請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78999
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳益群 | |
dc.contributor.author | Yun-Zhe Wu | en |
dc.contributor.author | 吳允哲 | zh_TW |
dc.date.accessioned | 2021-07-11T15:35:24Z | - |
dc.date.available | 2023-08-21 | |
dc.date.copyright | 2018-08-21 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-15 | |
dc.identifier.citation | Abreu-Blanco, M. T., Verboon, J. M., Liu, R., Watts, J. J., & Parkhurst, S. M. (2012). Drosophila embryos close epithelial wounds using a combination of cellular protrusions and an actomyosin purse string. Journal of cell science, 125(Pt 24), 5984-5997.
Altun, Z. F., Chen, B., Wang, Z. W., & Hall, D. H. (2009). High resolution map of Caenorhabditis elegans gap junction proteins. Developmental dynamics : an official publication of the American Association of Anatomists, 238(8), 1936-1950. Armenti, S. T., & Nance, J. (2012). Adherens junctions in C. elegans embryonic morphogenesis. Sub-cellular biochemistry, 60, 279-299. Begnaud, S., Chen, T., Delacour, D., Mege, R. M., & Ladoux, B. (2016). Mechanics of epithelial tissues during gap closure. Current opinion in cell biology, 42, 52-62. Blom, N., Sicheritz-Ponten, T., Gupta, R., Gammeltoft, S., & Brunak, S. (2004). Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics, 4(6), 1633-1649. Brabin, C., Appleford, P. J., & Woollard, A. (2011). The Caenorhabditis elegans GATA factor ELT-1 works through the cell proliferation regulator BRO-1 and the Fusogen EFF-1 to maintain the seam stem-like fate. PLoS genetics, 7(8), e1002200. Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77(1), 71-94. Broday, L., Hauser, C. A., Kolotuev, I., & Ronai, Z. (2007). Muscle-epidermis interactions affect exoskeleton patterning in Caenorhabditis elegans. Developmental dynamics : an official publication of the American Association of Anatomists, 236(11), 3129-3136. Chiang, M. F., Yang, S. Y., Lin, I. Y., Hong, J. B., Lin, S. J., Ying, H. Y., . . . Lin, K. I. (2013). Inducible deletion of the Blimp-1 gene in adult epidermis causes granulocyte-dominated chronic skin inflammation in mice. Proceedings of the National Academy of Sciences of the United States of America, 110(16), 6476-6481. Chisholm, A. D., & Hsiao, T. I. (2012). The Caenorhabditis elegans epidermis as a model skin. I: development, patterning, and growth. Wiley interdisciplinary reviews. Developmental biology, 1(6), 861-878. Chisholm, A. D., & Xu, S. (2012). The Caenorhabditis elegans epidermis as a model skin. II: differentiation and physiological roles. Wiley interdisciplinary reviews. Developmental biology, 1(6), 879-902. Claret, S., Jouette, J., Benoit, B., Legent, K., & Guichet, A. (2014). PI(4,5)P2 produced by the PI4P5K SKTL controls apical size by tethering PAR-3 in Drosophila epithelial cells. Current biology : CB, 24(10), 1071-1079. Costa, M., Draper, B. W., & Priess, J. R. (1997). The role of actin filaments in patterning the Caenorhabditis elegans cuticle. Developmental biology, 184(2), 373-384. Davidson, L. A. (2012). No strings attached: new insights into epithelial morphogenesis. BMC biology, 10, 105. Dominguez, L. J., Barbagallo, M., & Moro, L. (2005). Collagen overglycosylation: A biochemical feature that may contribute to bone quality. Biochemical and Biophysical Research Communications, 330(1), 1-4. Doody, G. M., Care, M. A., Burgoyne, N. J., Bradford, J. R., Bota, M., Bonifer, C., . . . Tooze, R. M. (2010). An extended set of PRDM1/BLIMP1 target genes links binding motif type to dynamic repression. Nucleic acids research, 38(16), 5336-5350. Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research, 32(5), 1792-1797. Ewbank, J. J., & Zugasti, O. (2011). C. elegans: model host and tool for antimicrobial drug discovery. Disease models & mechanisms, 4(3), 300-304. Fan, X., She, Y. M., Bagshaw, R. D., Callahan, J. W., Schachter, H., & Mahuran, D. J. (2005). Identification of the hydrophobic glycoproteins of Caenorhabditis elegans. Glycobiology, 15(10), 952-964. Ferrier, A., Charron, A., Sadozai, Y., Switaj, L., Szutenbach, A., & Smith, P. A. (2011). Multiple phenotypes resulting from a mutagenesis screen for pharynx muscle mutations in Caenorhabditis elegans. PloS one, 6(11), e26594. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669), 806-811. Forman-Rubinsky, R., Cohen, J. D., & Sundaram, M. V. (2017). Lipocalins Are Required for Apical Extracellular Matrix Organization and Remodeling in Caenorhabditis elegans. Genetics, 207(2), 625-642. Frand, A. R., Russel, S., & Ruvkun, G. (2005). Functional genomic analysis of C. elegans molting. PLoS biology, 3(10), e312. Franke, W. W. (2009). Discovering the molecular components of intercellular junctions--a historical view. Cold Spring Harbor perspectives in biology, 1(3), a003061. Fuchs, E. (2007). Scratching the surface of skin development. Nature, 445(7130), 834-842. Gerstein, M. B., Lu, Z. J., Van Nostrand, E. L., Cheng, C., Arshinoff, B. I., Liu, T., . . . Waterston, R. H. (2010). Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science (New York, N.Y.), 330(6012), 1775-1787. Getsios, S., Kelsell, D. P., & Forge, A. (2015). Junctions in human health and inherited disease. Cell and tissue research, 360(3), 435-438. Ghosh, N., Gyory, I., Wright, G., Wood, J., & Wright, K. L. (2001). Positive regulatory domain I binding factor 1 silences class II transactivator expression in multiple myeloma cells. The Journal of biological chemistry, 276(18), 15264-15268. Gillard, G., Shafaq-Zadah, M., Nicolle, O., Damaj, R., Pecreaux, J., & Michaux, G. (2015). Control of E-cadherin apical localisation and morphogenesis by a SOAP-1/AP-1/clathrin pathway in C. elegans epidermal cells. Development (Cambridge, England), 142(9), 1684-1694. Gleason, J. E., & Eisenmann, D. M. (2010). Wnt signaling controls the stem cell-like asymmetric division of the epithelial seam cells during C. elegans larval development. Developmental biology, 348(1), 58-66. Gravato-Nobre, M. J., Nicholas, H. R., Nijland, R., O'Rourke, D., Whittington, D. E., Yook, K. J., & Hodgkin, J. (2005). Multiple genes affect sensitivity of Caenorhabditis elegans to the bacterial pathogen Microbacterium nematophilum. Genetics, 171(3), 1033-1045. Gravato-Nobre, M. J., Stroud, D., O'Rourke, D., Darby, C., & Hodgkin, J. (2011). Glycosylation genes expressed in seam cells determine complex surface properties and bacterial adhesion to the cuticle of Caenorhabditis elegans. Genetics, 187(1), 141-155. Harandi, O. F., & Ambros, V. R. (2015). Control of stem cell self-renewal and differentiation by the heterochronic genes and the cellular asymmetry machinery in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 112(3), E287-296. Hayes, G. D., Frand, A. R., & Ruvkun, G. (2006). The mir-84 and let-7 paralogous microRNA genes of Caenorhabditis elegans direct the cessation of molting via the conserved nuclear hormone receptors NHR-23 and NHR-25. Development (Cambridge, England), 133(23), 4631-4641. Hendriks, G. J., Gaidatzis, D., Aeschimann, F., & Grosshans, H. (2014). Extensive oscillatory gene expression during C. elegans larval development. Molecular cell, 53(3), 380-392. Hoflich, J., Berninsone, P., Gobel, C., Gravato-Nobre, M. J., Libby, B. J., Darby, C., . . . Baumeister, R. (2004). Loss of srf-3-encoded nucleotide sugar transporter activity in Caenorhabditis elegans alters surface antigenicity and prevents bacterial adherence. The Journal of biological chemistry, 279(29), 30440-30448. Horn, M., Geisen, C., Cermak, L., Becker, B., Nakamura, S., Klein, C., . . . Antebi, A. (2014). DRE-1/FBXO11-dependent degradation of BLMP-1/BLIMP-1 governs C. elegans developmental timing and maturation. Developmental cell, 28(6), 697-710. Horsley, V., O'Carroll, D., Tooze, R., Ohinata, Y., Saitou, M., Obukhanych, T., . . . Fuchs, E. (2006). Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell, 126(3), 597-609. Huang da, W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols, 4(1), 44-57. Huang, T. F., Cho, C. Y., Cheng, Y. T., Huang, J. W., Wu, Y. Z., Yeh, A. Y., . . . Wu, Y. C. (2014). BLMP-1/Blimp-1 regulates the spatiotemporal cell migration pattern in C. elegans. PLoS genetics, 10(6), e1004428. Idevall-Hagren, O., & De Camilli, P. (2015). Detection and manipulation of phosphoinositides. Biochimica et biophysica acta, 1851(6), 736-745. Isik, M., Blackwell, T. K., & Berezikov, E. (2016). MicroRNA mir-34 provides robustness to environmental stress response via the DAF-16 network in C. elegans. Scientific reports, 6, 36766. Jones, M. R., Rose, A. M., & Baillie, D. L. (2013). The ortholog of the human proto-oncogene ROS1 is required for epithelial development in C. elegans. Genesis (New York, N.Y. : 2000), 51(8), 545-561. Joshi, P. M., Riddle, M. R., Djabrayan, N. J., & Rothman, J. H. (2010). Caenorhabditis elegans as a model for stem cell biology. Developmental dynamics : an official publication of the American Association of Anatomists, 239(5), 1539-1554. Kaji, H., Saito, H., Yamauchi, Y., Shinkawa, T., Taoka, M., Hirabayashi, J., . . . Isobe, T. (2003). Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nature biotechnology, 21(6), 667-672. Kamath, R. S., Martinez-Campos, M., Zipperlen, P., Fraser, A. G., & Ahringer, J. (2001). Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome biology, 2(1), Research0002. Koh, K., & Rothman, J. H. (2001). ELT-5 and ELT-6 are required continuously to regulate epidermal seam cell differentiation and cell fusion in C. elegans. Development (Cambridge, England), 128(15), 2867-2880. Koppen, M., Simske, J. S., Sims, P. A., Firestein, B. L., Hall, D. H., Radice, A. D., . . . Hardin, J. D. (2001). Cooperative regulation of AJM-1 controls junctional integrity in Caenorhabditis elegans epithelia. Nature cell biology, 3(11), 983-991. Koster, M. I., & Roop, D. R. (2007). Mechanisms regulating epithelial stratification. Annual review of cell and developmental biology, 23, 93-113. Kowalczyk, A. P., & Nanes, B. A. (2012). Adherens junction turnover: regulating adhesion through cadherin endocytosis, degradation, and recycling. Sub-cellular biochemistry, 60, 197-222. Kretzschmar, K., Cottle, D. L., Donati, G., Chiang, M. F., Quist, S. R., Gollnick, H. P., . . . Watt, F. M. (2014). BLIMP1 is required for postnatal epidermal homeostasis but does not define a sebaceous gland progenitor under steady-state conditions. Stem cell reports, 3(4), 620-633. Kubo, A., Nagao, K., & Amagai, M. (2012). Epidermal barrier dysfunction and cutaneous sensitization in atopic diseases. The Journal of clinical investigation, 122(2), 440-447. Lai-Cheong, J. E., Arita, K., & McGrath, J. A. (2007). Genetic diseases of junctions. The Journal of investigative dermatology, 127(12), 2713-2725. Lakhina, V., Arey, R. N., Kaletsky, R., Kauffman, A., Stein, G., Keyes, W., . . . Murphy, C. T. (2015). Genome-wide functional analysis of CREB/long-term memory-dependent transcription reveals distinct basal and memory gene expression programs. Neuron, 85(2), 330-345. Lazetic, V., & Fay, D. S. (2017a). Conserved Ankyrin Repeat Proteins and Their NIMA Kinase Partners Regulate Extracellular Matrix Remodeling and Intracellular Trafficking in Caenorhabditis elegans. Genetics, 205(1), 273-293. Lazetic, V., & Fay, D. S. (2017b). Molting in C. elegans. Worm, 6(1), e1330246. Lee, D. Y., & Chang, G. D. (2015). Simultaneous immunoblotting analysis with activity gel electrophoresis and 2-D gel electrophoresis. Methods in molecular biology (Clifton, N.J.), 1312, 61-72. Li, P.-H. (2015). C. elegans BLMP-1 regulates apical epithelial shape through glycosyltransferase BUS-8. (Master Master's Thesis), National Taiwan University, Liu, Z., Kirch, S., & Ambros, V. (1995). The Caenorhabditis elegans heterochronic gene pathway controls stage-specific transcription of collagen genes. Development (Cambridge, England), 121(8), 2471-2478. Magnusdottir, E., Kalachikov, S., Mizukoshi, K., Savitsky, D., Ishida-Yamamoto, A., Panteleyev, A. A., & Calame, K. (2007). Epidermal terminal differentiation depends on B lymphocyte-induced maturation protein-1. Proceedings of the National Academy of Sciences of the United States of America, 104(38), 14988-14993. Mello, C., & Fire, A. (1995). DNA transformation. Methods in cell biology, 48, 451-482. Monsalve, G. C., Van Buskirk, C., & Frand, A. R. (2011). LIN-42/PERIOD controls cyclical and developmental progression of C. elegans molts. Current biology : CB, 21(24), 2033-2045. Moss, E. G. (2007). Heterochronic genes and the nature of developmental time. Current biology : CB, 17(11), R425-434. Mullaney, B. C., Blind, R. D., Lemieux, G. A., Perez, C. L., Elle, I. C., Faergeman, N. J., . . . Ashrafi, K. (2010). Regulation of C. elegans fat uptake and storage by acyl-CoA synthase-3 is dependent on NR5A family nuclear hormone receptor nhr-25. Cell metabolism, 12(4), 398-410. Myers, T. R., & Greenwald, I. (2007). Wnt signal from multiple tissues and lin-3/EGF signal from the gonad maintain vulval precursor cell competence in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 104(51), 20368-20373. Natsuga, K. (2014). Epidermal barriers. Cold Spring Harbor perspectives in medicine, 4(4), a018218. Nelson, M. D., Zhou, E., Kiontke, K., Fradin, H., Maldonado, G., Martin, D., . . . Fitch, D. H. (2011). A bow-tie genetic architecture for morphogenesis suggested by a genome-wide RNAi screen in Caenorhabditis elegans. PLoS genetics, 7(3), e1002010. Newbury, S., & Woollard, A. (2004). The 5'-3' exoribonuclease xrn-1 is essential for ventral epithelial enclosure during C. elegans embryogenesis. RNA (New York, N.Y.), 10(1), 59-65. Nutt, S. L., Fairfax, K. A., & Kallies, A. (2007). BLIMP1 guides the fate of effector B and T cells. Nature reviews. Immunology, 7(12), 923-927. O'Reilly, M. K., Zhang, G., & Imperiali, B. (2006). In vitro evidence for the dual function of Alg2 and Alg11: essential mannosyltransferases in N-linked glycoprotein biosynthesis. Biochemistry, 45(31), 9593-9603. O'Rourke, E. J., Soukas, A. A., Carr, C. E., & Ruvkun, G. (2009). C. elegans major fats are stored in vesicles distinct from lysosome-related organelles. Cell metabolism, 10(5), 430-435. Ohinata, Y., Payer, B., O'Carroll, D., Ancelin, K., Ono, Y., Sano, M., . . . Surani, M. A. (2005). Blimp1 is a critical determinant of the germ cell lineage in mice. Nature, 436(7048), 207-213. Palaima, E., Leymarie, N., Stroud, D., Mizanur, R. M., Hodgkin, J., Gravato-Nobre, M. J., . . . Cipollo, J. F. (2010). The Caenorhabditis elegans bus-2 mutant reveals a new class of O-glycans affecting bacterial resistance. The Journal of biological chemistry, 285(23), 17662-17672. Park, J. O., Pan, J., Mohrlen, F., Schupp, M. O., Johnsen, R., Baillie, D. L., . . . Hutter, H. (2010). Characterization of the astacin family of metalloproteases in C. elegans. BMC developmental biology, 10, 14. Partridge, F. A., Tearle, A. W., Gravato-Nobre, M. J., Schafer, W. R., & Hodgkin, J. (2008). The C. elegans glycosyltransferase BUS-8 has two distinct and essential roles in epidermal morphogenesis. Developmental biology, 317(2), 549-559. Pasti, G., & Labouesse, M. (2014). Epithelial junctions, cytoskeleton, and polarity. WormBook : the online review of C. elegans biology, 1-35. Pettitt, J., Cox, E. A., Broadbent, I. D., Flett, A., & Hardin, J. (2003). The Caenorhabditis elegans p120 catenin homologue, JAC-1, modulates cadherin-catenin function during epidermal morphogenesis. The Journal of cell biology, 162(1), 15-22. Pohl, C., Tiongson, M., Moore, J. L., Santella, A., & Bao, Z. (2012). Actomyosin-based self-organization of cell internalization during C. elegans gastrulation. BMC biology, 10, 94. Priess, J. R., & Hirsh, D. I. (1986). Caenorhabditis elegans morphogenesis: the role of the cytoskeleton in elongation of the embryo. Developmental biology, 117(1), 156-173. Qadota, H., Inoue, M., Hikita, T., Koppen, M., Hardin, J. D., Amano, M., . . . Kaibuchi, K. (2007). Establishment of a tissue-specific RNAi system in C. elegans. Gene, 400(1-2), 166-173. Rougvie, A. E., & Ambros, V. (1995). The heterochronic gene lin-29 encodes a zinc finger protein that controls a terminal differentiation event in Caenorhabditis elegans. Development (Cambridge, England), 121(8), 2491-2500. Sapio, M. R., Hilliard, M. A., Cermola, M., Favre, R., & Bazzicalupo, P. (2005). The Zona Pellucida domain containing proteins, CUT-1, CUT-3 and CUT-5, play essential roles in the development of the larval alae in Caenorhabditis elegans. Developmental biology, 282(1), 231-245. Shemer, G., & Podbilewicz, B. (2000). Fusomorphogenesis: cell fusion in organ formation. Developmental dynamics : an official publication of the American Association of Anatomists, 218(1), 30-51. Silhankova, M., Jindra, M., & Asahina, M. (2005). Nuclear receptor NHR-25 is required for cell-shape dynamics during epidermal differentiation in Caenorhabditis elegans. Journal of cell science, 118(Pt 1), 223-232. Singh, K., Chao, M. Y., Somers, G. A., Komatsu, H., Corkins, M. E., Larkins-Ford, J., . . . Hart, A. C. (2011). C. elegans Notch signaling regulates adult chemosensory response and larval molting quiescence. Current biology : CB, 21(10), 825-834. Slack, F. J., Basson, M., Liu, Z., Ambros, V., Horvitz, H. R., & Ruvkun, G. (2000). The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Molecular cell, 5(4), 659-669. Spiro, R. G. (2002). Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology, 12(4), 43r-56r. Stevens, J., & Spang, A. (2013). N-glycosylation is required for secretion and mitosis in C. elegans. PloS one, 8(5), e63687. Supek, F., Bosnjak, M., Skunca, N., & Smuc, T. (2011). REVIGO summarizes and visualizes long lists of gene ontology terms. PloS one, 6(7), e21800. Tabara, H., Sarkissian, M., Kelly, W. G., Fleenor, J., Grishok, A., Timmons, L., . . . Mello, C. C. (1999). The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell, 99(2), 123-132. Thein, M. C., McCormack, G., Winter, A. D., Johnstone, I. L., Shoemaker, C. B., & Page, A. P. (2003). Caenorhabditis elegans exoskeleton collagen COL-19: an adult-specific marker for collagen modification and assembly, and the analysis of organismal morphology. Developmental dynamics : an official publication of the American Association of Anatomists, 226(3), 523-539. Turner, C. A., Jr., Mack, D. H., & Davis, M. M. (1994). Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell, 77(2), 297-306. Vagin, O., Kraut, J. A., & Sachs, G. (2009). Role of N-glycosylation in trafficking of apical membrane proteins in epithelia. American journal of physiology. Renal physiology, 296(3), F459-469. Van den Steen, P., Rudd, P. M., Dwek, R. A., & Opdenakker, G. (1998). Concepts and principles of O-linked glycosylation. Critical reviews in biochemistry and molecular biology, 33(3), 151-208. von Mende, N., Bird, D. M., Albert, P. S., & Riddle, D. L. (1988). dpy-13: a nematode collagen gene that affects body shape. Cell, 55(4), 567-576. Wildwater, M., Sander, N., de Vreede, G., & van den Heuvel, S. (2011). Cell shape and Wnt signaling redundantly control the division axis of C. elegans epithelial stem cells. Development (Cambridge, England), 138(20), 4375-4385. Wujek, P., Kida, E., Walus, M., Wisniewski, K. E., & Golabek, A. A. (2004). N-Glycosylation Is Crucial for Folding, Trafficking, and Stability of Human Tripeptidyl-peptidase I. Journal of Biological Chemistry, 279(13), 12827-12839. Yang, J. (2014). C. elegans PRDM1/Blimp1 homolog BLMP-1 is a positive regulator of bed-3 transcription. (Master's thesis), National University of Singapore, Yang, J., Fong, H. T., Xie, Z., Tan, J. W., & Inoue, T. (2015). Direct and positive regulation of Caenorhabditis elegans bed-3 by PRDM1/BLIMP1 ortholog BLMP-1. Biochimica et biophysica acta, 1849(9), 1229-1236. Yochem, J., Lazetic, V., Bell, L., Chen, L., & Fay, D. (2015). C. elegans NIMA-related kinases NEKL-2 and NEKL-3 are required for the completion of molting. Developmental biology, 398(2), 255-266. Zhang, L., Zhou, D., Li, S., & Jin, C. (2012). BLMP-1 Contributes to Collagen-related Morphogenesis in C. elegans. Life Sci, 9, 1080–1088. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78999 | - |
dc.description.abstract | 表皮作為協助動物生存的重要保護屏障,同時也影響免疫、分泌、感知和癒傷等功能。在秀麗隱桿線蟲(C. elegans),表皮主要由兩種皮膜細胞組成,包括接縫細胞(seam cell)與hyp7合胞體(syncytium)。接縫細胞位於身體兩側並鑲嵌於hyp7合胞體中。接縫細胞與hyp7合胞體間以特化的黏連結合(adherens junction)相接,包括黏附蛋白-鍊蛋白複合體(CCC)和DLG-1-AJM-1複合體(DAC),並影響皮膜細胞極性、細胞黏著和先天免疫。利用具綠色螢光的AJM-1和HMR-1融合蛋白,在野生型線蟲成蟲可觀察到接縫合胞體具有兩條平行的細胞邊界。我們發現轉錄因子基因blmp-1(哺乳類BLIMP-1/PRDI-BF1同源基因)的功能缺失,會導致成蟲的黏連結合蛋白排列發生異常。這種異常的hyp7-接縫細胞邊界存在於接縫合胞體的頂層,而非中層與底層,且是開始進行L4/成蟲蛻皮的數小時內產生。這代表blmp-1參與維持成蟲接縫細胞的頂層形態。於特定細胞進行RNAi,顯示為維持正常的接縫細胞頂層形態,blmp-1在接縫合胞體與hyp7都是必要的。為測試BLMP-1是否具轉錄因子功能以控制接縫細胞頂層形態,我們用野生型與blmp-1突變株進行RNA-sequencing分析。結果顯示blmp-1突變株成蟲中某些專屬於幼蟲、耐受型幼蟲(dauer)、或蛻皮的基因轉錄量升高。因此blmp-1可能是透過避免幼蟲、耐受型幼蟲、或蛻皮基因的錯誤表現來調控成蟲表皮命運,如角質層形成。從blmp-1突變株中篩選表現量提高的候選基因和分析BLMP-1共通結合序列,我們發現參與N-連結醣基化的甘露糖轉移酶基因bus-8,與分泌型的蛻皮訊息醣蛋白基因mlt-8,當被減弱功能時可顯著抑制blmp-1突變株的接縫細胞頂層形態異常。藉由RNAi減弱數個參與在N-或O-連結醣基的基因功能亦可顯著抑制Blmp-1表現型,代表接縫細胞形態異常需要透過醣基化。在接縫合胞體或hyp7大量表現bus-8和mlt-8基因便足以造成接縫細胞頂層形態異常,且大量表現mlt-8的效果可被bus-8突變所抑制。這代表在blmp-1突變株中,訊息分子MLT-8過量產生,且可能因BUS-8作用而過度醣基化,影響接縫細胞頂層形態。於線蟲體表利用凝集素或親脂性DiI染劑染色,我們發現blmp-1功能喪失會影響到角質層完整性,造成醣質包被(glycocalyx)異常和脂質層暴露。我們的實驗結果顯示blmp-1作為異時基因控制成蟲表皮命運和角質層完整性,避免幼蟲、耐受型幼蟲和蛻皮的特定基因在成蟲錯誤表現。此外,要維持成蟲接縫細胞頂層形態,blmp-1可能須抑制N-和O-連結醣基化基因如bus-8,以及蛻皮訊息分子基因如mlt-8表現。 | zh_TW |
dc.description.abstract | Epidermis is a protective barrier important for animal survival, and also functions in immunity, secretion, sensation and wound repair. In the nematode Caenorhabditis elegans, epidermis is mainly composed of two types of epithelial cells, seam cells and hyp7. Seam cells are located on the lateral sides of the body and embedded in the hyp7 syncytium. Seam and hyp7 syncytia are connected with specialized apical adherens junctions, cadherin-catenin complex (CCC) and DLG-1-AJM-1 complex (DAC), which are essential for epithelial cell polarity, adhesion and innate immunity. Using GFP-labeled AJM-1 and HMR-1 fusion proteins as reporters, two parallel boundaries outlined the seam syncytium were observed in the wild-type adult. Interestingly, we found that loss of blmp-1, which encodes a zinc finger transcription factor similar to mammalian BLIMP-1/PRDI-BF1, caused a disorganized localization pattern of the adherens junction proteins at the adult stage. This abnormal hyp7-seam cell boundary was present in the apical, but not medial or lateral, region of seam syncytium and specifically occurred within hours after entering the L4-adult molt. These results indicated that blmp-1 functions in the maintenance of seam apical morphology in adults. Cell-specific RNAi knockdown showed that blmp-1 was essential in both seam and hyp7 syncytia for normal apical seam cell morphology. To test whether BLMP-1 might function as a transcriptional factor to control the seam apical morphology, we performed an RNA-sequencing analysis of wild-type and blmp-1 mutant worms. Our data showed that several genes expressed specifically in epidermis in larvae, dauer or molt had higher transcript levels in the blmp-1 mutants than the wild-type at the adult stage. Thus, blmp-1 likely regulates the adult epidermal fate, at least in cuticle formation, by preventing inappropriate expression of larval, dauer or molting genes. Using the candidate gene approach and the BLMP-1 consensus binding site analysis among the up-regulated genes in blmp-1 mutants, we found that bus-8 and mlt-8, encoding a mannosyltransferase in N-linked glycosylation and a secreted molting signal glycoprotein, when knockdowned, significantly suppressed the abnormal apical seam cell morphology of blmp-1 mutants. RNAi inactivation of several genes in N- or O-linked glycosylation also significantly suppressed the Blmp-1 phenotype, showing that the seam morphological defect requires glycosylation. Overexpression of bus-8 or mlt-8, in either seam or hyp7 syncytium was sufficient to cause the apical seam morphology defect, and the defect resulted from mlt-8 overexpression could be suppressed by the bus-8 mutation. It is possible that in blmp-1 mutants overproduction of molting signal MLT-8 and overglycosylation mediated by BUS-8 contributes, at least in part, to seam apical morphology. Using lectin or lipophilic dye DiI to stain the surface of worms, we found that loss of blmp-1 affected cuticle integrity, resulting in defective glycocalyx and exposed lipid layer. Our data support a model that blmp-1 functions as a heterochronic gene to control the adult epidermal fate and cuticle integrity by preventing mis-expression of larval, dauer and molt-specific gene in adults. In addition, blmp-1 is required for the maintenance of seam apical morphology in adults, in part, by repressing the expression of genes in N- and O-glycosylation, such as bus-8, and the molting signal gene mlt-8. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:35:24Z (GMT). No. of bitstreams: 1 ntu-107-D00B43005-1.pdf: 3797829 bytes, checksum: 17967136a5411db840691ec941125722 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員會審定書...i
摘要...ii Abstract...iv Introduction...1 Materials and methods...10 Results...19 The apical surface of seam syncytium has abnormal shape in the blmp-1 mutant adults...18 The blmp-1 mutants have normal seam cell number in L4 and adult...21 The seam cell morphology abnormality occurs in the apical, but not the medial or basal, region of the cell...21 blmp-1 is required in both seam and hyp7 syncytia to prevent the Blmp-1 apical seam cell morphology defect...22 Genes with epidermis-specialized functions are differentially expressed in the blmp-1 mutants...23 Loss of bus-8 suppressed the apical seam cell morphology defect of the blmp-1 mutants...26 The N- and O-linked protein glycosylation processes is involved in the formation of the abnormal apical seam cell morphology...28 N-glycosylated protein MLT-8 is involved in the formation of the apical hyp7-seam cell boundary...30 blmp-1 and bus-8 affect glycoprotein content and distribution in worms...32 Discussion...34 Figures...44 Tables...76 Supplementary information...85 References...93 | |
dc.language.iso | en | |
dc.title | blmp-1於線蟲表皮時間調控與細胞形態之功能 | zh_TW |
dc.title | blmp-1 functions in epidermal temporal regulation and cell morphology in C. elegans | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 廖秀娟,溫進德,黃筱鈞,吳瑞菁 | |
dc.subject.keyword | 表皮,接縫合胞體,細胞形態,醣基化,blmp-1,bus-8,mlt-8, | zh_TW |
dc.subject.keyword | epidermis,seam syncytium,cell morphology,glycosylation,blmp-1,bus-8,mlt-8, | en |
dc.relation.page | 101 | |
dc.identifier.doi | 10.6342/NTU201803490 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-15 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
dc.date.embargo-lift | 2023-08-21 | - |
顯示於系所單位: | 分子與細胞生物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-D00B43005-1.pdf 目前未授權公開取用 | 3.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。