Meagher, B. Imai, Y. Guo, C.J. Brame, J. Shabanowitz, D.F. Hunt, and J.L. Woolford, Jr. 2001. Composition and functional characterization of yeast 66S ribosome assembly intermediates. Mol Cell. 8:505-515.
Hedges, J., M. West, and A.W. Johnson. 2005. Release of the export adapter, Nmd3p, from the 60S ribosomal subunit requires Rpl10p and the cytoplasmic GTPase Lsg1p. EMBO J. 24:567-579.
Henras, A.K., J. Soudet, M. Gerus, S. Lebaron, M. Caizergues-Ferrer, A. Mougin, and Y. Henry. 2008. The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell Mol Life Sci. 65:2334-2359.
Hentze, M.W. 1997. eIF4G: a multipurpose ribosome adapter? Science. 275:500-501.
Hernandez-Verdun, D., P. Roussel, M. Thiry, V. Sirri, and D.L. Lafontaine. 2010. The nucleolus: structure/function relationship in RNA metabolism. Wiley Interdiscip Rev RNA. 1:415-431.
Hershey, J.W., N. Sonenberg, and M.B. Mathews. 2012a. Principles of translational control: an overview. Cold Spring Harb Perspect Biol. 4.
Hershey, J.W.B., N. Sonenberg, and M.B. Mathews. 2012b. Principles of Translational Control: An Overview. Csh Perspect Biol. 4.
Hinnebusch, A.G. 2011. Molecular mechanism of scanning and start codon selection in eukaryotes. Microbiol Mol Biol Rev. 75:434-467, first page of table of contents.
Ho, J.H.N., G. Kallstrom, and A.W. Johnson. 2000. Nmd3p is a Crm1p-dependent adapter protein for nuclear export of the large ribosomal subunit. Journal of Cell Biology. 151:1057-1066.
Hossain, M.A., C. Chung, S.K. Pradhan, and T.L. Johnson. 2013. The yeast cap binding complex modulates transcription factor recruitment and establishes proper histone H3K36 trimethylation during active transcription. Mol Cell Biol. 33:785-799.
Hung, N.J., and A.W. Johnson. 2006. Nuclear recycling of the pre-60S ribosomal subunit-associated factor Arx1 depends on Rei1 in Saccharomyces cerevisiae. Mol Cell Biol. 26:3718-3727.
Iborra, F.J., A.E. Escargueil, K.Y. Kwek, A. Akoulitchev, and P.R. Cook. 2004. Molecular cross-talk between the transcription, translation, and nonsense-mediated decay machineries. J Cell Sci. 117:899-906.
Iborra, F.J., D.A. Jackson, and P.R. Cook. 2001. Coupled transcription and translation within nuclei of mammalian cells. Science. 293:1139-1142.
Imataka, H., H.S. Olsen, and N. Sonenberg. 1997. A new translational regulator with homology to eukaryotic translation initiation factor 4G. EMBO J. 16:817-825.
Jenner, L., S. Melnikov, N.G. de Loubresse, A. Ben-Shem, M. Iskakova, A. Urzhumtsev, A. Meskauskas, J. Dinman, G. Yusupova, and M. Yusupov. 2012. Crystal structure of the 80S yeast ribosome. Curr Opin Struc Biol. 22:759-767.
Kafasla, P., J.D. Barrass, E. Thompson, M. Fromont-Racine, A. Jacquier, J.D. Beggs, and J. Lewis. 2009. Interaction of yeast eIF4G with spliceosome components: implications in pre-mRNA processing events. RNA Biol. 6:563-574.
Kallstrom, G., J. Hedges, and A. Johnson. 2003. The putative GTPases Nog1p and Lsg1p are required for 60S ribosomal subunit biogenesis and are localized to the nucleus and cytoplasm, respectively. Mol Cell Biol. 23:4344-4355.
Kaser, A., E. Bogengruber, M. Hallegger, E. Doppler, G. Lepperdinger, M. Jantsch, M. Breitenbach, and G. Kreil. 2001. Brix from xenopus laevis and brx1p from yeast define a new family of proteins involved in the biogenesis of large ribosomal subunits. Biol Chem. 382:1637-1647.
Kater, L., M. Thoms, C. Barrio-Garcia, J. Cheng, S. Ismail, Y.L. Ahmed, G. Bange, D. Kressler, O. Berninghausen, I. Sinning, E. Hurt, and R. Beckmann. 2017. Visualizing the Assembly Pathway of Nucleolar Pre-60S Ribosomes. Cell. 171:1599-1610 e1514.
Kato, K., Y. Yamamoto, and S. Izawa. 2011. Severe ethanol stress induces assembly of stress granules in Saccharomyces cerevisiae. Yeast. 28:339-347.
Kim, J., and J.P. Hirsch. 1998. A nucleolar protein that affects mating efficiency in Saccharomyces cerevisiae by altering the morphological response to pheromone. Genetics. 149:795-805.
Kim, S., Q. Li, C.V. Dang, and L.A. Lee. 2000. Induction of ribosomal genes and hepatocyte hypertrophy by adenovirus-mediated expression of c-Myc in vivo. Proc Natl Acad Sci U S A. 97:11198-11202.
King, T.H., B. Liu, R.R. McCully, and M.J. Fournier. 2003. Ribosome structure and activity are altered in cells lacking snoRNPs that form pseudouridines in the peptidyl transferase center. Mol Cell. 11:425-435.
Kiss, T. 2001. Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J. 20:3617-3622.
Klinge, S., F. Voigts-Hoffmann, M. Leibundgut, and N. Ban. 2012. Atomic structures of the eukaryotic ribosome. Trends in Biochemical Sciences. 37:189-198.
Klionsky, D.J., K. Abdelmohsen, A. Abe, M.J. Abedin, H. Abeliovich, A. Acevedo Arozena, H. Adachi, C.M. Adams, P.D. Adams, K. Adeli, P.J. Adhihetty, S.G. Adler, G. Agam, R. Agarwal, M.K. Aghi, M. Agnello, P. Agostinis, P.V. Aguilar, J. Aguirre-Ghiso, E.M. Airoldi, S. Ait-Si-Ali, T. Akematsu, E.T. Akporiaye, M. Al-Rubeai, G.M. Albaiceta, C. Albanese, D. Albani, M.L. Albert, J. Aldudo, H. Algul, M. Alirezaei, I. Alloza, A. Almasan, M. Almonte-Beceril, E.S. Alnemri, C. Alonso, N. Altan-Bonnet, D.C. Altieri, S. Alvarez, L. Alvarez-Erviti, S. Alves, G. Amadoro, A. Amano, C. Amantini, S. Ambrosio, I. Amelio, A.O. Amer, M. Amessou, A. Amon, Z. An, F.A. Anania, S.U. Andersen, U.P. Andley, C.K. Andreadi, N. Andrieu-Abadie, A. Anel, D.K. Ann, S. Anoopkumar-Dukie, M. Antonioli, H. Aoki, N. Apostolova, S. Aquila, K. Aquilano, K. Araki, E. Arama, A. Aranda, J. Araya, A. Arcaro, E. Arias, H. Arimoto, A.R. Ariosa, J.L. Armstrong, T. Arnould, I. Arsov, K. Asanuma, V. Askanas, E. Asselin, R. Atarashi, S.S. Atherton, J.D. Atkin, L.D. Attardi, P. Auberger, G. Auburger, L. Aurelian, R. Autelli, L. Avagliano, M.L. Avantaggiati, L. Avrahami, S. Awale, N. Azad, T. Bachetti, J.M. Backer, D.H. Bae, J.S. Bae, O.N. Bae, S.H. Bae, E.H. Baehrecke, S.H. Baek, S. Baghdiguian, A. Bagniewska-Zadworna, et al. 2016. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 12:1-222.
Kozak, M. 2005. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene. 361:13-37.
Krogan, N.J., W.T. Peng, G. Cagney, M.D. Robinson, R. Haw, G. Zhong, X. Guo, X. Zhang, V. Canadien, D.P. Richards, B.K. Beattie, A. Lalev, W. Zhang, A.P. Davierwala, S. Mnaimneh, A. Starostine, A.P. Tikuisis, J. Grigull, N. Datta, J.E. Bray, T.R. Hughes, A. Emili, and J.F. Greenblatt. 2004. High-definition macromolecular composition of yeast RNA-processing complexes. Mol Cell. 13:225-239.
Kuersten, S., M. Ohno, and I.W. Mattaj. 2001. Nucleocytoplasmic transport: Ran, beta and beyond. Trends Cell Biol. 11:497-503.
Laursen, B.S., H.P. Sorensen, K.K. Mortensen, and H.U. Sperling-Petersen. 2005. Initiation of protein synthesis in bacteria. Microbiol Mol Biol Rev. 69:101-123.
Lebreton, A., C. Saveanu, L. Decourty, J.C. Rain, A. Jacquier, and M. Fromont-Racine. 2006. A functional network involved in the recycling of nucleocytoplasmic pre-60S factors. J Cell Biol. 173:349-360.
Lee, S.J., and S.J. Baserga. 1999. Imp3p and Imp4p, two specific components of the U3 small nucleolar ribonucleoprotein that are essential for pre-18S rRNA processing. Mol Cell Biol. 19:5441-5452.
LeFebvre, A.K., N.L. Korneeva, M. Trutschl, U. Cvek, R.D. Duzan, C.A. Bradley, J.W. Hershey, and R.E. Rhoads. 2006. Translation initiation factor eIF4G-1 binds to eIF3 through the eIF3e subunit. J Biol Chem. 281:22917-22932.
Li, Z., I. Lee, E. Moradi, N.J. Hung, A.W. Johnson, and E.M. Marcotte. 2009. Rational extension of the ribosome biogenesis pathway using network-guided genetics. PLoS Biol. 7:e1000213.
Liu, B., X.H. Liang, D. Piekna-Przybylska, Q. Liu, and M.J. Fournier. 2008. Mis-targeted methylation in rRNA can severely impair ribosome synthesis and activity. RNA Biol. 5:249-254.
Lo, K.Y., Z. Li, C. Bussiere, S. Bresson, E.M. Marcotte, and A.W. Johnson. 2010. Defining the pathway of cytoplasmic maturation of the 60S ribosomal subunit. Mol Cell. 39:196-208.
Lo, K.Y., Z.H. Li, F. Wang, E.M. Marcotte, and A.W. Johnson. 2009. Ribosome stalk assembly requires the dual-specificity phosphatase Yvh1 for the exchange of Mrt4 with P0. Journal of Cell Biology. 186:849-862.
Macara, I.G. 2001. Transport into and out of the nucleus. Microbiol Mol Biol Rev. 65:570-594, table of contents.
Mager, W.H., and R.J. Planta. 1991. Coordinate expression of ribosomal protein genes in yeast as a function of cellular growth rate. Mol Cell Biochem. 104:181-187.
McCann, K.L., and S.J. Baserga. 2013. Mysterious Ribosomopathies. Science. 341:849-850.
McKendrick, L., E. Thompson, J. Ferreira, S.J. Morley, and J.D. Lewis. 2001. Interaction of eukaryotic translation initiation factor 4G with the nuclear cap-binding complex provides a link between nuclear and cytoplasmic functions of the m(7) guanosine cap. Mol Cell Biol. 21:3632-3641.
Melnikov, S., A. Ben-Shem, N.G. de Loubresse, L. Jenner, G. Yusupova, and M. Yusupov. 2012. One core, two shells: bacterial and eukaryotic ribosomes. Nat Struct Mol Biol. 19:560-567.
Menne, T.F., B. Goyenechea, N. Sanchez-Puig, C.C. Wong, L.M. Tonkin, P.J. Ancliff, R.L. Brost, M. Costanzo, C. Boone, and A.J. Warren. 2007. The Shwachman-Bodian-Diamond syndrome protein mediates translational activation of ribosomes in yeast. Nat Genet. 39:486-495.
Menssen, A., and H. Hermeking. 2002. Characterization of the c-MYC-regulated transcriptome by SAGE: identification and analysis of c-MYC target genes. Proc Natl Acad Sci U S A. 99:6274-6279.
Meyer, A.E., N.J. Hung, P.Z. Yang, A.W. Johnson, and E.A. Craig. 2007. The specialized cytosolic J-protein, Jjj1, functions in 60S ribosomal subunit biogenesis. P Natl Acad Sci USA. 104:1558-1563.
Miles, T.D., J. Jakovljevic, E.W. Horsey, P. Harnpicharnchai, L. Tang, and J.L. Woolford, Jr. 2005. Ytm1, Nop7, and Erb1 form a complex necessary for maturation of yeast 66S preribosomes. Mol Cell Biol. 25:10419-10432.
Milkereit, P., O. Gadal, A. Podtelejnikov, S. Trumtel, N. Gas, E. Petfalski, D. Tollervey, M. Mann, E. Hurt, and H. Tschochner. 2001. Maturation and intranuclear transport of pre-ribosomes requires Noc proteins. Cell. 105:499-509.
Mohr, D., S. Frey, T. Fischer, T. Guttler, and D. Gorlich. 2009. Characterisation of the passive permeability barrier of nuclear pore complexes. EMBO Journal. 28:2541-2553.
Morita, D., K. Miyoshi, Y. Matsui, A. Toh-e, H. Shinkawa, T. Miyakawa, and K. Mizuta. 2002. Rpf2p, an evolutionarily conserved protein, interacts with ribosomal protein L11 and is essential for the processing of 27 SB pre-rRNA to 25 S rRNA and the 60 S ribosomal subunit assembly in Saccharomyces cerevisiae. Journal of Biological Chemistry. 277:28780-28786.
Morley, S.J., P.S. Curtis, and V.M. Pain. 1997. eIF4G: translation's mystery factor begins to yield its secrets. RNA. 3:1085-1104.
Nakhoul, H., J. Ke, X. Zhou, W. Liao, S.X. Zeng, and H. Lu. 2014. Ribosomopathies: mechanisms of disease. Clin Med Insights Blood Disord. 7:7-16.
Narla, A., and B.L. Ebert. 2010. Ribosomopathies: human disorders of ribosome dysfunction. Blood. 115:3196-3205.
Narla, A., S.N. Hurst, and B.L. Ebert. 2011. Ribosome defects in disorders of erythropoiesis. Int J Hematol. 93:144-149.
Nerurkar, P., M. Altvater, S. Gerhardy, S. Schutz, U. Fischer, C. Weirich, and V.G. Panse. 2015. Eukaryotic Ribosome Assembly and Nuclear Export. Int Rev Cel Mol Bio. 319:107-140.
Nissan, T.A., J. Bassler, E. Petfalski, D. Tollervey, and E. Hurt. 2002. 60S pre-ribosome formation viewed from assembly in the nucleolus until export to the cytoplasm. EMBO J. 21:5539-5547.
Panse, V.G., and A.W. Johnson. 2010. Maturation of eukaryotic ribosomes: acquisition of functionality. Trends Biochem Sci. 35:260-266.
Perez-Fernandez, J., A. Roman, J. De Las Rivas, X.R. Bustelo, and M. Dosil. 2007. The 90S preribosome is a multimodular structure that is assembled through a hierarchical mechanism. Molecular and Cellular Biology. 27:5414-5429.
Pertschy, B., C. Saveanu, G. Zisser, A. Lebreton, M. Tengg, A. Jacquier, E. Liebminger, B. Nobis, L. Kappel, I. van der Klei, G. Hogenauer, M. Fromont-Racine, and H. Bergler. 2007. Cytoplasmic recycling of 60S preribosomal factors depends on the AAA protein Drg1. Mol Cell Biol. 27:6581-6592.
Petes, T.D. 1979. Yeast ribosomal DNA genes are located on chromosome XII. Proc Natl Acad Sci U S A. 76:410-414.
Pillet, B., V. Mitterer, D. Kressler, and B. Pertschy. 2017. Hold on to your friends: Dedicated chaperones of ribosomal proteins: Dedicated chaperones mediate the safe transfer of ribosomal proteins to their site of pre-ribosome incorporation. Bioessays. 39:1-12.
Planta, R.J. 1997. Regulation of ribosome synthesis in yeast. Yeast. 13:1505-1518.
Preiss, T., and M.W. Hentze. 1999. From factors to mechanisms: translation and translational control in eukaryotes. Curr Opin Genet Dev. 9:515-521.
Prieto, J.L., and B. McStay. 2007. Recruitment of factors linking transcription and processing of pre-rRNA to NOR chromatin is UBF-dependent and occurs independent of transcription in human cells. Genes Dev. 21:2041-2054.
Rajyaguru, P., and R. Parker. 2012. RGG motif proteins: modulators of mRNA functional states. Cell Cycle. 11:2594-2599.
Rajyaguru, P., M. She, and R. Parker. 2012. Scd6 targets eIF4G to repress translation: RGG motif proteins as a class of eIF4G-binding proteins. Mol Cell. 45:244-254.
Ramirez-Valle, F., S. Braunstein, J. Zavadil, S.C. Formenti, and R.J. Schneider. 2008. eIF4GI links nutrient sensing by mTOR to cell proliferation and inhibition of autophagy. J Cell Biol. 181:293-307.
Ribbeck, K., and D. Gorlich. 2001. Kinetic analysis of translocation through nuclear pore complexes. EMBO Journal. 20:1320-1330.
Rodriguez-Mateos, M., J.J. Garcia-Gomez, R. Francisco-Velilla, M. Remacha, J. de la Cruz, and J.P.G. Ballesta. 2009. Role and dynamics of the ribosomal protein P0 and its related trans-acting factor Mrt4 during ribosome assembly in Saccharomyces cerevisiae. Nucleic Acids Research. 37:7519-7532.
Rogers, A.N., D. Chen, G. McColl, G. Czerwieniec, K. Felkey, B.W. Gibson, A. Hubbard, S. Melov, G.J. Lithgow, and P. Kapahi. 2011. Life span extension via eIF4G inhibition is mediated by posttranscriptional remodeling of stress response gene expression in C. elegans. Cell Metab. 14:55-66.
Rogers, G.W., Jr., N.J. Richter, W.F. Lima, and W.C. Merrick. 2001. Modulation of the helicase activity of eIF4A by eIF4B, eIF4H, and eIF4F. J Biol Chem. 276:30914-30922.
Rout, M.P., J.D. Aitchison, A. Suprapto, K. Hjertaas, Y. Zhao, and B.T. Chait. 2000. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J Cell Biol. 148:635-651.
Rugjee, K.N., S. Roy Chaudhury, K. Al-Jubran, P. Ramanathan, T. Matina, J. Wen, and S. Brogna. 2013. Fluorescent protein tagging confirms the presence of ribosomal proteins at Drosophila polytene chromosomes. PeerJ. 1:e15.
Russell, D.W., and L.L. Spremulli. 1979. Purification and characterization of a ribosome dissociation factor (eukaryotic initiation factor 6) from wheat germ. J Biol Chem. 254:8796-8800.
Sanghai, Z.A., L. Miller, K.R. Molloy, J. Barandun, M. Hunziker, M. Chaker-Margot, J. Wang, B.T. Chait, and S. Klinge. 2018. Modular assembly of the nucleolar pre-60S ribosomal subunit. Nature. 556:126-129.
Saveanu, C., D. Bienvenu, A. Namane, P.E. Gleizes, N. Gas, A. Jacquier, and M. Fromont-Racine. 2001. Nog2p, a putative GTPase associated with pre-60S subunits and required for late 60S maturation steps. EMBO J. 20:6475-6484.
Saveanu, C., A. Namane, P.E. Gleizes, A. Lebreton, J.C. Rousselle, J. Noaillac-Depeyre, N. Gas, A. Jacquier, and M. Fromont-Racine. 2003. Sequential protein association with nascent 60S ribosomal particles. Mol Cell Biol. 23:4449-4460.
Schafer, T., D. Strauss, E. Petfalski, D. Tollervey, and E. Hurt. 2003. The path from nucleolar 90S to cytoplasmic 40S pre-ribosomes. EMBO J. 22:1370-1380.
Schroder, P.A., and M.J. Moore. 2005. Association of ribosomal proteins with nascent transcripts in S. cerevisiae. RNA. 11:1521-1529.
Shah, P., Y. Ding, M. Niemczyk, G. Kudla, and J.B. Plotkin. 2013. Rate-limiting steps in yeast protein translation. Cell. 153:1589-1601.
Shen, E.C., T. Stage-Zimmermann, P. Chui, and P.A. Silver. 2000. 7The yeast mRNA-binding protein Npl3p interacts with the cap-binding complex. J Biol Chem. 275:23718-23724.
Smith, E.D., M. Tsuchiya, L.A. Fox, N. Dang, D. Hu, E.O. Kerr, E.D. Johnston, B.N. Tchao, D.N. Pak, K.L. Welton, D.E. Promislow, J.H. Thomas, M. Kaeberlein, and B.K. Kennedy. 2008. Quantitative evidence for conserved longevity pathways between divergent eukaryotic species. Genome Res. 18:564-570.
Sonenberg, N., and A.G. Hinnebusch. 2007. New modes of translational control in development, behavior, and disease. Mol Cell. 28:721-729.
Sonenberg, N., and A.G. Hinnebusch. 2009a. Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets. Cell. 136:731-745.
Sonenberg, N., and A.G. Hinnebusch. 2009b. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell. 136:731-745.
Stumpf, C.R., and D. Ruggero. 2011. The cancerous translation apparatus. Current Opinion in Genetics & Development. 21:474-483.
Takai, Y., T. Sasaki, and T. Matozaki. 2001. Small GTP-binding proteins. Physiol Rev. 81:153-208.
Tarun, S.Z., and A.B. Sachs. 1996. Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO Journal. 15:7168-7177.
Tarun, S.Z., S.E. Wells, J.A. Deardorff, and A.B. Sachs. 1997. Translation initiation factor eIF4G mediates in vitro poly(A) tail-dependent translation. P Natl Acad Sci USA. 94:9046-9051.
Teng, T., G. Thomas, and C.A. Mercer. 2013. Growth control and ribosomopathies. Curr Opin Genet Dev. 23:63-71.
Thomson, E., and D. Tollervey. 2010. The Final Step in 5.8S rRNA Processing Is Cytoplasmic in Saccharomyces cerevisiae. Molecular
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79021-
dc.description.abstracteIF4G (eukaryotic initiation factor 4G)是真核生物中重要的轉譯起始因子,幫助40S核醣體結合至mRNA、預備進行蛋白質轉譯(translation)。除了蛋白質轉譯,核醣體的生合成亦是調控蛋白質總量的關鍵途徑;核糖體的生合成需要超過200多個組裝因子進行核醣體RNAs的裁切、修飾、穩定核醣體蛋白,及確認核醣體的組裝正確。已有研究指出,啤酒酵母的eIF4G缺失時,60S核醣體會出現生合成的缺失,但目前沒有研究探討eIF4G在60S核醣體生合成的分子機制,故仍無直接的證據說明eIF4G參與核醣體生合成途徑,及其扮演的角色、重要性。本研究針對啤酒酵母的eIF4G1(Tif4631)和eIF4G2(Tif4632)進行分析,發現兩者皆參與早期60S核醣體的生合成,過多或過少的eIF4G都會干擾60S的生合成。有趣的是,比較eIF4G1和eIF4G2之間差異,本研究發現雖然tif4631Δ中核醣體生合成的缺失比tif4632Δ嚴重,但高溫(37°C)下高量表現的eIF4G2會明顯改變Ssf1(60S的組裝因子)在細胞中的分布,及其與60S核醣體的結合,而高量eIF4G1不會;亦發現高量eIF4G1/2會自RNA層級開始下降SSF1的表現量,高量eIF4G2則對於SSF1啟動子調控的專一性較高。另一方面,在細胞失去其中一個eIF4G (tif4631Δ或tif4632Δ),依序地,高溫下SSF (SSF1或SSF2)的啟動子運作會受到eIF4G2和eIF4G1不一樣的調控。因此,本研究證明eIF4G1/2透過SSF1影響細胞中60S核醣體生合成的進行,且兩者調控SSF1 mRNA表現量及其蛋白質交互作用的方式具有差異性。zh_TW
dc.description.abstracteIF4G, an important eukaryotic translation initiation factor, recruites 40S ribosomal subunit to mRNA to start protein translation. In addition to translation, ribosome biogenesis is also a key pathway to regulate protein levels. In ribosome biogenesis, more than 200 trans-acting (assembly) factors are required for rRNA processing, modification, stabilization of ribosomal proteins, and to ensure the accuracy in ribosome assembly. In S. cerevisiae, it was reported that deletion of eIF4G1 or eIF4G2 caused defect in 60S biogenesis. However, no study has shown the molecular mechanism of eIF4G in 60S ribosome biogenesis, so it is unclear to depict the role or the importance of eIF4G in this pathway. In this study, both eIF4G1 (Tif4631) and eIF4G2 (Tif4632) in yeast were required for early 60S ribosome biogenesis. Excess or insufficient expression levels of eIF4G disturbed 60S biogenesis. Interestingly, there are differences between eIF4G1 and eIF4G2. Although the ribosome biogenesis defect in tif4631Δ was more severe than that of tif4632Δ, overexpression of eIF4G2 at high temperature (37°C) apparently changed the localization and interaction with 60S of Ssf1, a 60S assembly factor, but eIF4G1 didn’t. Overexpression of eIF4G1 or eIF4G2 decreased transcription of SSF1, and eIF4G2 showed higher specificity toward this regulation. On the other hand, at the higher temperature, SSF (SSF1 or SSF2) promoter was oppositely regulated by eIF4G2 (in tif4631Δ) and eIF4G1 (in tif4632Δ). These data indicate that eIF4G1 and eIF4G2 impact 60S ribosome biogenesis via SSF1, yet they may regulate SSF1 mRNA expression and Ssf1 protein interactions in a disparate way.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:37:17Z (GMT). No. of bitstreams: 1
ntu-107-R05623022-1.pdf: 4055765 bytes, checksum: d9d07f4d5e5d44aad5bd7afddf0bda94 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
表目錄 viii
圖目錄 ix
第一章 前言 - 1 -
一、核醣體 - 1 -
二、核醣體生合成 - 1 -
1. rRNA的剪切及修飾 - 1 -
2. 核醣體組裝 - 3 -
3. 核醣體的出核過程 - 4 -
4. 核醣體於細胞質的成熟過程 - 5 -
5. 核醣體病變 (Ribosomopathies) - 6 -
三、真核生物的轉譯作用 - 8 -
四、研究目標蛋白─eIF4G - 9 -
1. eIF4G的多重角色 - 9 -
2. eIF4G的親緣基因(homologs) - 10 -
3. eIF4G突變會產生核醣體生合成缺失 - 11 -
4. eIF4G可能為Brix superfamily的高量抑制子 - 11 -
第二章 研究動機 - 13 -
第三章 材料與方法 - 14 -
一、菌株與質體 (Strains and plasmids) - 14 -
二、轉型作用 (Transformation) - 14 -
1. 大腸桿菌轉型作用 (E. coli heat shock transformation) - 14 -
2. 快速酵母菌轉型作用 (Quick yeast transformation) - 14 -
3. 高效酵母菌轉型作用 (High-efficiency yeast transformation) - 14 -
三、生長測試 (Spot assay) - 15 -
四、多核醣體圖譜分析 (Polysome profile analysis) - 15 -
五、單核醣體圖譜分析 (Monosome profile analysis) - 15 -
六、螢光顯微鏡觀察 (Immunofluorescence) - 16 -
七、免疫沉澱 (Immunoprecipitation; IP) - 16 -
八、氫氧化鈉破菌法 (Post-alkaline extraction from yeast) - 16 -
九、西方墨點法 (Western blot) - 17 -
十、RNA萃取 (Total RNA extraction) - 17 -
十一、反轉錄 (Reverse transcription) - 18 -
十二、定量即時聚合酶鏈鎖反應 (Quantitative real time PCR; qPCR) - 18 -
第四章 實驗結果 - 19 -
一、eIF4G突變造成60S核醣體生合成缺失 - 19 -
二、eIF4G 結合60S核醣體 - 21 -
三、高量eIF4G惡化ssf1Δ和ssf2Δ的60S核醣體生合成 - 23 -
四、高量eIF4G的表現改變Ssf1蛋白質分布位置及和60S核醣體的結合 - 25 -
五、高量eIF4G下降Ssf1蛋白質總量 - 27 -
六、高量eIF4G從RNA層級開始下降SSF1的表現量 - 29 -
第五章 討論 - 32 -
一、eIF4G轉譯起始因子參與60S核醣體生合成 - 32 -
二、高量TIF4632不能恢復Brix蛋白質缺失菌株的生長缺失 - 33 -
三、eIF4G、Ssf1及pre-60S核醣體三者之間的交互作用 - 34 -
四、eIF4G可以調控SSF的RNA表現量 - 36 -
五、比較eIF4G1和eIF4G2的功能差異 - 38 -
第六章 結論 - 40 -
參考文獻 - 41 -
表一、本研究使用之酵母菌株 - 55 -
表二、本研究使用之質體 - 58 -
圖一、eIF4G 的突變造成60S核醣體生合成缺失 - 59 -
圖二、eIF4G結合60S核醣體 - 60 -
圖三、高量表現eIF4G對ssf1Δ和ssf2Δ菌株產生生長遲滯的情形 - 63 -
圖五、高量表現eIF4G使Ssf1在細胞中的分布位置異常 - 65 -
圖六、高量表現eIF4G影響Ssf1蛋白質和核醣體的結合 - 66 -
圖七、eIF4G的改變影響Ssf1蛋白質總量但不改變其穩定性 - 67 -
圖八、eIF4G的改變影響SSF1啟動子的表現量 - 69 -
圖九、高量eIF4G使SSF1啟動子轉錄的mRNA總量下降 - 71 -
圖十、eIF4G1和eIF4G2調節SSF1的分子機制 - 72 -
dc.language.isozh-TW
dc.subjecteIF4G1/2zh_TW
dc.subject60S生合成zh_TW
dc.subject核醣體zh_TW
dc.subjectmRNA調控zh_TW
dc.subjectSsf1zh_TW
dc.subjecteIF4Gen
dc.subject60S biogenesisen
dc.subjectSsf1en
dc.subjectRibosomeen
dc.subjectmRNA regulationen
dc.title啤酒酵母的轉譯起始因子eIF4G透過SSF1基因影響60S核醣體生合成zh_TW
dc.titleTranslation initiation factor eIF4G impacts 60S ribosome biogenesis via SSF1 in Saccharomyces cerevisiaeen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃偉邦,陳美瑜,冀宏源,張麗冠
dc.subject.keyword核醣體,60S生合成,eIF4G1/2,Ssf1,mRNA調控,zh_TW
dc.subject.keywordRibosome,60S biogenesis,eIF4G,Ssf1,mRNA regulation,en
dc.relation.page75
dc.identifier.doi10.6342/NTU201803270
dc.rights.note有償授權
dc.date.accepted2018-08-15
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
dc.date.embargo-lift2023-08-21-
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-107-R05623022-1.pdf
  未授權公開取用
3.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved