Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 腦與心智科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78993
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃憲松zh_TW
dc.contributor.advisorHsien-Sung Huangen
dc.contributor.author許琪琳zh_TW
dc.contributor.authorChi-Lin Hsuen
dc.date.accessioned2021-07-11T15:34:55Z-
dc.date.available2024-02-28-
dc.date.copyright2018-10-09-
dc.date.issued2018-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Wutz, A., Chapter 11 - RNA-Mediated Silencing Mechanisms in Mammalian Cells, in Progress in Molecular Biology and Translational Science, X. Cheng and R.M. Blumenthal, Editors. 2011, Academic Press. p. 351-376.
2. Barton, S.C., M.A.H. Surani, and M.L. Norris, Role of paternal and maternal genomes in mouse development. Nature, 1984. 311: p. 374.
3. McGrath, J. and D. Solter, Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell, 1984. 37(1): p. 179-183.
4. Surani, M.A.H., S.C. Barton, and M.L. Norris, Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature, 1984. 308: p. 548.
5. Reik, W., et al., Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature, 1987. 328: p. 248.
6. Moore, T. and D. Haig, Genomic imprinting in mammalian development: a parental tug-of-war. Trends in Genetics, 1991. 7(2): p. 45-49.
7. Frost, J.M. and G.E. Moore, The Importance of Imprinting in the Human Placenta. PLOS Genetics, 2010. 6(7): p. e1001015.
8. Badcock, C. and B. Crespi, Battle of the sexes may set the brain. Nature, 2008. 454: p. 1054.
9. Georgiades, P., et al., Parental origin-specific developmental defects in mice with uniparental disomy for chromosome 12. Development, 2000. 127(21): p. 4719.
10. Edwards, C.A., et al., The Evolution of the DLK1-DIO3 Imprinted Domain in Mammals. PLOS Biology, 2008. 6(6): p. e135.
11. Hagan, J.P., et al., At Least Ten Genes Define the Imprinted Dlk1-Dio3 Cluster on Mouse Chromosome 12qF1. PLOS ONE, 2009. 4(2): p. e4352.
12. Benetatos, L., et al., The microRNAs within the DLK1-DIO3 genomic region: involvement in disease pathogenesis. Cellular and Molecular Life Sciences, 2013. 70(5): p. 795-814.
13. Seitz, H., et al., Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene. Nature Genetics, 2003. 34: p. 261.
14. Davis, E., et al., RNAi-Mediated Allelic trans-Interaction at the Imprinted Rtl1/Peg11 Locus. Current Biology, 2005. 15(8): p. 743-749.
15. Lin, S.-P., et al., Differential regulation of imprinting in the murine embryo and placenta by the <em>Dlk1-Dio3</em> imprinting control region. Development, 2007. 134(2): p. 417.
16. Lin, S.-P., et al., Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12. Nature Genetics, 2003. 35: p. 97.
17. Kagami, M., et al., The IG-DMR and the MEG3-DMR at Human Chromosome 14q32.2: Hierarchical Interaction and Distinct Functional Properties as Imprinting Control Centers. PLOS Genetics, 2010. 6(6): p. e1000992.
18. Steshina, E.Y., et al., Loss of imprinting at the Dlk1-Gtl2 locus caused by insertional mutagenesis in the Gtl2 5' region. BMC Genetics, 2006. 7(1): p. 44.
19. Sekita, Y., et al., Aberrant regulation of imprinted gene expression in <i>Gtl2</i><sup>lacZ</sup> mice. Cytogenetic and Genome Research, 2006. 113(1-4): p. 223-229.
20. Eggermann, T., et al., Mosaicism and uniparental disomy in prenatal diagnosis. Trends in Molecular Medicine, 2015. 21(2): p. 77-87.
21. Kagami, M., et al., Temple syndrome: comprehensive molecular and clinical findings in 32 Japanese patients. Genetics In Medicine, 2017. 19: p. 1356.
22. Segmental and full paternal isodisomy for chromosome 14 in three patients: Narrowing the critical region and implication for the clinical features. American Journal of Medical Genetics Part A, 2005. 138A(2): p. 127-132.
23. Kagami, M., et al., Comprehensive clinical studies in 34 patients with molecularly defined UPD(14)pat and related conditions (Kagami–Ogata syndrome). European Journal Of Human Genetics, 2015. 23: p. 1488.
24. Ogata, T., M. Kagami, and A.C. Ferguson-Smith, Molecular mechanisms regulating phenotypic outcome in paternal and maternal uniparental disomy for chromosome 14. Epigenetics, 2008. 3(4): p. 181-187.
25. Moon, Y.S., et al., Mice Lacking Paternally Expressed Pref-1/Dlk1 Display Growth Retardation and Accelerated Adiposity. Molecular and Cellular Biology, 2002. 22(15): p. 5585-5592.
26. Kumamoto, S., et al., Overexpression of microRNAs from the Gtl2-Rian locus contributes to postnatal death in mice. Human Molecular Genetics, 2017. 26(19): p. 3653-3662.
27. Youngson, N.A., et al., A Small Family of Sushi-Class Retrotransposon-Derived Genes in Mammals and Their Relation to Genomic Imprinting. Journal of Molecular Evolution, 2005. 61(4): p. 481-490.
28. Barlow, D.P., Methylation and imprinting: from host defense to gene regulation? Science, 1993. 260(5106): p. 309.
29. Sekita, Y., et al., Role of retrotransposon-derived imprinted gene, Rtl1, in the feto-maternal interface of mouse placenta. Nature Genetics, 2008. 40: p. 243.
30. Kitazawa, M., et al., Severe damage to the placental fetal capillary network causes mid‐ to late fetal lethality and reduction in placental size in Peg11/Rtl1 KO mice. Genes to Cells, 2017. 22(2): p. 174-188.
31. Ito, M., et al., A trans-homologue interaction between reciprocally imprinted <em>miR-127</em> and <em>Rtl1</em> regulates placenta development. Development, 2015. 142(14): p. 2425.
32. Fleming-Waddell, J.N., et al., Effect of DLK1 and RTL1 but Not MEG3 or MEG8 on Muscle Gene Expression in Callipyge Lambs. PLOS ONE, 2009. 4(10): p. e7399.
33. Belot, M.P., et al., Role of DNA methylation at the placental RTL1 gene locus in type 1 diabetes. Pediatric Diabetes, 2016. 18(3): p. 178-187.
34. Riordan, J.D., et al., Identification of Rtl1, a Retrotransposon-Derived Imprinted Gene, as a Novel Driver of Hepatocarcinogenesis. PLOS Genetics, 2013. 9(4): p. e1003441.
35. Hsu, C.-L., et al., Analysis of experience-regulated transcriptome and imprintome during critical periods of mouse visual system development reveals spatiotemporal dynamics. Human Molecular Genetics, 2018: p. ddy023-ddy023.
36. Denver Robert, J., Evolution of the Corticotropin-releasing Hormone Signaling System and Its Role in Stress-induced Phenotypic Plasticity. Annals of the New York Academy of Sciences, 2006. 897(1): p. 46-53.
37. Chrousos, G.P. and P.W. Gold, The concepts of stress and stress system disorders: Overview of physical and behavioral homeostasis. JAMA, 1992. 267(9): p. 1244-1252.
38. Charmandari, E., C. Tsigos, and G. Chrousos, ENDOCRINOLOGY OF THE STRESS RESPONSE. Annual Review of Physiology, 2004. 67(1): p. 259-284.
39. Vale, W., et al., Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science, 1981. 213(4514): p. 1394.
40. Rivier, C. and W. Vale, Modulation of stress-induced ACTH release by corticotropin-releasing factor, catecholamines and vasopressin. Nature, 1983. 305: p. 325.
41. Herman, J.P., Neural control of chronic stress adaptation. Frontiers in Behavioral Neuroscience, 2013. 7: p. 61.
42. Elenkov Ilia, J., et al., Stress, Corticotropin-Releasing Hormone, Glucocorticoids, and the Immune/Inflammatory Response: Acute and Chronic Effectsa. Annals of the New York Academy of Sciences, 2006. 876(1): p. 1-13.
43. Chrousos George, P., Stressors, Stress, and Neuroendocrine Integration of the Adaptive Response: The 1997 Hans Selye Memorial Lecture. Annals of the New York Academy of Sciences, 2006. 851(1): p. 311-335.
44. Tsigos, C. and G.P. Chrousos, Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. Journal of Psychosomatic Research, 2002. 53(4): p. 865-871.
45. Keverne, E.B., Genomic imprinting, action, and interaction of maternal and fetal genomes. Proceedings of the National Academy of Sciences, 2015. 112(22): p. 6834-6840.
46. Middeldorp, C.M., et al., Linkage on chromosome 14 in a genome-wide linkage study of a broad anxiety phenotype. Molecular Psychiatry, 2007. 13: p. 84.
47. M. Plant, T. and S. F. Witchel, Puberty in Nonhuman Primates and Humans. Vol. 2. 2006. 2177-2230.
48. Wierman, M.E., K. Kiseljak-Vassiliades, and S. Tobet, Gonadotropin-releasing hormone (GnRH) neuron migration: Initiation, maintenance and cessation as critical steps to ensure normal reproductive function. Frontiers in Neuroendocrinology, 2011. 32(1): p. 43-52.
49. Seminara, S.B., et al., Successful Use of Pulsatile Gonadotropin-Releasing Hormone (GnRH) for Ovulation Induction and Pregnancy in a Patient with GnRH Receptor Mutations1. The Journal of Clinical Endocrinology & Metabolism, 2000. 85(2): p. 556-562.
50. Boehm, U., et al., European Consensus Statement on congenital hypogonadotropic hypogonadism—pathogenesis, diagnosis and treatment. Nature Reviews Endocrinology, 2015. 11: p. 547.
51. Lindstedt, G., et al., Follitropin (FSH) Deficiency in an Infertile Male due to FSHβ Gene Mutation. A Syndrome of Normal Puberty and Virilization but Under-developed Testicles with Azoospermia, Low FSH but High Lutropin and Normal Serum Testosterone Concentrations. Vol. 36. 1998. 663-5.
52. Layman, L.C., et al., FSHβ Gene Mutations in a Female with Partial Breast Development and a Male Sibling with Normal Puberty and Azoospermia. The Journal of Clinical Endocrinology & Metabolism, 2002. 87(8): p. 3702-3707.
53. Weiss, J., et al., Hypogonadism Caused by a Single Amino Acid Substitution in the β Subunit of Luteinizing Hormone. New England Journal of Medicine, 1992. 326(3): p. 179-183.
54. Richards, J.S. and S.A. Pangas, The ovary: basic biology and clinical implications. The Journal of Clinical Investigation, 2010. 120(4): p. 963-972.
55. François, C.M., et al., A novel action of follicle-stimulating hormone in the ovary promotes estradiol production without inducing excessive follicular growth before puberty. Scientific Reports, 2017. 7: p. 46222.
56. Smith, J.T., D.K. Clifton, and R.A. Steiner, Regulation of the neuroendocrine reproductive axis by kisspeptin-GPR54 signaling. Reproduction, 2006. 131(4): p. 623-630.
57. Pickrell, J.K., et al., Detection and interpretation of shared genetic influences on 42 human traits. Nature Genetics, 2016. 48: p. 709.
58. Perry, J.R.B., et al., Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature, 2014. 514: p. 92.
59. Luo, Q.-Q., et al., Expression of kisspeptin/kiss1r system in developing hypothalamus of female rat and the possible effects on reproduction development and maintenance. Journal of the Chinese Medical Association, 2016. 79(10): p. 546-553.
60. Pastor, C.L., et al., Polycystic Ovary Syndrome: Evidence for Reduced Sensitivity of the Gonadotropin-Releasing Hormone Pulse Generator to Inhibition by Estradiol and Progesterone1. The Journal of Clinical Endocrinology & Metabolism, 1998. 83(2): p. 582-590.
61. Blank, S.K., C.R. McCartney, and J.C. Marshall, The origins and sequelae of abnormal neuroendocrine function in polycystic ovary syndrome. Human Reproduction Update, 2006. 12(4): p. 351-361.
62. Shayya, R. and R.J. Chang, Reproductive endocrinology of adolescent polycystic ovary syndrome. BJOG: An International Journal of Obstetrics & Gynaecology, 2009. 117(2): p. 150-155.
63. Han, J., et al., Efficient in vivo deletion of a large imprinted lncRNA by CRISPR/Cas9. RNA Biology, 2014. 11(7): p. 829-835.
64. Kaneko, S., et al., Interactions between JARID2 and Noncoding RNAs Regulate PRC2 Recruitment to Chromatin. Molecular Cell, 2014. 53(2): p. 290-300.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78993-
dc.description.abstract基因印痕是一種在表觀遺傳學中的特殊現象:透過表觀遺傳的調控,使特定一群基因並非表現父母雙方的基因,而是僅表現父方或母方的基因,這些特別的基因稱為印記基因,過去在胎盤與胎兒中被大量發現,而他們的功能多與發育相關。此外,這些印記基因未必在其他組織中也有基因印痕現象,但近年來發現有部分印記基因在大腦也有基因印痕現象。Retrotransposon-Like 1(Rtl1)是一個與胎盤、胎兒發育息息相關的基因,位於小鼠的第12套染色體上、人類的第14套染色體上,它在胎盤的微血管內皮細胞中大量表現。在Rtl1缺失小鼠模型中,發現父方的Rtl1缺失會造成胎鼠與胎盤的異常,小鼠在發育後期或出生一兩天內死亡,僅有少部分能夠存活,且這些存活下來的胎鼠有發育遲緩的現象,而母方的Rtl1缺失小鼠被發現胎盤會稍大,但出生率與體型並未受到影響。在人類單親源二倍體的患者中,當兩個第14套染色體均來自父方時,這些患者為鏡-緒方症候群(Kagami-Ogata syndrome),反之則稱為Temple syndrome。這些Temple syndrome的患者的病徵包含肌肉無力、身高矮小與低出生體重、性早熟,我進而推測Rtl1的功能可能是與掌管性腺發育的神經內分泌系統:下視丘-腦垂腺-性腺軸之調節有關。藉由CRISPR-Cas9的系統製造出的Rtl1剃除小鼠中我發現其性腺激素釋放素與濾泡刺激素均有顯著的上升,而性腺激素釋放素的受器表現量則有顯著的下降,但詳細的分子機制仍須進一步探討。在這個研究中藉由測量基因與激素的表現量可以知道,Rtl1的缺失會影響下視丘-腦垂腺-性腺軸的表現,進而影響小鼠的性發育。zh_TW
dc.description.abstractImprinted genes are a subset of genes which show parent-of-origin-specific expression through epigenetic modulation. These genes are known to function for placenta and fetal development and many of them are placenta-specifically imprinted and biallelic expressed in other tissues. Some of the imprinted genes are found imprinted in the brain, and the function is still not fully understood. Retrotransposon-Like 1 (Rtl1), which is imprinted in the brain, has been known for its critical function in endothelial cells of the fetal capillaries of the placenta. Previous studies have shown that Rtl1 paternal knockout mice tend to have phenotypes such as prenatal and neonatal death and growth retardation. Rtl1 maternal knockout mice showed no lethality in pre- or postnatal but are associated with placentomegaly. Human patients with Uniparental disomy (UPD) of chromosome 14 are associated with Temple syndrome (maternal UPD) and Kagami-Ogata syndrome (paternal UPD). It is known that deletion of Rtl1 may relate to less birth weight and height, hypotonia, and premature puberty. I then hypothesized that Rtl1 is involved in regulating sexual maturation. In this thesis, I am interested in studying whether RTL1 plays a role in the hypothalamus-pituitary gland-gonadal (HPG) axis, which is involved in the regulation of puberty. I investigated the potential role with the Rtl1 knockout mice generated by CRISPR/Cas9 system. The experimental outcomes showed that Rtl1 paternal knockout mice have higher Gonadotropin-releasing hormone (GnRH) and Follicle-stimulating hormone (FSH) and lower Gonadotropin-releasing hormone receptor (GnRHR) expression. However, whether these observations are associated with precocious puberty still needs further investigation.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:34:55Z (GMT). No. of bitstreams: 1
ntu-107-R05454011-1.pdf: 4030323 bytes, checksum: 37f02a0e19fd72996f28c96c0aebdc46 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsCONTENTS
誌謝 …………………………………………………………………………………II
中文摘要 …………………………………………………………………………III
Abstract………………………………………………………………………………VI
目錄 …………………………………………………………………………………V
Chapter 1. Introduction 1
1.1 Brief introduction to genomic imprinting 1
1.2 Dlk1-Dio3 locus 2
1.3 Uniparental disomy (14) 4
1.4 Retrotransposon-Like 1 (Rtl1) and Rtl1 antisense 5
1.5 Hypothalamus-Pituitary-Adrenal-axis (HPA-axis) 6
1.6 Hypothalamus-Pituitary-Gonadal-axis (HPG-axis) 8
1.7 Previous study and limits 9
1.8 Aim of the study 10
Chapter 2. Material and Methods 11
2.1 Animals 11
2.2 Genotyping 11
2.3 Sanger sequencing 12
2.4 Tissue RNA extraction 12
2.5 Reverse transcription 13
2.6 Polymerase Chain Reaction(PCR) 13
2.7 Real-Time quantitative PCR (RT-qPCR) 14
2.8 TA cloning 14
2.9 Histology 15
2.10 Western Blotting 15
2.11 Enzyme-Linked Immunosorbent Assay (ELISA) 16
2.12 Statistical Analysis 16
Chapter 3. Results 17
3.1 RTL1 express in the brain, adrenal gland, and placenta in the mouse 17
3.2 Investigating the mechanisms of differentially expression level of Rtl1 in different brain regions 17
3.3 Rtl1 expresses different isoforms but all paternally expressed in the pituitary gland and adrenal gland of HPA axis 18
3.4 Genotyping of Rtl1 knockout mice 18
3.5 Expression of adjacent genes of Rtl1 in Rtl1 knockout mice 19
3.6 Survival rate and sex difference in Rtl1 knockout mice 20
3.7 Body weight and brain weight of Rtl1 knockout mice during development 20
3.8 Expression of HPG axis-related genes in Rtl1 knockout mice 21
3.9 Morphology difference of ovary between Rtl1 wildtype and knockout mice 22
Chapter 4. Discussion 23
4.1 Summary of results 23
4.2 Rtl1 imprinting status and isoform expression 24
4.3 Wdr25 may be up-and down-stream target of Rtl1 in the regulation of puberty 25
4.4 GnRH regulation and premature puberty 25
4.5 Limitation of this study 26
4.6 Contribution and possible application 26
Reference 64

TABLES AND FIGURES
Figure 1. RTL1 expression in different organs of mice. 29
Figure 2. Different Rtl1 isoforms are expressed in different brain regions 33
Figure 3. miR-127 may be the major miRNA for regulating Rtl1 expression in different brain regions 35
Figure 4. Rtl1 expresses different isoforms but all paternally expressed in the pituitary gland and adrenal gland of HPA axis 37
Figure 5. Generation of Rtl1 knockout mice 39
Figure 6. Validation of Rtl1 knockout of Rtl1 knockout mice in DNA level 41
Figure 7. Validation of Rtl1 knockout of Rtl1 knockout mice in protein level 43
Figure 8. Expression of adjacent genes of Rtl1 in Rtl1 knockout mice 45
Figure 9. The ratio of each genotype in E15.5 embryo and p28 mice 47
Figure 10. Body weight and brain weight of Rtl1 knockout mice during development 49
Figure 11. Expression of HPG axis related genes in Rtl1 knockout mice 51
Figure 12. LH and FSH ELISA showed higher FSH level in Rtl1m+/p- mice in postnatal day 28 53
Figure 13. Morphology difference of ovary between Rtl1 wildtype and knockout mice 55
Supplementary Tables and figures 56
Figure S1. Confirmation of our RT-qPCR result for Rtl1 isoforms expression 57
Table S1. RT-qPCR primers for genes adjacent to Rtl1 58
Figure S2. Melt curve of RT-qPCR for genes adjacent to Rtl1 60
Table S2. RT-qPCR primers for HPG axis related genes 61
Figure S3. Melt curve of RT-qPCR for HPG axis related genes. 62
-
dc.language.isoen-
dc.subject印記基因zh_TW
dc.subject下視丘-腦垂腺-腎上腺軸zh_TW
dc.subject下視丘-腦垂腺-性腺軸zh_TW
dc.subjectRtl1zh_TW
dc.subject表觀遺傳學zh_TW
dc.subjectgenomic imprintingen
dc.subjectepigeneticsen
dc.subjectRetrotransposon-Like 1en
dc.subjectHPA axisen
dc.subjectHPG axisen
dc.title探索Rtl1於小鼠腦中的表現機制與功能zh_TW
dc.titleInvestigating the mechanisms and functions of Rtl1 in the mouse brainen
dc.typeThesis-
dc.date.schoolyear106-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林劭品;阮麗蓉;林甫容zh_TW
dc.contributor.oralexamcommitteeShau-Ping Lin;Li-Jung Juan;Fu-Jung Linen
dc.subject.keyword表觀遺傳學,印記基因,Rtl1,下視丘-腦垂腺-性腺軸,下視丘-腦垂腺-腎上腺軸,zh_TW
dc.subject.keywordepigenetics,genomic imprinting,Retrotransposon-Like 1,HPA axis,HPG axis,en
dc.relation.page71-
dc.identifier.doi10.6342/NTU201803389-
dc.rights.note未授權-
dc.date.accepted2018-08-15-
dc.contributor.author-college醫學院-
dc.contributor.author-dept腦與心智科學研究所-
dc.date.embargo-lift2028-08-14-
顯示於系所單位:腦與心智科學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-2.pdf
  未授權公開取用
3.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved