Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78976
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor徐立中zh_TW
dc.contributor.advisorLi-Chung Hsuen
dc.contributor.author江蕙萱zh_TW
dc.contributor.authorHuei-Syuan Jiangen
dc.date.accessioned2021-07-11T15:33:38Z-
dc.date.available2024-08-13-
dc.date.copyright2018-09-04-
dc.date.issued2018-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428-435 (2008).
2. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805-820 (2010).
3. Kumar, H., Kawai, T. & Akira, S. Pathogen recognition by the innate immune system. Int. Rev. Immunol. 30, 16-34 (2011).
4. Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature 449, 819-826 (2007).
5. Blasius, A. L. & Beutler, B. Intracellular Toll-like receptors. Immunity 32, 305-315 (2010).
6. Kumar, H., Kawai, T. & Akira, S. Pathogen recognition in the innate immune response. Biochem. J. 420, 1–16 (2009).
7. Tang, D. et al. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol. Rev. 249, 158-75 (2012).
8. Brubaker S. W. et al. Innate immune pattern recognition: a cell biological perspective. Annu. Rev. Immunol. 33, 257-90 (2015).
9. Lamkanfi, M. & Dixit, V. M. Mechanisms and functions of inflammasomes. Cell 157, 1013-22 (2014).
10. Deretic.V., Saitoh, T. & Akira, S. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 13, 722-37 (2013).
11. Honda, K., Takaoka, A. & Taniguchi, T. Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity 25, 349-360 (2006).
12. Ivashkiv, L. B. & Donlin, L. T. Regulation of type I interferon responses. Nat. Rev. Immunol. 14, 36-49 (2014).
13. Ng, C. T. et al. Alpha and Beta Type 1 Interferon Signaling: Passage for Diverse Biologic Outcomes. Cell 64, 349-52 (2016).
14. Ganguly, K. et al. Post-transcriptional Regulation of Immunological Responses through Riboclustering. Front. Immunol. 7, 161 (2016).
15. Carpenter, S. et al. Post-transcriptional regulation of gene expression in innate immunity. Nat. Rev. Immunol. 14, 361-76 (2014).
16. Cao, X. Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat. Rev. Immunol. 16, 35-50 (2016).
17. Kawasaki, T. & Kawai, T. Toll-like receptor signaling pathways. Front. Immunol. 5, 461 (2014).
18. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373-84 (2010).
19. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783-801 (2006).
20. Kondo, T., Kawai, T. & Akira, S. Dissecting negative regulation of Toll-like receptor signaling. Trends Immunol. 33, 449-58 (2012).
21. Kawai, T. & Akira, S. Innate immune recognition of viral infection. Nat. Immunol. 7, 131-137 (2006).
22. Lee, B. L. & Barton, G. M. Trafficking of endosomal Toll-like receptors. Trends Cell Biol. 24, 360–369 (2014).
23. Marshak-Rothstein, A. Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol. 11, 823-35 (2006).

24. Berland, R. et al. Toll-like receptor 7-dependent loss of B cell tolerance in pathogenic autoantibody knockin mice. Immunity 25, 429-440 (2006).
25. Kanzler, H. et al. Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat. Med. 13, 552-559 (2007).
26. Rönnblom, L. & Alm, G. V. Systemic lupus erythematosus and the type I interferon system. Arthritis Res. Ther. 5, 68-75 (2003).
27. Barrat, J. et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll like receptors and may promote systemic lupus erythematosus. J. Exp. Med. 202, 1131-1139 (2005).
28. Lee, H. K. et al. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315, 1398-1401 (2007).
29. Gilliet, M., Cao, W. & Liu, Y. J. Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat. Rev. Immunol. 8, 594-606 (2008).
30. Swiecki, M. & Colonna, M. The multifaceted biology of plasmacytoid dendritic cells. Nat. Rev. Immunol. 15, 471-85 (2015).
31. McKenna, K., Beignon, A.S., & Bhardwaj, N. Plasmacytoid Dendritic Cells: Linking Innate and Adaptive Immunity. J. Virol. 79, 17-27 (2005).
32. Tabeta, K. et al. The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat. Immunol. 7, 156-164. (2006).
33. Brinkmann, M. M. et al. The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. J. Cell Biol. 177, 265-275 (2007).
34. Lee, B. L. et al. UNC93B1 mediates differential trafficking of endosomal TLRs. ELife 2, e00291 (2013).

35. Fukui, R. et al. Unc93B1 restricts systemic lethal inflammation by orchestrating toll-like receptor 7 and 9 trafficking. Immunity 35, 69-81 (2011).
36. Honda, K. et al. Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction. Nature 434, 1035-1040 (2005).
37. Guiducci, C. et al. Properties regulating the nature of the plasmacytoid dendritic cell response to Toll-like receptor 9 activation. J. Exp. Med. 8, 1999-2008 (2006).
38. Sasai, M. Bifurcation of Toll-like receptor 9 signaling by adaptor protein 3. Science 329, 1530-1534 (2010).
39. Blasius, A.L. et al. Slc15a4, AP-3, and Hermansky–Pudlak syndrome proteins are required for Toll-like receptor signaling in plasmacytoid dendritic cells. Proc. Natl. Acad. Sci. U.S.A. 107, 19973–19978 (2010)
40. Henault, J. et al. Noncanonical autophagy is required for type I interferon secretion in response to DNA-immune complexes. Immunity 37, 986-997(2012).
41. Ewald, S. E. et al. The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature 456, 658-662 (2008).
42. Rutz, M. et al. Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur. J. Immunol. 34, 2541-2550 (2004).
43. Yi, A.K. et al. CpG motifs in bacterial DNA activate leukocytes through the pH-dependent generation of reactive oxygen species. J. Immunol. 160, 4755-4761 (1998).
44. Swatek, K. N. & Komander, D. Ubiquitin modifications. Cell Res. 26, 399-422 (2016).
45. Kim, W. et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 44, 325-340 (2011).

46. Wagner, S. A. et al. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol. Cell Proteomics 10, M111.013284 (2011).
47. Chen, Z. J. & Sun, L. J. Nonproteolytic functions of ubiquitin in cell signaling. Mol. Cell 33, 275-86 (2009).
48. Chen, Z. J. Ubiquitination in signaling to and activation of IKK. Immunol. Rev. 246, 95-106 (2012).
49. Kawai, T. et al. Interferon-α induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nature Immunol. 5, 1061-1068 (2004).
50. Chiang, C-Y. et al. Cofactors required for TLR7- and TLR9-dependent innate immune responses. Cell Host Microbe. 11, 306-318 (2012).
51. Araki, T., Nagarajan, R. & Milbrandt, J. Identification of genes induced in peripheral nerve after injury. Expression profiling and novel gene discovery. J. Biol. Chem. 276, 34131-41 (2001).
52. Araki, T. & Milbrandt, J. ZNRF proteins constitute a family of presynaptic E3 ubiquitin ligases. J. Neurosci. 23, 9385-94 (2003).
53. Wakatsuki, S., Saitoh, F. & Araki, T. ZNRF1 promotes Wallerian degeneration by degrading AKT to induce GSK3B-dependent CRMP2 phosphorylation. Nat. Cell Biol. 13, 1415-23 (2011).
54. Wakatsuki, S. et al. Oxidative stress-dependent phosphorylation activates ZNRF1 to induce neuronal/axonal degeneration. J. Cell Biol. 211, 881-96 (2015).
55. Lee, C. Y. et al. The ubiquitin ligase ZNRF1 promotes caveolin-1 ubiquitination and degradation to modulate inflammation. Nat. Commun. 8, 15502 (2017).
56. Hoxhaj, G. et al. ZNRF2 is released from membranes by growth factors and, together with ZNRF1, regulates the Na+/K+ ATPase. J. Cell Sci. 125, 4662-75 (2012).
57. Dubois, F. et al. Differential 14-3-3 affinity capture reveals new downstream targets of phosphatidylinositol 3-kinase signaling. Mol. Cell Proteomics 8, 2487-99 (2009).
58. Hoxhaj, G. et al. The E3 ubiquitin ligase ZNRF2 is a substrate of mTORC1 and regulates its activation by amino acids. Elife 5, e12278 (2016).
59. Hao, H. X. et al. ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature 485, 195-200 (2012).
60. Neutzner, A. et al. A systematic search for endoplasmic reticulum (ER) membrane-associated RING finger proteins identifies Nixin/ZNRF4 as a regulator of calnexin stability and ER homeostasis. J. Biol. Chem. 286, 8633-8643 (2011).
61. Bist, P. et al. E3 Ubiquitin ligase ZNRF4 negatively regulates NOD2 signalling and induces tolerance to MDP. Nat. Commun. 8, 15865 (2017).
62. Wang, G. G. et al. Quantitative production of macrophages or neutrophils ex vivo using conditional Hoxb8. Nat. Methods 3, 287-93 (2006).
63. Kato, H. et al. Cell type-specific involvement of RIG‑I in antiviral response. Immunity 23, 19-28 (2005).
64. Naik, S. H. et al. CD8+, CD8-, and plasmacytoid dendritic cell generation in vitro using flt3 ligand. Methods Mol. Biol. 595, 167-76 (2010).
65. Gilliet, M. et al. The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 195, 953-8 (2002).
66. Blasius, A. L. et al. Siglec H is an IPC-specific receptor that modulates type I IFN secretion through DAP12. Blood 107, 2474-2476 (2006).
67. Zhang, J. et al. Characterization of Siglec H as a novel endocytic receptor expressed on murine plasmacytoid dendritic cell precursors. Blood 107, 3600-3608 (2006).
68. Diebold, S. S. et al. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529-31 (2004).
69. Krug, A. et al. Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood 103, 1433-1437 (2004).
70. Maeda, T. et al. A novel plasmacytoid dendritic cell line, CAL-1, established from a patient with blastic natural killer cell lymphoma. Int. J. Hematol. 81, 148-54 (2005).
71. Steinhagen, F. et al. Activation of type I interferon-dependent genes characterizes the "core response" induced by CpG DNA. J. Leukoc. Biol. 92, 775-85 (2012).
72. Uematsu, S. et al. Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-α induction. J. Exp. Med. 201, 915-923 (2005).
73. Hoshino, K. et al. IκB kinase-α is critical for interferon-α production induced by Toll-like receptors 7 and 9. Nature 440, 949-953 (2006).
74. Guiducci, C. et al. PI3K is critical for the nuclear translocation of IRF-7 and type I IFN production by human plasmacytoid predendritic cells in response to TLR activation. J. Exp. Med. 2, 315-322 (2008).
75. Hayashi, K. et al. The interaction between IKKα and LC3 promotes type I interferon production through the TLR9-containing LAPosome. Sci. Signal. 11, eaan4144 (2018).
76. Lau, C. M. et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J. Exp. Med. 202, 1171-1177 (2005).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78976-
dc.description.abstract漿狀樹突細胞(plasmacytoid dendritic cells)是一種特化的先天免疫細胞,其在病毒感染時能夠產生大量的第一型干擾素(type I interferons)。 第七型和第九型類鐸受體(Toll-like receptor 7 and 9)在漿狀樹突細胞中高度表現,並且能夠分別偵測單股核糖核酸(single strand RNA)和未甲基化的CpG位點去氧核醣核酸(CpG DNA)。我們先前的研究發現ZNRF1在脂多糖(Lipopolysaccharide)刺激後會增強前發炎激素(pro-inflammatory cytokines)的製造並抑制抗發炎激素 (anti-inflammatory cytokines) 的產生,顯示ZNRF1在第四型類鐸受體(Toll-like receptor 4)主導的免疫反應中具有正向調節功能。然而,ZNRF1在胞內體型類鐸受體主導的免疫反應中所扮演的角色仍不清楚。在這篇研究中,我們顯示當漿狀樹突細胞中的第七型和第九型類鐸受體藉由配體刺激或是病毒感染活化後,ZNRF1缺失會增強第一型干擾素產生而前發炎激素則不受影響。增強的第一型干擾素反應也促進ZNRF1缺失的人類漿狀樹突細胞抵抗第一型單純皰疹病毒(herpes simplex virus 1)感染的能力。此外,ZNRF1的泛素連接酶活性對於其調控第七型類鐸受體主導第一型干擾素的製造是必須的。最後,我們發現ZNRF1缺失會導致IKKα的活性增加,並延遲IKKα和LC3B之間的分離。總結以上,我們的結果顯示ZNRF1在第七型和第九型類鐸受體主導的免疫反應中扮演負向調控的角色,並有可能作為治療第一型干擾素相關自體免疫疾病的新標靶。zh_TW
dc.description.abstractPlasmacytoid dendritic cells (pDCs) are a specialized population of innate immune cells, which are capable of producing large amounts of type I interferons (IFNs) following viral infection. Toll-like receptor (TLR) 7 and 9 are highly expressed in pDCs and are able to sense single strand RNA (ssRNA) and unmethylated CpG DNA, respectively. Our previous studies demonstrated that ZNRF1 enhanced the production of pro-inflammatory cytokines and suppressed anti-inflammatory cytokines production after LPS challenge, suggesting its positive regulatory function in TLR4-triggered inflammatory reposes. However, the regulatory role of ZNRF1 in endosomal TLRs-mediated immune responses remains unclear. Here we demonstrated that ZNRF1 deficiency enhanced type I IFNs production whereas the production of pro-inflammatory cytokines remained unaffected in pDCs after TLR7 and TLR9 activation induced by both ligands and virus infection. Consistently, enhanced type I IFNs production in ZNRF1 -/- CAL-1 promoted the host defense against HSV-1 infection. Furthermore, we showed that the E3 ubiquitin ligase activity of ZNRF1 was required for its regulatory function in TLR7-mediated type I IFNs production, which worked through modulating IKKα activity. Finally, immuno-fluorescence images showed that the disassociation of IKKα and LC3B was delayed in ZNRF1 -/- CAL-1. Taken together, our results suggested that ZNRF1 is a negative regulator of TLR7/9-driven immune response in pDCs and may serve as a novel therapeutic target for type I IFNs-mediated autoimmune diseases.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:33:38Z (GMT). No. of bitstreams: 1
ntu-107-R05448007-1.pdf: 4084649 bytes, checksum: 08388149500afdba40ee55ed49370dc4 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審定書............................................................................................................... i
致謝.................................................................................................................................. ii
摘要…............................................................................................................................. iii
Abstract ........................................................................................................................... iv
Contents .......................................................................................................................... vi
Introduction ..................................................................................................................... 1
Inflammation ........................................................................................................... 1
Pattern recognition receptors (PRRs) ...................................................................... 1
Toll-like receptors (TLRs) ....................................................................................... 4
TLRs signaling pathways ........................................................................................ 4
Nucleic acid-sensing TLRs ...................................................................................... 5
TLR7/9 and virus ..................................................................................................... 6
TLR7/9 and plasmacytoid dendritic cells (pDCs) ................................................... 6
TLR7/9 signaling pathway ...................................................................................... 7
TLR7/9 Trafficking .................................................................................................. 8
Proteolytic cleavage of TLR7/9 ............................................................................. 11
Ubiquitination ........................................................................................................ 12
Ubiquitination in TLRs-mediated immune responses ........................................... 13
Zinc and RING finger 1 (ZNRF1) ......................................................................... 14
ZNRF1 and immunity............................................................................................. 15
ZNRF family .......................................................................................................... 16
Aim ................................................................................................................................ 18
Materials and Methods .................................................................................................. 19
Reagents and antibodies .........................................................................................19
Preparation of recombinant human FMS-like tyrosine kinase 3 ligand (hFlt3L) .. 21
Mice ....................................................................................................................... 22
Preparation of Flt3L-induced bone marrow-derived pDCs (Flt3L-pDCs) ............ 23
B220-positive selection.......................................................................................... 24
Cell culture and stimulation .................................................................................. 24
Generation of ZNRF1 knockout CAL-1 using CRISPR/Cas9 system and
lentiviral infection ................................................................................................. 25
Flow cytometry ..................................................................................................... 26
RNA purification and quantitative RT-PCR (RT-qPCR) ....................................... 27
Cell lysates preparation ......................................................................................... 29
Immunoblotting ..................................................................................................... 30
Immunofluorescence ............................................................................................. 31
Virus amplification ................................................................................................ 32
Plaque assay ........................................................................................................... 33
Generation of Flt3L-derived immortalized hematopoietic stem and progenitor cell
(Flt3L-iHPSC) ....................................................................................................... 34
Statistical analysis ..................................................................................................35
Results ............................................................................................................................36
Murine bone marrow cells differentiate into cDCs and pDCs after incubation
with Flt3L for 7-9 days .......................................................................................... 37
Homemade recombinant human Flt3L induces differentiation of bone marrows
into dendritic cells as efficiently as commercial murine Flt3L ............................. 38
ZNRF1 is not required for pDCs development ..................................................... 39
ZNRF1 depletion enhances type I IFNs but not pro-inflammatory cytokines
production upon TLR7 and TLR9 ligand stimulation in Flt3L-pDCs ................... 39
ZNRF1-/- CAL-1 produces higher amount of type I IFNs upon TLR7
Activation .............................................................................................................. 41
ZNRF1 deficiency enhances host defense against HSV-1 infection …................. 41
The catalytic activity of ZNRF1 is required for its regulatory function in
TLR7-triggered type I IFNs production ................................................................ 42
ZNRF1 deficiency enhances IKKα activation upon TLR7 activation in CAL-1
cells ........................................................................................................................ 43
ZNRF1 deficiency has little influence on the canonical NF-κB activation triggered
by TLR7 activation ................................................................................................ 45
Znrf1+/+ and Znrf1-/- Flt3L-immortalized hematopoietic stem and progenitor cells
(iHPSCs) showed similar morphology and differentiation capability .................. 47
Discussion ..................................................................................................................... 49
The possible role of ZNRF1 in TLR7 and TLR9 trafficking................................. 51
The possible role of ZNRF1 in regulation of IKKα activity.................................. 53
The possible role of ZNRF1 in the interaction between IKKα and LC3B ............ 54
The possible role of ZNRF1 in type I IFNs-related autoimmune diseases ........... 56
Figures ........................................................................................................................... 57
Figure 1. Murine bone marrow cells differentiate into cDCs and pDCs
after incubation with Flt3L for 7-9 days ................................................................ 57
Figure 2. Homemade recombinant human Flt3L induces bone marrow
differentiation into dendritic cells as efficient as commercial murine Flt3L ......... 58
Figure 3. ZNRF1 depletion doesn’t affect bone marrow derived dendritic
cells (BMDCs) development ................................................................................. 60

Figure 4. The purity of pDCs population can reach 70-80% after positive selection
of B220+ Flt3L-BMDCs ........................................................................................ 62
Figure 5. ZNRF1 is not involved in pDC development ........................................ 63
Figure 6. ZNRF1 depletion enhances the production of type I IFNs but not
pro-inflammatory cytokines upon TLR7 ligand stimulation in Flt3L-pDCs ......... 64
Figure 7. ZNRF1 depletion enhances the production of type I IFNs but not
pro-inflammatory cytokines upon TLR9 ligand stimulation in Flt3L-pDCs ......... 65
Figure 8. ZNRF1 depletion enhances type I IFNs production in Flt3L-pDCs
after influenza A infection ..................................................................................... 66
Figure 9. ZNRF1 depletion enhances type I IFNs in Flt3L-pDCs after
HSV-1 infection ..................................................................................................... 68
Figure 10. Generation of ZNRF1-/- CAL-1 cells by CRISPR/Cas9 system ........... 70
Figure 11. ZNRF1-deficient CAL-1 cells produce increased type I IFNs
upon TLR7 activation ............................................................................................ 71
Figure 12. ZNRF1 deficiency enhances host defense against HSV-1 infection .... 73
Figure 13. ZNRF1-mediated R848-induced type I IFNs production is
required it E3 ubiquitin ligase ............................................................................... 75
Figure 14. ZNRF1 deficiency enhances IKKα activation in CAL-1
after challenge with R848 .......................................................................................76
Figure 15. ZNRF1 deficiency in CAL-1 cells enhances STAT1 activation and the
expression of interferon-stimulated gene OAS1 after R848 stimulation ............... 77
Figure 16. ZNRF1 deficiency in CAL-1 cells has little impact on the canonical
NF-κB activation upon TLR7 activation ............................................................... 79
Figure 17. ZNRF1 deficiency in CAL-1 cells delays the disassociation of IKKα
and LC3B................................................................................................................ 80
Figure 18. Znrf1-/- Flt3L-iHPSCs showed similar morphology and
differentiation ability as WT Flt3L-iHPSCs ......................................................... 83
Figure 19. The proposed model summarizing the regulation of TLR7/9-mediated
immune responses by ZNRF1 in pDCs ................................................................. 85
References ..................................................................................................................... 86
-
dc.language.isoen-
dc.subject泛素連接?zh_TW
dc.subject第七型類鐸受體zh_TW
dc.subject漿狀樹突細胞zh_TW
dc.subject第九型類鐸受體zh_TW
dc.subjectpDCsen
dc.subjectTLR7en
dc.subjectTLR9en
dc.subjectZNRF1en
dc.titleZNRF1在TLR7/9主導之免疫反應中所扮演的角色zh_TW
dc.titleThe Regulatory Role of ZNRF1 in TLR7/9-mediated Immune Responsesen
dc.typeThesis-
dc.date.schoolyear106-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉旻禕;黃麗華zh_TW
dc.contributor.oralexamcommitteeHelene Minyi Liu;Lih-Hwa Hwangen
dc.subject.keyword第七型類鐸受體,第九型類鐸受體,漿狀樹突細胞,泛素連接?,zh_TW
dc.subject.keywordTLR7,TLR9,pDCs,ZNRF1,en
dc.relation.page92-
dc.identifier.doi10.6342/NTU201803726-
dc.rights.note未授權-
dc.date.accepted2018-08-16-
dc.contributor.author-college醫學院-
dc.contributor.author-dept分子醫學研究所-
dc.date.embargo-lift2028-08-15-
Appears in Collections:分子醫學研究所

Files in This Item:
File SizeFormat 
ntu-106-2.pdf
  Restricted Access
3.99 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved