請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78996
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳益群(Yi-Chun Wu) | |
dc.contributor.author | Wei Hsieh | en |
dc.contributor.author | 謝緯 | zh_TW |
dc.date.accessioned | 2021-07-11T15:35:09Z | - |
dc.date.available | 2023-08-21 | |
dc.date.copyright | 2018-08-21 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-15 | |
dc.identifier.citation | 1. Alberts B, Johnson A, Lewis J, et al., (2002). The Endoplasmic Reticulum. Molecular Biology of the Cell. 4th edition. New York: Garland Science.
2. Azadbakht, L., Kimiagar, M., Mehrabi, Y., Esmaillzadeh, A., Hu, F.B., and Willett, W.C. (2007). Dietary soya intake alters plasma antioxidant status and lipid peroxidation,q in postmenopausal women with the metabolic syndrome. Brit J Nutr 98, 807-813. 3. Basseri, S., and Austin, R.C. (2012). Endoplasmic reticulum stress and lipid metabolism: mechanisms and therapeutic potential. Biochem Res Int 2012, 841362. 4. Bertolotti, A., Zhang, Y.H., Hendershot, L.M., Harding, H.P., and Ron, D. (2000). Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2, 326-332. 5. Brooks, K.K., Liang, B., and Watts, J.L. (2009). The Influence of Bacterial Diet on Fat Storage in C. elegans. Plos One 4. 6. Bruder-Nascimento, T., Campos, D.H.S., Alves, C., Thomaz, S., Cicogna, A.C., and Cordellini, S. (2013). Effects of chronic stress and high-fat diet on metabolic and nutritional parameters in Wistar rats. Arq Bras Endocrinol 57, 642-649. 7. Calfon, M., Zeng, H.Q., Urano, F., Till, J.H., Hubbard, S.R., Harding, H.P., Clark, S.G., and Ron, D. (2002). IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92-96. 8. Chalfie, M., Sulston, J.E., White, J.G., Southgate, E., Thomson, J.N., and Brenner, S. (1985). The Neural Circuit for Touch Sensitivity in Caenorhabditis-Elegans. J Neurosci 5, 956-964. 9. Corsi, A.K., Wightman, B., and Chalfie, M. (2015). A Transparent Window into Biology: A Primer on Caenorhabditis elegans (vol 200, pg 387, 2015). Genetics 201, 339-339. 10. Dawaliby, R., Trubbia, C., Delporte, C., Noyon, C., Ruysschaert, J.M., Van Antwerpen, P., and Govaerts, C. (2016). Phosphatidylethanolamine Is a Key Regulator of Membrane Fluidity in Eukaryotic Cells. J Biol Chem 291, 3658-3667. 11. Ehrnhoefer, D.E., Wong, B.K., and Hayden, M.R. (2011). Convergent pathogenic pathways in Alzheimer's and Huntington's diseases: shared targets for drug development. Nat Rev Drug Discov 10, 853-867. 12. Flick, K., and Kaiser, P. (2012). Protein degradation and the stress response. Semin Cell Dev Biol 23, 515-522. 13. Flynn, G.C., Pohl, J., Flocco, M.T., and Rothman, J.E. (1991). Peptide-Binding Specificity of the Molecular Chaperone Bip. Nature 353, 726-730. 14. Fu, S.N., Watkins, S.M., and Hotamisligil, G.S. (2012). The Role of Endoplasmic Reticulum in Hepatic Lipid Homeostasis and Stress Signaling. Cell Metab 15, 623- 634. 15. Goh, G.Y., Martelli, K.L., Parhar, K.S., Kwong, A.W., Wong, M.A., Mah, A., Hou, N.S., and Taubert, S. (2014). The conserved Mediator subunit MDT-15 is required for oxidative stress responses in Caenorhabditis elegans. Aging Cell 13, 70-79. 16. Gomez-Pinilla, F., and Tyagi, E. (2013). Diet and cognition: interplay between cell metabolism and neuronal plasticity. Curr Opin Clin Nutr 16, 726-733. 17. Hamman, B.D., Hendershot, L.M., and Johnson, A.E. (1998). BiP maintains the permeability barrier of the ER membrane by sealing the lumenal end of the translocon pore before and early in translocation. Cell 92, 747-758. 18. Hou, N.S., Gutschmidt, A., Choi, D.Y., Pather, K., Shi, X., Watts, J.L., Hoppe, T., and Taubert, S. (2014). Activation of the endoplasmic reticulum unfolded protein response by lipid disequilibrium without disturbed proteostasis in vivo. Proc Natl Acad Sci U S A 111, E2271-2280. 19. Jamart, C., Francaux, M., Millet, G.Y., Deldicque, L., Frere, D., and Feasson, L. (2012). Modulation of autophagy and ubiquitin-proteasome pathways during ultra- endurance running. J Appl Physiol 112, 1529-1537. 20. Jonsson, T., Atwal, J.K., Steinberg, S., Snaedal, J., Jonsson, P.V., Bjornsson, S., Stefansson, H., Sulem, P., Gudbjartsson, D., Maloney, J., et al., (2012). A mutatio n in APP protects against Alzheimer's disease and age-related cognitive decline. Nature 488, 96-99. 21. Jenkins, D.J.A., Kendall, C.W.C., Marchie, A., Josse, A.R., Nguyen, T.H., Faulkner, D.A., Lapsley, K.G., and Blumberg, J. (2008). Almonds reduce biomarkers of lipid peroxidation in older hyperlipidemic subjects. J Nutr 138, 908-913. 22. Kaushik, S., and Cuervo, A.M. (2015). Proteostasis and aging. Nat Med 21, 1406- 1415. 23. Kennedy, D.O., Veasey, R., Watson, A., Dodd, F., Jones, E., Maggini, S., and Haskell, C.F. (2010). Effects of high-dose B vitamin complex with vitamin C and minerals on subjective mood and performance in healthy males. Psychopharmacology 211, 55-68. 24. Knight, E.M., Martins, I.V.A., Gumusgoz, S., Allan, S.M., and Lawrence, C.B. (2014). High-fat diet-induced memory impairment in triple-transgenic Alzheimer's disease (3xTgAD) mice is independent of changes in amyloid and tau pathology. Neurobiol Aging 35, 1821-1832. 25. Lee, A.H., Scapa, E.F., Cohen, D.E., and Glimcher, L.H. (2008). Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 320, 1492-1496. 26. Lee, D., Jeong, D.E., Son, H.G., Yamaoka, Y., Kim, H., Seo, K., Khan, A.A., Roh, T.Y., Moon, D.W., Lee, Y., et al., (2015). SREBP and MDT-15 protect C. elegans from glucose-induced accelerated aging by preventing accumulation of saturated fat. Genes Dev 29, 2490-2503. 27. Lee, S.K., Li, W., Ryu, S.E., Rhim, T., and Ahnn, J. (2010). Vacuolar (H+)-ATPases in Caenorhabditis elegans: what can we learn about giant H+ pumps from tiny worms? Biochim Biophys Acta 1797, 1687-1695. 28. Li, T., Jiang, S., Lu, C.X., Hu, W., Ji, T., Han, M.Z., Yang, Y., and Jin, Z.X. (2018). Snapshots: Endoplasmic Reticulum Stress in Lipid Metabolism and Cardiovascular Disease. Curr Issues Mol Biol 28, 14-28. 29. Liu, X.Y., Henkel, A.S., LeCuyer, B.E., Schipma, M.J., Anderson, K.A., and Green, R.M. (2015). Hepatocyte X-box binding protein 1 deficiency increases liver injury in mice fed a high-fat/sugar diet. Am J Physiol-Gastr L 309, G965-G974. 30. Li, Z., Agellon, L.B., Allen, T.M., Umeda, M., Jewell, L., Mason, A., and Vance, D.E. (2006). The ratio of phosphatidylcholine to phosphatidylethanola m ine influences membrane integrity and steatohepatitis. Cell Metab 3, 321-331. 31. MacNeil, L.T., Watson, E., Arda, H.E., Zhu, L.J., and Walhout, A.J.M. (2013). Diet- Induced Developmental Acceleration Independent of TOR and Insulin in C. elegans. Cell 153, 240-252. 32. McColl, G., Roberts, B.R., Pukala, T.L., Kenche, V.B., Roberts, C.M., Link, C.D., Ryan, T.M., Masters, C.L., Barnham, K.J., Bush, A.I., et al., (2012). Utility of an improved model of amyloid-beta (Abeta(1)(-)(4)(2)) toxicity in Caenorhabditis elegans for drug screening for Alzheimer's disease. Mol Neurodegener 7, 57. 33. Mellanby, H. (1955). The identification and estimation of acetylcholine in three parasitic nematodes (Ascaris lumbricoides, Litomosoides carinii, and the microfilariae of Dirofilaria repens). Parasitology 45, 287–294. 34. Moessinger, C., Klizaite, K., Steinhagen, A., Philippou-Massier, J., Shevchenko, A., Hoch, M., Ejsing, C.S., and Thiele, C. (2014). Two different pathways of phosphatidylc ho line synthesis, the Kennedy Pathway and the Lands Cycle, differentially regulate cellular triacylglycerol storage. BMC Cell Biol 15, 43. 35. Mullaney, B. C., and Ashrafi, K. (2009). C. elegans Fat Storage and Metabolic Regulation. Biochimica et Biophysica Acta, 1791(6), 474–478. 36. Nomura, T., Horikawa, M., Shimamura, S., Hashimoto, T., and Sakamoto, K. (2010). Fat accumulation in Caenorhabditis elegans is mediated by SREBP homolog SBP- 1. Genes Nutr 5, 17-27. 37. Novak, M.J., and Tabrizi, S.J. (2010). Huntington's disease. BMJ 340, c3109. 38. Oh, K. H., & Kim, H. (2017). Aldicarb-induced Paralysis Assay to Determine Defects in Synaptic Transmission in Caenorhabditis elegans. Bio-Protocol, 7(14), e2400 39. Pakos-Zebrucka, K., Koryga, I., Mnich, K., Ljujic, M., Samali, A., and Gorman, A.M. (2016). The integrated stress response. Embo Rep 17, 1374-1395. 40. Park, E.J., Lee, J.H., Yu, G.Y., He, G.B., Ali, S.R., Holzer, R.G., Osterreicher, C.H., Takahashi, H., and Karin, M. (2010). Dietary and Genetic Obesity Promote Liver Inflammation and Tumorigenesis by Enhancing IL-6 and TNF Expression. Cell 140, 197-208. 41. Perez, D.D., Strobel, P., Foncea, R., Diez, M.S., Vasquez, L., Urquiaga, I., Castillo, O., Cuevas, A., San Martin, A., and Leighton, F. (2002). Wine, diet, antioxidant defenses, and oxidative damage. Ann Ny Acad Sci 957, 136-145. 42. Perez-Martinez, P., Garcia-Quintana, J.M., Yubero-Serrano, E.M., Tasset-Cuevas, I., Tunez, I., Garcia-Rios, A., Delgado-Lista, J., Marin, C., Perez-Jimenez, F., Roche, H.M., et al., (2010). Postprandial oxidative stress is modified by dietary fat: evidence from a human intervention study. Clin Sci 119, 251-261. 43. Piperi, C., Adamopoulos, C., and Papavassiliou, A.G. (2016). XBP1: A Pivotal Transcriptional Regulator of Glucose and Lipid Metabolism. Trends Endocrin Met 27, 119-122. 44. Ramadori, G., Konstantinidou, G., Venkateswaran, N., Biscotti, T., Morlock, L., Galie, M., Williams, N.S., Luchetti, M., Santinelli, A., Scaglioni, P.P., et al., (2015). Diet-Induced Unresolved ER Stress Hinders KRAS-Driven Lung Tumorigenesis. Cell Metab 21, 117-125. 45. Schmeltzer, S.N., Vollmer, L.L., Rush, J.E., Weinert, M., Dolgas, C.M., and Sah, R. (2015). History of chronic stress modifies acute stress-evoked fear memory and acoustic startle in male rats. Stress 18, 244-253. 46. Scrimshaw, N. S., Taylor, C. E., & Gordon, J. E. (1969). Interactions of Nutrition and Infection. Who Chronicle, 23(8), 369-+. 47. Schroder, M., and Kaufman, R.J. (2005). ER stress and the unfolded protein response. Mutat Res 569, 29-63. 48. Schwarz, D. S., and Blower, M. D. (2016). The endoplasmic reticulum: structure, function and response to cellular signaling. Cellular and Molecular Life Sciences, 73, 79–94. 49. Sha, H.B., He, Y., Chen, H., Wang, C., Zenno, A., Shi, H., Yang, X.Y., Zhang, X.M., and Qi, L. (2009). The IRE1 alpha-XBP1 Pathway of the Unfolded Protein Response Is Required for Adipogenesis. Cell Metab 9, 556-564. 50. Shen, X.H., Ellis, R.E., Sakaki, K., and Kaufman, R.J. (2005). Genetic interactio ns due to constitutive and inducible gene regulation mediated by the unfolded protein response in C-elegans. Plos Genet 1, 355-368. 51. Smith, M., and Wilkinson, S. (2017). ER homeostasis and autophagy. Essays Biochem 61, 625-635. 52. So, J.S., Hur, K.Y., Tarrio, M., Ruda, V., Frank-Kamenetsky, M., Fitzgerald, K., Koteliansky, V., Lichtman, A.H., Iwawaki, T., Glimcher, L.H., et al., (2012). Silencing of Lipid Metabolism Genes through IRE1 alpha-Mediated mRNA Decay Lowers Plasma Lipids in Mice. Cell Metab 16, 487-499. 53. Taubert, S., Van Gilst, M.R., Hansen, M., and Yamamoto, K.R. (2006). A Mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49- dependent and -independent pathways in C. elegans. Genes Dev 20, 1137-1149. 54. Taylor, R.C., Berendzen, K.M., and Dillin, A. (2014). Systemic stress signalling: understanding the cell non-autonomous control of proteostasis. Nat Rev Mol Cell Bio 15, 211-217. 55. Tomkins, A. (Andrew), Watson, Fiona and United Nations. Administrative Committee on Co-ordination. Sub-committee on Nutrition (1989). Malnutrition and infection: a review. ACC/SCN State-of-the-Art Series Nutrition Policy Discussion Paper, (No. 5), iv. 56. Vilchez, D.,Saez, I.,and Dillin, A.(2014). The role ofprotein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun 5, 5659. 57. Walker, A.K., Jacobs, R.L., Watts, J.L., Rottiers, V., Jiang, K., Finnegan, D.M., Shioda, T., Hansen, M., Yang, F., Niebergall, L.J., et al., (2011). A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell 147, 840-852. 58. Walther, D.M., Kasturi, P., Zheng, M., Pinkert, S., Vecchi, G., Ciryam, P., Morimoto, R.I., Dobson, C.M., Vendruscolo, M., Mann, M., et al., (2015). Widespread Proteome Remodeling and Aggregation in Aging C-elegans. Cell 161, 919-932. 59. Watson, E., MacNeil, L.T., Ritter, A.D., Yilmaz, L.S., Rosebrock, A.P., Caudy, A.A., and Walhout, A.J.M. (2014). Interspecies Systems Biology Uncovers Metabolites Affecting C. elegans Gene Expression and Life History Traits. Cell 156, 1336-1337. 60. Wilkinson, E.M., Ilhan, Z.E., and Herbst-Kralovetz, M.M. (2018). Microbiota-drug interactions: Impact on metabolism and efficacy of therapeutics. Maturitas 112, 53-63. 61. Wilson, I.D., and Nicholson, J.K. (2017). Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl Res 179, 204-222. 62. Yen, C.A., and Curran, S.P. (2016). Gene-diet interactions and aging in C. elegans. Exp Gerontol 86, 106-112. 63. Yki-Jarvinen, H. (2015). Nutritional Modulation of Non-Alcoholic Fatty Liver Disease and Insulin Resistance. Nutrients 7, 9127-9138. 64. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., and Mori, K. (2001). XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881-891. 65. Zeng, L.F., Lu, M., Mori, K., Luo, S.Z., Lee, A.S., Zhu, Y., and Shyy, J.Y.J. (2004). ATF6 modulates SREBP2-mediated lipogenesis. Embo J 23, 950-958. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78996 | - |
dc.description.abstract | 根據世界衛生組織(WHO)統計,截至2016 年底,全球人口的過胖比例較1975年以來上升近三倍,而導致其結果的原因與不適當的飲食有關,調查結果亦發現體重過重的人比擁有正常體重的人有更高的風險罹患第二型糖尿病、心血管疾病及部分癌症。然而食物中的成分到底如何影響生物個體的生理行為,其詳細的分子機制尚未明瞭。因此我們利用秀麗隱桿線蟲(C.elegans)作為模式生物,欲探究不同的飲食是如何調控脂肪的代謝以及其他生理現象。透過O.R.O染取中性脂質,我們實驗室先前發現餵食Comamonas DA1877的線蟲其體內脂肪的含量較餵食標準飲食Escherichia coli OP50的線蟲來得少。根據我的研究結果發現,相較於餵食OP50的線蟲,餵食DA1877會引起線蟲體內的內質網壓力(ER stress)。而當抑制ER stress的hsp-4功能缺失時,餵食OP50的線蟲其脂肪含量會上升。然而參與在調控ER stress的ire-1及xbp-1突變株中,線蟲不管是在餵食OP50或是DA1877都可以造成脂肪含量的下降。這說明了飲食會影響ER stress的啟動而參與在調控ER stress的基因會影響脂肪的含量。另外,我發現ER stress啟動的另一條下游路徑,其中重要的脂肪生成因子sbp-1經由ER stress的啟動造成的抑制效果可能是餵食DA1877與OP50線蟲脂肪含量差異的重要原因。 我也發現飲食是經由mdt-15參與的機制來調控ER stress與造成脂肪含量的變化。我更進一步利用混菌的方式,發現DA1877飲食中含有特別的成分造成線蟲體內脂肪含量的下降。根據先前的研究,DA1877可以合成OP50所沒有的維他命B12,而B12 可以促進磷脂醯膽鹼(PC)的生成。透過實驗證明 PC的提升可以顯著地造成脂肪含量的下降,同時也會促進ER stress的產生。這說明飲食亦可以透過改變脂肪的平衡來影響ER stress的啟動。在我們實驗室先前的研究中亦發現,餵食DA1877的線蟲有較佳的移動能力,而移動的快慢與神經傳導物質釋放有關。同樣地,利用混菌及乙醯膽鹼脂酶抑制劑alidicarb,我發現DA1877飲食中所含有的特別成分會造成線蟲神經傳導物質釋放增加;實驗證明,DA1877 飲食所造成的PC含量增加亦是造成此現象的主要原因。最後我直接使用阿茲海默症及杭丁頓舞蹈症線蟲疾病模型來研究不同飲食對疾病發展所造成的影響,發現在氟尿苷(FUdR)的共同作用下,阿茲海默症疾病模型在餵食 OP50時有較良好的生理活動;而在杭丁頓舞蹈症疾病模型當中,不管餵食OP50或是DA1877其活動能力沒有顯著差異。這說明飲食對於不同疾病有不同的影響。我的實驗結果顯示,不同飲食可以調控線蟲的諸多生理現象,其中ER stress如何調控脂肪的代謝還需要更深入的分子機制研究。 | zh_TW |
dc.description.abstract | As of 2016, worldwide obesity had nearly tripled since 1975 according to the statistics of World Health Organization (WHO), and the causes were associated with inappropriate diets. Surveys also revealed that people who were overweight have higher risk of suffering type two diabetes, cardiovascular diseases as well as part of cancers relative to people with normal weight. Nevertheless, the molecular mechanisms underlying how dietary components impact on physiological behaviors in organisms are still unclear. Therefore, we took advantage of Caenorhabditis elegans as model organism to investigate how different diets mediate lipid metabolism and other physiological phenomenon. Our previous data indicated that C. elegans fed on Comamonas DA1877 showed less lipid content compared to worms fed on standard diet, Escherichia coli OP50, through O.R.O staining. According to my investigation, DA1877-fed worms showed induced ER stress compared to OP50-fed worms. Loss of hsp-4, which inhibits ER stress, in OP50-fed worms exhibited increased lipid content compared to DA-fed worms. However, loss of ire-1 or xbp-1, both of which are involved in mediating ER stress, in worms showed decreased lipid content regardless of feeding OP50 or DA1877. The results reveal that diets play a role in affecting the induction of ER stress and genes involved in mediating ER stress can further affect lipid content. In addition, I found that sbp-1, a pivotal factor of lipogenesis, which is inhibited by the induction of the alternative downstream pathway of ER stress, may be the crucial reason why worms fed on OP50 or DA1877 showed different lipid contents. I also discovered that diets mediate ER stress as well as lead to lipid content changes through the mdt-15 involved mechanism. I further found that special ingredients in DA1877 diet results in the decreased lipid content in worms by the means of bacteria mixture. According to previous research, B12, which are absent in OP50 diets, can be synthesized in DA1877 diets, and B12 can facilitate the synthesis of phosphatidylcholine (PC). In my experiments, the increase of PC level could significantly decline lipid content and meanwhile trigger ER stress. The results reveal that diets could also affect ER stress induction via altering lipid homeostasis. Previous data in our lab also indicated that C. elegans fed on DA1877 showed better locomotion compared to worms fed on OP50, and the locomotion ability is related to the release of neurotransmitter. Likewise, I found that special ingredients in DA1877 diet lead to the increase of neurotransmitter release by the means of bacteria mixture and acetylcholinesterase inhibitor, aldicarb. The increase of PC level due to DA1877 diet is also the major reason of resulting in the increase of neurotransmitter release in my experiments. Finally, I directly used Alzheimer’s disease as well as Huntington’s disease model of worms to investigate how different diets have impact on the progression of disease. With floxuridine (FUdR) treatment, paralysis in OP50-fed Alzheimer’s disease model exhibited better motility compared to DA1877-fed worms while Huntington’s disease model fed on OP50 or DA1877 diets showed no difference in motility. The results reveal that diets have different impact on different diseases. My works indicate that different diets could mediate lots of physiological phenomenon in C. elegans, and how ER stress regulate lipid metabolism still needs profound investigation of molecular mechanism. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:35:09Z (GMT). No. of bitstreams: 1 ntu-107-R05b43005-1.pdf: 2674805 bytes, checksum: b688b3730d2d27924f49b8e8025674a2 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 誌 謝 ...I
中文摘要...II Abstract...IV Introduction...1 Material and Methods...10 Caenorhabditis elegans Strains...10 Bacteria Strains and Culture Conditions...11 Bacteria Mixture Assay...11 Caenorhabditis elegans Synchronization...12 Oil Red O Staining and Quantification...12 RNA Extraction for RNA-sequencing...14 Microscopy and Quantification...15 Western Blot analysis...15 Choline Supplement Assay...17 Aldicarb Sensitivity Assay...17 5-Fluoro-2'-deoxyuridine Treatment Assay...18 Thrashing Assay...18 Immunostaining...19 Results...21 DA1877-fed worms showed induced ER stress...21 HSP-4 exerts different effects on lipid metabolism in response to different diets...22 Lipid content in worms fed on OP50 and DA1877 is regulated similarly by ire-1 UPRER pathway...23 The regulated sbp-1 function in atf-6 UPRER signaling is important for diets- mediated lipid difference...24 DA1877 regulates a mdt-15-dependent pathway to induce ER stress...25 Intestine-specific expression of mdt-15 can rescue lipid content phenotype both in OP50- and DA1877-fed worms...26 Nutrients/metabolites from DA1877 exhibit dominant effect on lipid levels...27 PC level in worms plays a key role in diets-mediated lipid metabolism difference...28 ER stress induction occurs only with specific concentration ranges of phosphatidylcholine…29 Nutrients/metabolites from DA1877 exhibit dominant effect on aldicarb-induced paralysis...30 PC level in worms plays a key role in diets-mediated aldicarb sensitivity difference...32 OP50 diet exhibited the specific ability to ameliorate the aggregation of Aβ1-42 peptides...33 Discussion...35 The role of components involved in ER stress induction...36 The functions of mdt-15 in worms feeding different diets...37 The model of dietary effect on UPRER pathway-mediated lipogenesis...38 The effect of phosphatidylcholine (PC) level toward ER stress…39 The pharmacomicrobiomics effect on disease models…39 Figures...41 Figure 1. DA1877-fed worms have induced ER stress compared to OP50-fed worms...41 Figure 2. DA1877-fed worms showed less mitochondria stress compared to OP50- fed worm...43 Figure 3. DA1877-fed worms showed more cytosol stress compared to OP50-fed worms under heat shock condition....45 Figure 4. Schematic diagram of UPRER pathway...47 Figure 5. hsp-4(gk514) mutants showed OP50-diet specific effect on lipid content while xbp-1(zc12) mutants and ire-1(v33) mutants showed general effect on lipid content on both diets ...48 Figure 6. OP50-fed sbp-1(ep79) mutants showed decreased lipid content compared to wild-type...50 Figure 7. Loss of mdt-15(tm2182) enhanced the signal of Phsp-4::GFP in OP50- fed worms but diminished the GFP signal in DA1877-fed worms...51 Figure 8. loss of mdt-15 reduced the lipid content relative to wild-type on OP50 diet, but increased the lipid content relative to wild-type on DA1877 diet...53 Figure 9. The expression of MDT-15 in intestine rescued lipid level in mdt- 15(tm2182) worms fed on both diets...54 Figure 10. DA1877 diet revealed dominant effect on lipid content...56 Figure 11. DA1877-fed worms have higher PC level compared to OP50-fed worms...57 Figure 12. Choline supplementation reduced lipid content in a dosage dependent manner in OP-fed worms...58 Figure 13. GFP signal increased in Phsp-4::GFP expressing worms fed on OP50 with 15Mm and 30mM choline supplement…59 Figure 14. Loss of pcyt-1(et9) reduced the signal of Phsp-4::GFP in DA1877-fed worms...60 Figure 15. DA1877 diet revealed dominant effect on aldicarb-induced paralysis...61 Figure 16. Choline supplementation enhanced the sensitivity to aldicarb in OP50- fed worms...63 Figure 17. Loss of pcyt-1(et9) reduced the sensitivity to aldicarb relative to wild- type on DA1877 diet, but showed no difference relative to wild-type on OP50 diet...64 Figure 18. OP50-fed Aβ-expressing worms with FUdR exhibited delayed death...65 Figure 19. Paralysis in OP50-fed Aβ-expressing worms exhibited better motility compared to DA1877-fed worms with FUdR treatment...66 Figure 20. polyQ35-expressing worms fed on OP50 or DA1877 diets showed no difference in motility...68 Supplementary Figures…69 Figure S1. Lipidomic analysis of PC and PE from OP50-and DA1877-fed wild- type by LC/MS…69 Figure S2. The model of dietary effect on UPRER pathway-mediated lipogenesis...70 Reference...71 | |
dc.language.iso | en | |
dc.title | 飲食、內質網壓力、脂肪衡定在線蟲內的交互關係 | zh_TW |
dc.title | The interrelationship among diets, ER stress and lipid homeostasis in C. elegans | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔡欣祐,廖秀娟 | |
dc.subject.keyword | 飲食,脂肪衡定,內質網壓力,磷脂醯膽鹼,神經傳導物質,疾病, | zh_TW |
dc.subject.keyword | diets,lipid homeostasis,ER stress,phosphatidylcholine (PC),neurotransmitter,disease, | en |
dc.relation.page | 76 | |
dc.identifier.doi | 10.6342/NTU201803578 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-15 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
dc.date.embargo-lift | 2023-08-21 | - |
顯示於系所單位: | 分子與細胞生物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-R05b43005-1.pdf 目前未授權公開取用 | 2.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。