Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79002
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳彥榮
dc.contributor.authorYun Chengen
dc.contributor.author鄭筠zh_TW
dc.date.accessioned2021-07-11T15:35:39Z-
dc.date.available2023-08-17
dc.date.copyright2018-08-17
dc.date.issued2018
dc.date.submitted2018-08-15
dc.identifier.citationAmerican Cancer Society. (2017). Colorectal Cancer Facts & Figures 2017-2019. Atlanta: American Cancer Society
Agnihotri, S., Golbourn, B., Huang, X., Remke, M., Younger, S., Cairns, R. A., . . . Rutka, J. T. (2016). PINK1 Is a Negative Regulator of Growth and the Warburg Effect in Glioblastoma. Cancer Res, 76(16), 4708-4719
Ali, A. M. (2016). Stem Cells and Cancer. Journal of Cell Science & Therapy, 07(05)
Arena, G., Gelmetti, V., Torosantucci, L., Vignone, D., Lamorte, G., De Rosa, P., . . . Valente, E. M. (2013). PINK1 protects against cell death induced by mitochondrial depolarization, by phosphorylating Bcl-xL and impairing its pro-apoptotic cleavage. Cell Death Differ, 20(7), 920-930
Armaghany, T., Wilson, J. D., Chu, Q., & Mills, G. (2012). Genetic Alterations in Colorectal Cancer. Gastrointest Cancer Res, 5(1), 19-27
Berthier, A., Navarro, S., Jimenez-Sainz, J., Rogla, I., Ripoll, F., Cervera, J., & Pulido, R. (2011). PINK1 displays tissue-specific subcellular location and regulates apoptosis and cell growth in breast cancer cells. Hum Pathol, 42(1), 75-87
Bhardwaj, G., Murdoch, B., Wu, D., Baker, D. P., Williams, K. P., Chadwick, K., . . . Bhatia, M. (2001). Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nature Immunology, 2, 172-180
Chen, C., Liu, Y., Liu, R., Ikenoue, T., Guan, K. L., Liu, Y., & Zheng, P. (2008). TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med, 205(10), 2397-2408
Chen, H., & Chan, D. C. (2017). Mitochondrial Dynamics in Regulating the Unique Phenotypes of Cancer and Stem Cells. Cell Metab, 26(1), 39-48
Dean, M., Fojo, T., & Bates, S. (2005). Tumour stem cells and drug resistance. Nat Rev Cancer, 5(4), 275-284
Denise, C., Paoli, P., Calvani, M., Taddei, M. L., Giannoni, E., Kopetz, S., . . . Chiarugi, P. (2015). 5-fluorouracil resistant colon cancer cells are addicted to OXPHOS to survive and enhance stem-like traits. Oncotarget, 6(39), 41706-41721
Dominy, J. E., & Puigserver, P. (2013). Mitochondrial biogenesis through activation of nuclear signaling proteins. Cold Spring Harb Perspect Biol, 5(7)
Dragu, D. L., Necula, L. G., Bleotu, C., Diaconu, C. C., & Chivu-Economescu, M. (2015). Therapies targeting cancer stem cells: Current trends and future challenges. World J Stem Cells, 7(9), 1185-1201
Dull, T., Zufferey, R., Kelly, M., Mandel, R. J., Nguyen, M., Trono, D., & Naldini, L. (1998). A third-generation lentivirus vector with a conditional packaging system. J Virol, 72(11), 8463-8471
Elmore, S. P., Qian, T., Grissom, S. F., & Lemasters, J. J. (2001). The mitochondrial permeability transition initiates autophagy in rat hepatocytes. The FASEB Journal, 15(12), 2286-2287
Exner, N., Treske, B., Paquet, D., Holmstrom, K., Schiesling, C., Gispert, S., . . . Haass, C. (2007). Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J Neurosci, 27(45), 12413-12418
Feng, W., Gentles, A., Nair, R. V., Huang, M., Lin, Y., Lee, C. Y., . . . Diehn, M. (2014). Targeting unique metabolic properties of breast tumor initiating cells. Stem Cells, 32(7), 1734-1745
Flavahan, W. A., Wu, Q., Hitomi, M., Rahim, N., Kim, Y., Sloan, A. E., . . . Hjelmeland, A. B. (2013). Brain Tumor Initiating Cells Adapt to Restricted Nutrition through Preferential Glucose Uptake. Nature neuroscience, 16(10), 1373-1382
Geisler, S., Holmstrom, K. M., Skujat, D., Fiesel, F. C., Rothfuss, O. C., Kahle, P. J., & Springer, W. (2010). PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol, 12(2), 119-131
Green, D. R., & Reed, J. C. (1998). Mitochondria and Apoptosis. Science, 281, 1309-1312
Gurumurthy, S., Xie, S. Z., Alagesan, B., Kim, J., Yusuf, R. Z., Saez, B., . . . Bardeesy, N. (2010). The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature, 468(7324), 659-663
Honda, Y., & Honda, S. (1999). The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. Faseb j, 13(11), 1385-1393
Hu, Y., & Smyth, G. K. (2009). ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods, 347(1-2), 70-78
Ivankovic, D., Chau, K. Y., Schapira, A. H., & Gegg, M. E. (2016). Mitochondrial and lysosomal biogenesis are activated following PINK1/parkin-mediated mitophagy. J Neurochem, 136(2), 388-402
Jin, S. M., Lazarou, M., Wang, C., Kane, L. A., Narendra, D. P., & Youle, R. J. (2010). Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol, 191(5), 933-942
Kanfer, G., & Kornmann, B. (2016). Dynamics of the mitochondrial network during mitosis. Biochem Soc Trans, 44(2), 510-516
Katajisto, P., Döhla, J., Chaffer, C. L., Pentinmikko, N., Marjanovic, N., Iqbal, S., . . . Sabatini, D. M. (2015). Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science, 348(6232), 340-343
Kim, Y., Park, J., Kim, S., Song, S., Kwon, S. K., Lee, S. H., . . . Chung, J. (2008). PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem Biophys Res Commun, 377(3), 975-980
Klonisch, T., Wiechec, E., Hombach-Klonisch, S., Ande, S. R., Wesselborg, S., Schulze-Osthoff, K., & Los, M. (2008). Cancer stem cell markers in common cancers - therapeutic implications. Trends Mol Med, 14(10), 450-460
Lamb, R., Ozsvari, B., Lisanti, C. L., Tanowitz, H. B., Howell, A., Martinez-Outschoorn, U. E., . . . Lisanti, M. P. (2015). Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: treating cancer like an infectious disease. Oncotarget, 6(7), 4569-4584
Lemasters, J. J. (2005). Selective Mitochondrial Autophagy, or Mitophagy, as a Targeted Defense Against Oxidative Stress, Mitochondrial Dysfunction, and Aging. Rejuvenation Research, 8
Liu, K., Lee, J., Kim, J. Y., Wang, L., Tian, Y., Chan, S. T., . . . Ou, J. J. (2017). Mitophagy Controls the Activities of Tumor Suppressor p53 to Regulate Hepatic Cancer Stem Cells. Mol Cell, 68(2), 281-292.e285
MacKeigan, J. P., Murphy, L. O., & Blenis, J. (2005). Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol, 7(6), 591-600
Mei, Y., Zhang, Y., Yamamoto, K., Xie, W., Mak, T. W., & You, H. (2009). FOXO3a-dependent regulation of Pink1 (Park6) mediates survival signaling in response to cytokine deprivation. Proc Natl Acad Sci U S A, 106(13), 5153-5158
Mihaylova, M. M., Sabatini, D. M., & Yilmaz, O. H. (2014). Dietary and metabolic control of stem cell function in physiology and cancer. Cell Stem Cell, 14(3), 292-305
Mouchiroud, L., Houtkooper, R. H., Moullan, N., Katsyuba, E., Ryu, D., Canto, C., . . . Auwerx, J. (2013). The NAD(+)/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling. Cell, 154(2), 430-441
Murata, H., Sakaguchi, M., Jin, Y., Sakaguchi, Y., Futami, J., Yamada, H., . . . Huh, N. H. (2011). A new cytosolic pathway from a Parkinson disease-associated kinase, BRPK/PINK1: activation of AKT via mTORC2. J Biol Chem, 286(9), 7182-7189
Nowell, P. C. (1976). The clonal evolution of tumor cell populations. Science, 194(4260), 23-28
O'Flanagan, C. H., Morais, V. A., Wurst, W., De Strooper, B., & O'Neill, C. (2015). The Parkinson's gene PINK1 regulates cell cycle progression and promotes cancer-associated phenotypes. Oncogene, 34(11), 1363-1374
O'Flanagan, C. H., & O'Neill, C. (2014). PINK1 signalling in cancer biology. Biochim Biophys Acta, 1846(2), 590-598
Pastò, A., Bellio, C., Pilotto, G., Ciminale, V., Silic-Benussi, M., Guzzo, G., . . . Amadori, A. (2014). Cancer stem cells from epithelial ovarian cancer patients
privilege oxidative phosphorylation, and resist glucose
deprivation. Oncotarget, 5(12), 4305-4319
Pasto, A., Bellio, C., Pilotto, G., Ciminale, V., Silic-Benussi, M., Guzzo, G., . . . Amadori, A. (2014). Cancer stem cells from epithelial ovarian cancer patients privilege oxidative phosphorylation, and resist glucose deprivation. Oncotarget, 5(12), 4305-4319
Peiris-Pagès, M., Martinez-Outschoorn, U. E., Pestell, R. G., Sotgia, F., & Lisanti, M. P. (2016). Cancer stem cell metabolism. Breast Cancer Res, 18(1), 55
Pridgeon, J. W., Olzmann, J. A., Chin, L. S., & Li, L. (2007). PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol, 5(7), e172
Solaini, G., Baracca, A., Lenaz, G., & Sgarbi, G. (2010). Hypoxia and mitochondrial oxidative metabolism. Biochim Biophys Acta, 1797(6-7), 1171-1177
Taddei, M. L., Giannoni, E., Raugei, G., Scacco, S., Sardanelli, A. M., Papa, S., & Chiarugi, P. (2012). Mitochondrial Oxidative Stress due to Complex I Dysfunction Promotes Fibroblast Activation and Melanoma Cell Invasiveness. J Signal Transduct, 2012, 684592
Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J., & Jemal, A. (2015). Global cancer statistics, 2012. CA Cancer J Clin, 65(2), 87-108
Unoki, M., & Nakamura, Y. (2001). Growth-suppressive effects of BPOZ and EGR2, two genes involved in the PTEN signaling pathway. Oncogene, 20(33), 4457-4465
Valente, E. M., Abou-Sleiman, P. M., Caputo, V., Muqit, M. M., Harvey, K., Gispert, S., . . . Wood, N. W. (2004). Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science, 304(5674), 1158-1160
van der Bliek, A. M., Shen, Q., & Kawajiri, S. (2013). Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol, 5(6)
Varnum-Finney, B., Xu, L., Brashem-Stein, C., Nourigat, C., Flowers, D., Bakkour, S., . . . Bernstein, I. D. (2000). Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med, 6, 1278-1281
Vermeulen, L., De Sousa, E. M. F., van der Heijden, M., Cameron, K., de Jong, J. H., Borovski, T., . . . Medema, J. P. (2010). Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol, 12(5), 468-476
Vlashi, E., Lagadec, C., Vergnes, L., Reue, K., Frohnen, P., Chan, M., . . . Pajonk, F. (2014). Metabolic differences in breast cancer stem cells and differentiated progeny. Breast Cancer Res Treat, 146(3), 525-534
Wallace, D. C. (2005). A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet, 39, 359-407
Westermann, B. (2010). Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol, 11(12), 872-884
Ye, X. Q., Li, Q., Wang, G. H., Sun, F. F., Huang, G. J., Bian, X. W., . . . Qian, G. S. (2011). Mitochondrial and energy metabolism-related properties as novel indicators of lung cancer stem cells. Int J Cancer, 129(4), 820-831
Zhang, C., Lee, S., Peng, Y., Bunker, E., Giaime, E., Shen, J., . . . Liu, X. (2014). PINK1 triggers autocatalytic activation of Parkin to specify cell fate decisions. Curr Biol, 24(16), 1854-1865
衛生福利部國民健康署. (2017). 中華民國 104 年癌症登記報告.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79002-
dc.description.abstract大腸癌長期位居國人十大癌症榜首,全球發生率與死亡率也位居前三名。過去發現粒線體異常會導致癌症的產生,也發現癌幹細胞具有特殊的粒線體特徵以及代謝方式,顯示粒線體在發展癌症療法上為良好的潛力標的。PINK1 是負責調控粒線體的重要蛋白,過去在不同癌症中發現 PINK1 異常可能導致癌症產生,然而 PINK1 對大腸癌及大腸癌幹細胞的影響以及機制仍不清楚。在本研究中,發現大腸癌細胞及癌幹細胞的 PINK1表現量分別有下降及上升的現象,接著分析 PINK1 基因削弱對細胞及粒線體造成的影響,發現 PINK1 會幫助細胞生長以及對抗低度的氧化壓力,並可能參與高氧化壓力下細胞凋亡的開啟。此外,削弱 PINK1 會透過抑制呼吸作用影響細胞在氧化壓力下的生長以及粒線體膜電位的維持,以及減少癌幹細胞的數量。因此,我證明了 PINK1 在大腸癌細胞的生長以及癌幹細胞的維持中扮演重要的角色,也發現改變代謝作用或施加適當的氧化壓力可能有助於抑制大腸癌細胞的生長以及清除大腸癌幹細胞。zh_TW
dc.description.abstractColorectal cancer is the most common cancer in Taiwan and is the one of leading causes of cancer-related death in the world. In the past decade, many studies found that defects in mitochondria may promote carcinogenesis. Several studies also showed that the state of mitochondria and metabolism is unique in cancer stem cell, indicating the potential to develop mitochondria-based cancer therapy. Serine/threonine kinase named PTEN-induced kinase-1 (PINK1) play important role in mitochondrial homeostasis. Several studies have found that abnormal PINK1 is associated to tumorigenesis. But whether PINK1 have direct impact on colon cancer is still unknown. In this study, PINK1 was found down-regulated and up-regulated in colon cancer cell and cancer stem cell, respectively. Knocking down (KD) PINK1 in colorectal cancer cell line HT29 decreased cell proliferation and impaired resistance to low-level oxidative stress, which might result from the impaired function of mitophagy and accumulation of mitochondrial ROS. After induced low-level oxidative stress by antimycin A, the survival rates and mitochondrial membrane potential of PINK1 KD cells were lower than control cell, while KD PINK1 inhibited apoptosis at high-level oxidative stress. Furthermore, I found KD PINK1 impaired stress resistance through inhibiting respiration ability. And the cancer stem cells significantly decreased in PINK1 KD HT29. Overall, these finding reveal the important role of PINK1 in progression and maintenance of colon cancer cells and cancer stem cells. Alteration of metabolism or proper oxidative stress may facilitate inhibition of cancer progression and clearance of cancer stem cells.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:35:39Z (GMT). No. of bitstreams: 1
ntu-107-R05b22022-1.pdf: 1437576 bytes, checksum: d0ce728eb6a2862e8291645f890f1e04 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents中文摘要 i
Abstract ii
目錄 iii
第一章 背景介紹 1
1. 大腸癌 (colorectal cancer) 1
2. 癌幹細胞 (cancer stem cell) 1
2.1 癌幹細胞假說 (cancer stem cell hypothesis) 1
2.2 癌幹細胞的特性 2
2.3 癌幹細胞的標定 4
3. 粒線體 5
3.1 粒線體與癌症 5
3.2 粒線體的型態、功能以及恆定 6
3.3 粒線體與細胞的訊息路徑 7
3.4 粒線體與癌幹細胞 9
4. 磷酸酯酶與張力蛋白同源物誘導激酶1 (PTEN-induced putative kinase 1, PINK1) 10
4.1 PINK1 簡介 10
4.2 PINK1 的功能以及對粒線體的調控 10
4.3 PINK1 於癌症中扮演的雙重角色 11
4.4 PINK1 對癌幹細胞的調控 12
第二章 材料方法 14
1. 細胞培養 14
2. 建構細胞株 14
2.1. 慢病毒包裝載體 14
2.2. pLKO.1 系統 14
2.3. 慢病毒製作 14
2.4. 細胞感染及基因削弱 (knockdown) 效率檢測 15
3. RNA 抽取與反轉錄 15
4. 定量聚合酶鏈式反應 16
5. 蛋白質抽取 16
6. 西方墨點法 16
7. DNA 合成檢定 BrdU (Bromodeoxyuridine) assay 17
8. 細胞週期分析 17
9. 粒線體活性氧化物偵測 18
10. 細胞存活率分析——MTT 試驗 18
11. 細胞凋亡分析 18
12. 粒線體膜電位分析 19
13. 氧氣消耗速率測驗 19
14. 細胞球體形成實驗 20
15. 流式細胞儀 20
16. 5-Fu 抗藥性細胞群落形成實驗 20
17. 統計分析 21
第三章 結果 22
1. PINK1 於大腸癌組織與大腸癌幹細胞的表現量 22
2. PINK1 基因削弱使大腸癌細胞株 HT29 增生速率下降及細胞週期停滯 22
3. PINK1 KD造成大腸癌細胞株 HT29 粒線體自噬作用下降及活性氧化物累積 23
4. 氧化壓力會促進細胞凋亡並破壞粒線體膜電位 23
5. PINK1 KD 抑制 HT29 呼吸作用及氧化壓力下的細胞生長及粒線體膜電位 24
6. PINK1 基因削弱降低大腸癌幹細胞數量 25
第四章 總結與討論 26
第五章 附表與結果圖 30
表一 使用引子列表 30
表二 使用抗體列表 31
圖一 PINK1 於大腸癌組織與大腸癌幹細胞的表現量 33
圖二 PINK1 基因削弱使大腸癌細胞株 HT29 增生速率下降及細胞週期停滯 34
圖三 PINK1 基因削弱造成大腸癌細胞株 HT29自噬作用下降及活性氧化物累積 35
圖四 氧化壓力會促進細胞凋亡並破壞粒線體膜電位 37
圖五 PINK1 KD 抑制呼吸作用及氧化壓力下的細胞生長及粒線體膜電位 39
圖六 PINK1 基因削弱降低大腸癌幹細胞數量 40
第六章 參考資料 42
第七章 附錄 49
dc.language.isozh-TW
dc.subject大腸癌zh_TW
dc.subject氧化壓力zh_TW
dc.subject癌幹細胞zh_TW
dc.subject粒線體自噬作用zh_TW
dc.subject粒線體zh_TW
dc.subjectPINK1zh_TW
dc.subjectoxidative stressen
dc.subjectcancer stem cellen
dc.subjectmitophagyen
dc.subjectcolon canceren
dc.subjectPINK1en
dc.subjectmitochondriaen
dc.titlePINK1 對大腸癌的調控zh_TW
dc.titlePTEN-induced kinase 1 in Regulation of Colon Canceren
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃楓婷,蔡素宜
dc.subject.keyword大腸癌,癌幹細胞,粒線體,PINK1,粒線體自噬作用,氧化壓力,zh_TW
dc.subject.keywordcolon cancer,cancer stem cell,mitochondria,PINK1,mitophagy,oxidative stress,en
dc.relation.page49
dc.identifier.doi10.6342/NTU201803493
dc.rights.note有償授權
dc.date.accepted2018-08-15
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
dc.date.embargo-lift2023-08-17-
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-107-R05b22022-1.pdf
  未授權公開取用
1.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved