Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78974
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林清富(Ching-Fuh Lin)
dc.contributor.authorAvula Tejaen
dc.contributor.author德 安zh_TW
dc.date.accessioned2021-07-11T15:33:29Z-
dc.date.available2018-08-23
dc.date.copyright2018-08-23
dc.date.issued2018
dc.date.submitted2018-08-16
dc.identifier.citationREFERENCES
1. A. Luque, S. Hegedus, Handbook of Photovoltaic Science and Engineering 2003 Wiley-VCH.
2. P. Würfel, The Chemical Potential of Radiation J. Phys. C - Solid State Physics 1982, 15, 3967.
3. M. A. Green, Third Generation Photovoltaics 2006, Springer.
4. J. Nelson, The Physics of Solar Cells, Imperial College Press, London, 2003,
ISBN-10: 1-86094-349-7
5. S. Collavini, S. F. V olker and J. L. Delgado, Understanding the Outstanding Power Conversion E_ciency of Perovskite-Based Solar Cells, Angew. Chem. Int. Ed., 54, 9757{9759, 2015.
6. N. Marinova, S. Valero and J. L. Delgado, Organic and perovskite solar cells: Working principles, materials and interfaces, J. Colloid Interface Sci., 488, 373{389, 2017.
7. N. Ali, A. Hussain, R. Ahmed, M.K. Wang, C. Zhao, B. Ul Haq and Y.Q. Fu, Advances in nanostructured thin _lm materials for solar cell applications, Renew. Sust. Energ. Rev., 59, 726-737, 2016.
8. M. Green, A. Ho-Baillie and H. Snaith, 'The emergence of perovskite solar cells', Nature Photonics, vol. 8, no. 7, pp. 506-514, 2014.
9. Zhou, Huanping, et al. 'Interface engineering of highly efficient perovskite solar
cells.' Science 345.6196 (2014): 542-546.
10. H. Kim, S. Im and N. Park, 'Organo lead Halide Perovskite: New Horizons in
Solar Cell Research', J. Phys. Chem. C, vol. 118, no. 11, pp. 5615-5625, 2014.
11. N. McKinnon, D. Reeves and M. Akabas, '5-HT3 receptor ion size selectivity is a property of the transmembrane channel, not the cytoplasmic vestibule portals', The Journal of General Physiology, vol. 138, no. 4, pp. 453-466, 2011.
12. B. Cohen, 'Mutations in M2 alter the selectivity of the mouse nicotinic acetylcholine receptor for organic and alkali metal cations', The Journal of General Physiology, vol. 100, no. 3, pp. 373-400, 1992.
13. F. Matthews and R. Rawlings, Composite materials. Cambridge: Wood head Pub., pp.283-288, 2008.
14. V. D’Innocenzo, G. Grancini, M. Alcocer, A. Kandada, S. Stranks, M. Lee, G. Lanzani, H. Snaith and A. Petrozza, 'Excitons versus free charges in Organo-lead tri-halide perovskites', Nature Communications, vol. 5, pp. 17019-17047, 2014.
15. A. Marchioro, J. Teuscher, D. Friedrich, M. Kunst, R. van de Krol, T. Moehl, M. Grätzel and J. Moser, 'Unravelling the mechanism of photo induced charge transfer processes in lead iodide perovskite solar cells', Nature Photonics, vol. 8, no. 3, pp. 250-255, 2014.
16. G. Niu, X. Guo and L. Wang, 'Review of recent progress in chemical stability of perovskite solar cells', J. Mater. Chem. A, vol. 3, no. 17, pp. 8970-8980, 2015.
17. J. Ball, M. Lee, A. Hey and H. Snaith, 'Low-temperature processed mesosuperstructured to thin-film perovskite solar cells', Energy & Environmental Science, vol. 6, no. 6, pp. 1739-1743, 2013.
18. W. Yang, J. Noh, N. Jeon, Y. Kim, S. Ryu, J. Seo and S. Seok, 'High performance photovoltaic perovskite layers fabricated through intramolecular exchange', Science, vol. 348, no. 6240, pp. 1234-1237, 2015.
19. G. Eperon, V. Burlakov, P. Docampo, A. Goriely, and H. Snaith, “’Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells,” Adv. Funct. Mater., vol. 24, no. 1, pp. 151–157, 2013.
20. Q. Wang et al., “Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process,” Energy Environ. Sci., vol. 7, no. 7, pp. 2359–2365, 2014.
21. H. Zhang, J. Shi, X. Xu, L. Zhu, Y. Luo, D. Li and Q. Meng, 'Mg-doped TiO2 boosts the efficiency of planar perovskite solar cells to exceed 19%', J. Mater. Chem. A, vol.4, no. 40, pp. 15383-15389, 2016.
22. J. Burschka et al., “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature, vol. 499, no. 7458, pp. 316–319, 2013.
23. J. Im, I. Jang, N. Pellet, M. Gr¨atzel, andN. Park, “Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells,” Nature Nanotechnology., vol. 9, no. 11, pp. 927–932, 2014.
24. Z. Xiao et al., “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci., vol. 7, no. 8, pp. 2619–2623, 2014.
25. C. Chiang, Z. Tseng, and C.Wu, “Planar heterojunction perovskite/PC 71 BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin coating process,” J. Mater. Chem. A, vol. 2, no. 38, pp. 15897–15903, 2014.
26. D. Zhao et al., “High-efficiency solution-processed planar perovskite solar cells with a polymer hole transport layer,” Adv. Energy Mater., vol. 5, no. 6, 2015, Art. no. 1401855.
27. J.Im, C. Lee, J.Lee, S. Park and N.Park, “6.5% efficient perovskite quantum-dot- sensitized solar cell,” Nanoscale, vol. 3, no. 10, pp. 4088-4093, 2011.
28. S. Stranks et al., “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science, vol. 342, no. 6156, pp. 341–344, 2013.
29. Q. Dong et al., “Electron-hole diffusion lengths >175 um in solution- grown CH3 NH3 PbI3 single crystals,” Science, vol. 347, no. 6225, pp. 967–970, 2015.
30. Y. Wang, Y. Zhang, P. Zhang, and W. Zhang, “High intrinsic carrier mobility and photon absorption in the perovskite CH3 NH3 PbI3,” Phys. Chem. Chem. Phys., vol. 17, no. 17, pp. 11516–11520, 2015.
31. H. Zhou et al., “Interface engineering of highly efficient perovskite solar cells,” Science, vol. 345, no. 6196, pp. 542–546, 2014.
32. Martin A. Green, Anita Ho-Baillie & Henry J. Snaith, “The emergence of perovskite solar cells,” Nature Photonics 8, 506–514 (2014).
33. S. Shahbazi, F. Tajabadi, H.-S. Shiu, R. Sedighi, E. Jokar, S. Gholipour, N. Taghavini, de S. Afshar and E. W.-G. Diau, “An easy method to modify PEDOT: PSS/perovskite interfaces for solar cells with efficiency exceeding 15%,” RSC Adv.6, 65594, 2016.
34. Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai, Tsutomu Miyasaka, “Organometal Halide Perovskites as Visible- Light Sensitizers for Photovoltaic Cells,” Journal of the American Chemical Society, vol. 131, pp. 6050–6051, 2009.
35. L. Zuo, H. Guo, D. W. deQuilettes, S. Jariwala, N. De Marco, S. Dong, R. DeBlock, D. S. Ginger, B. Dunn, M. Wang, Y. Yang, “Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells,” Sci. Adv. 3, e1700106 (2017).
36. Liu, M.; Johnston, M. B.; Snaith, H. J. “Efficient Planar Heterojunction Perovskite Solar Cells by Vapor Deposition”. Nature 2013, 501, 395−398.
37. Q. Chen, H. Zhou, Z. Hong, S. Luo, H. Duan, H. Wang, Y. Liu, G. Li and Y. Yang, 'Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process', Journal of the American Chemical Society, vol. 136, no. 2, pp. 622-625, 2014.
38. P. Luo, Z. Liu, W. Xia, C. Yuan, J. Cheng and Y. Lu, 'Uniform, Stable, and Efficient Planar-Heterojunction Perovskite Solar Cells by Facile Low-Pressure Chemical Vapor Deposition under Fully Open-Air Conditions', ACS Applied Materials & Interfaces, vol. 7, no. 4, pp. 2708-2714, 2015.
39. N. Jeon, J. Noh, Y. Kim, W. Yang, S. Ryu and S. Seok, 'Solvent engineering for high performance inorganic–organic hybrid perovskite solar cells', Nature Materials, vol. 13, no. 9, pp. 897-903, 2014.
40. J.Liu, C. Gao, X. He, Q. Ye, L. Ouyang, D. Zhuang, C. Liao, J. Mei and W. Lau, 'Improved Crystallization of Perovskite Films by Optimized Solvent Annealing for High Efficiency Solar Cell', ACS Applied Materials & Interfaces, vol. 7, no. 43, pp. 24008-24015, 2015
41. Y. Li et al., “Fabrication of planar heterojunction perovskite solar cells by controlled low-pressure vapor annealing,” J. Phys. Chem. Lett., vol. 6, no. 3, pp. 493–499, 2015.
42. Annealing effects on high-performance CH3NH3PbI3 perovskite solar cells prepared by solution-process”, Lung-Chien Chen a, Cheng-Chiang Chen b, Jhih-Chyi Chen a, Chun-Guey Wu.
43. Efficient Perovskite Solar Cells by Temperature Control in Single and Mixed Halide Precursor Solutions and Films”, Devendra Khatiwada, † Swaminathan Venkatesan, † Nirmal Adhikari, † Ashish.
44. M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. Cheng and L. Spiccia, 'A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells', Angew. Chem. Int. Ed., vol. 53, no. 37, pp. 9898-9903, 2014.
45. N. Jeon, J. Noh, W. Yang, Y. Kim, S. Ryu, J. Seo and S. Seok, 'Compositional engineering of perovskite materials for high-performance solar cells', Nature, vol. 517, no. 7535, pp. 476-480, 2015.
46. Q. Hu, J. Wu, C. Jiang, T. Liu, X. Que, R. Zhu and Q. Gong, 'Engineering of Electron-Selective Contact for Perovskite Solar Cells with Efficiency Exceeding 15%', ACS Nano, vol. 8, no. 10, pp. 10161-10167, 2014.
47. Y. Zhou, M. Yang, W. Wu, A. Vasiliev, K. Zhu and N. Padture, 'Room-temperature crystallization of hybrid-perovskite thin films via solvent – solvent extraction for high-performance solar cells', J. Mater. Chem. A, vol. 3, no. 15, pp. 8178-8184, 2015.
48. W. Nie, H. Tsai, R. Asadpour, J. Blancon, A. Neukirch, G. Gupta, J. Crochet, M. Chhowalla, S. Tretiak, M. Alam, H. Wang and A. Mohite, 'High-efficiency solution-processed perovskite solar cells with millimeter-scale grains', Science, vol. 347, no. 6221, pp. 522-525, 2015.
49. M. Kumar, S. Dharani, W. Leong, P. Boix, R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S. Mhaisalkar and N. Mathews, 'Lead-Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation', Adv. Mater., vol. 26, no. 41, pp. 7122-7127, 2014.
50. F. Hao, C. Stoumpos, D. Cao, R. Chang and M. Kanatzidis, 'Lead-free solid-state organic–inorganic halide perovskite solar cells', Nature Photonics, vol. 8, no. 6, pp. 489-494, 2014.
51. H. Snaith, A. Abate, J. Ball, G. Eperon, T. Leijtens, N. Noel, S. Stranks, J. Wang, K. Wojciechowski and W. Zhang, 'Anomalous Hysteresis in Perovskite Solar Cells', J. Phys. Chem. Lett., vol. 5, no. 9, pp. 1511-1515, 2014.
52. E. Unger, E. Hoke, C. Bailie, W. Nguyen, A. Bowring, T. Heumüller, M. Christoforo and M. McGehee, 'Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells', Energy Environ. Sci., vol. 7, no. 11, pp. 3690-3698, 2014.
53. Y. Rong, Z. Tang, Y. Zhao, X.Zhong, S. Venkateshan, H. Graham, M. Patton, Y. Jing, A.Guloy and Y.Yao, “ Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells”, Nanoscale, vol. 7, no.24, pp. 10595-10599, 2015.
54. Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman and Huang, 'Giant switchable photovoltaic effect in organometal trihalide perovskite devices', Nat Mater, vol. 14, no. 2, pp. 193-198, 2014.
55. H. Chen, N. Sakai, M. Ikegami and T. Miyasaka, 'Correction to “Emergence of Hysteresis and Transient Ferroelectric Response in Organo-Lead Halide Perovskite Solar Cells”', J. Phys. Chem. Lett., vol. 6, no. 6, pp. 935-935, 2015.
56. W. Tress, N. Marinova, T. Moehl, S. Zakeeruddin, M. Nazeeruddin and M. Grätzel, 'Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field', Energy Environ. Sci., vol. 8, no. 3, pp. 995-1004, 2015.
57. Y. Zhang, M. Liu, G. Eperon, T. Leijtens, D. McMeekin, M. Saliba, W. Zhang, M. de Bastiani, A. Petrozza, L. Herz, M. Johnston, H. Lin and H. Snaith, 'Charge selective contacts, mobile ions and anomalous hysteresis in organic–inorganic perovskite solar cells', Mater. Horiz., vol. 2, no. 3, pp. 315-322, 2015.
58. J. Heo, H. Han, D. Kim, T. Ahn and S. Im, 'Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency', Energy Environ. Sci., vol. 8, no. 5, pp. 1602-1608, 2015.
59. P. Tiwana, P. Docampo, M. Johnston, H. Snaith and L. Herz, 'Electron Mobility and Injection Dynamics in Mesoporous ZnO, SnO2, and TiO2 Films Used in Dye-Sensitized Solar Cells', ACS Nano, vol. 5, no. 6, pp. 5158-5166, 2011.
60. D. Bi, L. Yang, G. Boschloo, A. Hagfeldt and E. Johansson, 'Effect of Different Hole Transport Materials on Recombination in CH3NH3PbI3 Perovskite-Sensitized Mesoscopic Solar Cells', J. Phys. Chem. Lett., vol. 4, no. 9, pp. 1532-1536, 2013.
61. Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao and J.Huang, 'Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers', Energy Environ. Sci., vol. 7, no. 8, p. 2619-2623, 2014.
62. D. Liu and T. Kelly, 'Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques', Nature Photonics, vol. 8, no. 2, pp. 133-138, 2013.
63. S. Ryu, J. Seo, S. Shin, Y. Kim, N. Jeon, J. Noh and S. Seok, 'Fabrication of metal-oxide-free CH 3NH3PbI3 perovskite solar cells processed at low temperature', J. Mater. Chem. A, vol. 3, no. 7, pp. 3271-3275, 2015.
64. P. Liang, C. Liao, C. Chueh, F. Zuo, S. Williams, X. Xin, J. Lin and A. Jen, 'Additive Enhanced Crystallization of Solution-Processed Perovskite for Highly Efficient Planar-Heterojunction Solar Cells', Adv. Mater., vol. 26, no. 22, pp. 3748-3754, 2014.
65. A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M. Nazeeruddin and M. Grätzel, 'Effect of Annealing Temperature on Film Morphology of Organic-Inorganic Hybrid Pervoskite Solid-State Solar Cells', Advanced Functional Materials, vol.24, no. 21, pp. 3250-3258, 2014.
66. M. Saliba, K. Tan, H. Sai, D. Moore, T. Scott, W. Zhang, L. Estroff, U. Wiesner and H. Snaith, 'Influence of Thermal Processing Protocol upon the Crystallization and Photovoltaic Performance of Organic–Inorganic Lead Trihalide Perovskites', J. Phys. Chem. C, vol. 118, no. 30, pp. 17171-17177, 2014.
67. L. Yan, Y. Song, Y. Zhou, B. Song and Y. Li, 'Effect of PEI cathode interlayer on work function and interface resistance of ITO electrode in the inverted polymer solar cells', Organic Electronics, vol. 17, pp. 94-101, 2015.
68. X. Min, F. Jiang, F. Qin, Z. Li, J. Tong, S. Xiong, W. Meng and Y. Zhou, 'Polyethylenimine Aqueous Solution: A Low-Cost and Environmentally Friendly Formulation to Produce Low-Work-Function Electrodes for Efficient Easy-to-Fabricate Organic Solar Cells', ACS Appl. Mater. Interfaces, vol. 6, no. 24, pp. 22628-22633, 2014.
69. M. Lin, Y. Lin, A. Rauan, T. Wen, Y. Hsu and T. Guo, 'Role of Solution-Process able Polyethylenimine Electrode Interlayer in Fabricating Air-Stable Polymer Light-Emitting Diodes', Israel Journal of Chemistry, vol. 54, no. 7, pp. 935-941, 2014.
70. Lattante, Sandro. 'Electron and hole transport layers: their use in inverted bulk heterojunction polymer solar cells.' Electronics 3.1 (2014): 132-164.
71. Kim, J.B.; Kim, C.S.; Kim, Y.S.; Loo, Y.L. Oxidation of silver electrodes induces transition from conventional to inverted photovoltaic characteristics in polymer solar cells. Appl. Phys. Lett. 2009, 95, 183301.
72. Chen, S.; Zhao, Y.; Cheng, G.; Li, J.; Liu, C.; Zhao, Z.; Jie, Z.; Liu, S. Improved light out coupling for phosphorescent top-emitting organic light-emitting devices. Appl. Phys. Lett. 2006, 88, 153517.
73. G. Perumallapelli, S. Vasa and J. Jang, 'Improved morphology and enhanced stability via solvent engineering for planar heterojunction perovskite solar cells', Organic Electronics, vol. 31, pp. 142-148, 2016.
74. Y. Shao, Z. Xiao, C. Bi, Y. Yuan and J. Huang, 'Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells', Nature Communications, vol. 5, pp.5784-5792, 2014.
75. J. Jeng, Y. Chiang, M. Lee, S. Peng, T. Guo, P. Chen and T. Wen, 'CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells', Advanced Materials, vol. 25, no. 27, pp. 3727-3732, 2013.
76. J. Duda, P. Hopkins, Y. Shen and M. Gupta, 'Exceptionally Low Thermal Conductivities of Films of the Fullerene Derivative PCBM', Physical Review Letters, vol. 110, no. 1, pp. 015902-015910, 2013.
77. Nie, Wanyi, et al. 'High-efficiency solution-processed perovskite solar cells with millimeter-scale grains.' Science 347.6221 (2015): 522-525.
78. Zhou, Yinhua, et al. 'A universal method to produce low–work function electrodes for organic electronics.' Science 336.6079 (2012): 327-332.
79. Z. Xiao, Q. Dong, C. Bi, Y. Yuan and J. Huang, “Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement”, Advanced Materials, vol. 26, no.37, pp.6503-6509, 2014.
80. J. Jung, S. Wiliams and A.Jen, “Low-Temperature processed high- performance flexible perovskite solar cells via rationally optimized solvent washing treatments”, RSC Adv., vol. 4, no. 108, pp. 62971-62977, 2014.
81. Q. Zhou, Z.Jin, H. Lin and J. Wang, “Enhancing performance and uniformity of CH3NH3PbI3-xClx perovskite solar cells by air-heated-oven assisted annealing under various humidities”, Scientific Reports, vol. 6, no.1, pp. 1-8, 2016.
82. Z. Ahmed, M. Ani Najeeb, R.A. Shakoor, A. Alashraf, Shaheen A. Al-Muhtaseb, M.K. Nazeeruddin “Instability in CH3NH3PbI3 perovskite solar cells due to elemental migration and chemical composition changes”.
83. “Degradation of Co-Evaporated Perovskite Thin Film in Air”, Congcong Wang, Youzhen Li, Xuemei Xu, Chenggong Wang, Fangyan Xie, Yongli Gao.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78974-
dc.description.abstractDue to the development of technology and gradual depletion of fossil fuels, the energy issue has received wide attention in this century. The world is giving every effort to develop alternative energy. Solar energy is with inexhaustible source and also environment-friendly that it will not produce greenhouse gases. For these reason, the development of solar cells has become one of the best plan to solve the oncoming shortage of energy. Among many types of solar cells, perovskite solar cells suddenly appear on the horizon and the conversion efficiency has been improved from 3% to 21% in just few years. This makes many teams who originally study in polymer and dye-sensitized solar cells start doing research about perovskite. They apply their former techniques of polymer and dye-sensitized solar cells to perovskite solar cells and also get good results. In addition to high efficiency, perovskite solar cells have other advantages such as large area solar cells potential, possible to fabricate on flexible substrates, lightweight and with multiple applications.
In this research, we developed a new method and a homemade chamber called Sandwich Deposition Technique (SDT). By taking the advantages of double interdiffusion equipped by the PbI2-CH3NH3I-PbI2 structure, the extremely thin seed perovskite layer formed by the PbI2 and CH3NH3I accurately controlled the diffusion of CH3NH3I. In addition, to achieve better crystal quality of perovskite, the heating temperature of CH3NH3I powder was tuned in 3-to-1 process to make the formation of perovskite continuously and completely. we have demonstrated the characteristics of the CH3NH3PbI3 perovskite with thermal annealing at 100℃ for time ranging from 20 to 50 min. The preparation of perovskite films by SDT process is feasible and has certain production advantages. By this method, the diffusion distance and reaction result of MAI particles were effectively controlled, and the perovskite films with larger crystal size and a large reduction in carrier recombination were obtained. The optimum device exhibits outstanding performance, with Jsc=22.88mA/cm2, Voc=0.87V, FF= 74.24 and PCE= 14.93% respectively.
But the stability of these devices was very poor. So we modified the SDT process into the Environment Deposition Control (EDC) method to fabricate the perovskite layer. In the literature, we can know that there are many techniques can make the better film of active layer of organic optical devices. They use the casting with the IPA, DMSO on the substrates to slow down the reaction to form a better film. Here, we try to apply the mechanism in the SDT process. Therefore, we put the glass vails with ether solvent inside the chamber directly and we can achieve 14.18%. Even though the PCE is less than our previous results, but it showed tremendous stability even after 7 days.
The reason for the less PCE was the 30min formation time was not sufficient to fabricate the perovskite layer, and also the ether solvent turned into vapor very fast. So, we decided to increase the SDT time from 30min to 80min and replace the ether solvent with the CB solvent. The boiling point of CB is very high compared to the ether solvent. The reason for placing the chlorobenzene (CB) solvent in the chamber is CB helps to get large perovskite uniform morphology, so that would be easy for PCBM (ETL) to spread on it and it also helps to maintain the stability of the devices even after some days. The device exhibited good performance, with Jsc = 18.36 mA/cm2, Voc = 0.92V, FF = 75.8% and PCE = 12.81% when it had just been finished for the fabrication. After several days by placing the device in vacuum chamber, the value of PCE and FF increased sharply. The best PCE value was 16.06%, and the best FF value was 83.14%. For a low temperature process under whole atmosphere, this is a breakthrough of the perovskite solar cells and mass production.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:33:29Z (GMT). No. of bitstreams: 1
ntu-107-R05941108-1.pdf: 6928589 bytes, checksum: 7d327a9305fbfde7ebc70fe10afcc4ab (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsTable of Contents
ACKNOWLEDGEMENT i
ABSTRACT ii
Table of Contents v
List of Figures viii
List of Tables xi
CHAPTER 1 – INTRODUCTION 1
1.1 Research Background 1
1.2 Literature Review 7
1.2.1 Historical evolution of perovskite solar cells 7
1.2.2 Crystal lattice structure of perovskite solar cells 9
CHAPTER 2 – PRINCIPLES OF SOALR CELLS 13
2.1 Basic Theory of Solar cells 13
2.1.1 Operation Principle of solar cells 13
2.1.2 Impact parameters of solar cells 16
2.2 Technical principle of perovskite Solar cells 19
2.2.1 Working mechanism of perovskite solar cells 19
2.2.2 Preparation methods of perovskite Solar cells 23
2.2.3 Hysteresis and Stability 29
CHAPTER 3 – PREPARATION OF P-I-N PLANAR HETEROJUNCTION PEROVSKITE SOLAR CELLS BY SANDWICH DEPOSITION TECHNIQUE 30
3.1 Introduction to sandwich deposition technique (SDT) 30
3.2 Experiment Details 32
3.2.1 Materials and Characterization 32
3.2.2 Device Fabrication 33
3.3 Results and Discussion 40
3.3.1 Fabricating perovskite layer by SDT process 40
3.3.2 Increasing the post annealing time after forming the perovskite 43
3.4 Conclusion 49
CHAPTER 4 –ENVIRONMENT DEPOSITION CONTROL METHOD TO FABRICATE PEROVSKITE SOLAR CELLS VIA SANDWICH DEPOSITION TECHNIQUE 50
4.1 Introduction to Environment Deposition Control (EDC) method 50
4.2 Experiment Details 53
4.2.1 Materials and Characterization 53
4.2.2 Device Fabrication 55
4.3 Results and Discussion 60
4.3.1 Fabricating perovskite layer by EDC method in SDT process 60
4.4 Conclusion 67
CHAPTER 5 – FABRICATION OF P-I-N PLANAR HETEROJUNCTION PEROVSKITE SOLAR CELLS WITH IMPROVED MORPHOLOGY AND IMPACT OF TIME ON ITS PARAMETERS 68
5.1 Introduction 68
5.2 Experiment Details 70
5.2.1 Materials and Characterization 71
5.2.2 Device Fabrication 72
5.3 Results and Discussion 78
5.3.1 Fabricating perovskite layer by placing the CB in SDT chamber 78
5.4 Conclusion 91
CHAPTER 6 – CONCLUSION AND FUTURE WORK 92
6.1 CONCLUSION 92
6.2 FUTURE WORK 94
PUBLICATIONS 95
REFERENCES 96
dc.language.isoen
dc.subjectPEDOT: PSSzh_TW
dc.subjectenvironment deposition control (EDC)zh_TW
dc.subjectperovskite solar cellzh_TW
dc.subjectsandwich deposition technique (SDT) processzh_TW
dc.subjectdouble inter diffusionzh_TW
dc.subjectmorphology controlzh_TW
dc.subjectsolvent annealingzh_TW
dc.subjectatmosphere processzh_TW
dc.subjectthermal annealingzh_TW
dc.title以三明治鍍膜製作高效率甲基銨錪化鉛鈣鈦礦太陽能電池暨時間對該元件效率的影響zh_TW
dc.titleFABRICATION OF HIGH EFFICIENCY CH3NH3PbI3 PEROVSKITE SOLAR CELLS BY SANDWICH DEPOSITION TECHNIQUE AND THE IMPACT OF TIME ON EFFICIENCY VARIATIONen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林恭如(Gong-Ru Lin),黃建璋(Jian-Jang Huang)
dc.subject.keywordperovskite solar cell,thermal annealing,environment deposition control (EDC),sandwich deposition technique (SDT) process,double inter diffusion,morphology control,solvent annealing,atmosphere process,PEDOT: PSS,zh_TW
dc.relation.page104
dc.identifier.doi10.6342/NTU201802536
dc.rights.note有償授權
dc.date.accepted2018-08-16
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-R05941108-1.pdf
  未授權公開取用
6.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved