請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78973完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳奕君(I-Chun Cheng) | |
| dc.contributor.author | Cheng-Fu Hsu | en |
| dc.contributor.author | 許承富 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:33:24Z | - |
| dc.date.available | 2025-08-01 | |
| dc.date.copyright | 2020-08-28 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-18 | |
| dc.identifier.citation | [1] Einthoven W. Le telecardiogramme. Arch Int de Physiol 1906;4:132–64 (translated into English, Am Heart J 1957;53: 602–15). [2] Barrett, et. al, 'Ganong’s Review of Medical Physiology, 25th Edition' McGraw-Hill Education LLC., 2016. [3] 邱艷芬, '簡易心電圖讀本,' 華杏出版股份有限公司,1998. [4] 原著F.G. William,校閱 房同經, 譯者 白禮源等 ,“甘龍醫用生理學下冊,'藝軒圖書出版社,民國85 年. [5] 林茂村等編譯, '人體生理學,' 文京圖書股份有限公司,1998. [6] 陳文彬、潘祥林, '診斷學(第8版),' 120、486、487頁,人民衛生出版社,2013. [7] 林俊宏等, 'LabVIEW硬體介面-DAQ感測器篇(含生理感測) ,'高立圖書股份有限公司,2006. [8] W. H. Yeo, Y. S. Kim, J. Lee, A. Ameen, L. Shi, M. Li, S. Wang, R. Ma, S. H. Jin, Z. Kang, Y. Huang, and J. A. Rogers, 'Multifunctional epidermal electronics printed directly onto the skin,' Adv Mater, vol. 25, no. 20, pp. 2773-8, May 28 2013, doi: 10.1002/adma.201204426. [9] A. A. Chlaihawi, B. B. Narakathu, S. Emamian, B. J. Bazuin, and M. Z. Atashbar, 'Development of printed and flexible dry ECG electrodes,' Sensing and Bio-Sensing Research, vol. 20, pp. 9-15, 2018, doi: 10.1016/j.sbsr.2018.05.001. [10] J. H. Kim, S. R. Kim, H. J. Kil, Y. C. Kim, and J. W. Park, 'Highly Conformable, Transparent Electrodes for Epidermal Electronics,' Nano Lett, vol. 18, no. 7, pp. 4531-4540, Jul 11 2018, doi: 10.1021/acs.nanolett.8b01743. [11] A. S. Sedra and K. C. Smith, 'Microelectronic circuits, 'New York: Oxford University Press, 1998. [12] E. Fortunato, P. Barquinha, and R. Martins, 'Oxide semiconductor thin‐film transistors: a review of recent advances', Advanced Materials Technologies, vol. 24, no. 22, pp. 2945-2986, 2012, doi: 10.1002/adma.201103228. [13] D. Hong, G. Yerubandi, H. Chiang, M. Spiegelberg, J. Wager, and M. Sciences, 'Electrical modeling of thin-film transistors', Critical Reviews in Solid State and Materials Sciences, vol. 33, no. 2, pp. 101-132, 2008, doi: 10.1080/10408430701374808. [14] A. P. P. Correia, P. M. C. Barquinha, and J. C. d. P. Goes, 'Thin-Film Transistors,' in A Second-Order ΣΔ ADC Using Sputtered IGZO TFTs.: Springer International Publishing, pp. 5-15, 2016. [15] S. Kang and Y. Leblebici, CMOS Digital Integrated Circuits Analysis and Design, McGraw-Hill, pp.037-039, 2003. [16] 古頤榛;賴清羽, '數位邏輯設計:使用VHDL,' 碁峰出版社, ch.3, 2017. [17] 洪韶謙, '非晶氧化銦鎵鋅(a-IGZO)薄膜電晶體差分放大電路之研究,' 碩士論文, 光電工程學研究所, 國立臺灣大學, pp. 16-17, 2018. [18] Y. P. Tsividis and P. R. Gray, 'An integrated NMOS operational amplifier with internal compensation', IEEE Journal of Solid-State Circuits, vol. 11, no. 6, pp. 748-753, 1976, doi: 10.1109/JSSC.1976.1050813. [19] M. Kondo, T. Uemura, M. Akiyama, N. Namba, M. Sugiyama, Y. Noda, T. Araki, S. Yoshimoto, and T. Sekitani, 'Design of ultraflexible organic differential amplifier circuits for wearable sensor technologies,' in 2018 IEEE International Conference on Microelectronic Test Structures (ICMTS), pp. 79-84, 2018, doi: 10.1109/ICMTS.2018.8383769. [20] J.-Y. Baek, J.-H. An, J.-M. Choi, K.-S. Park, and S.-H. Lee, 'Flexible polymeric dry electrodes for the long-term monitoring of ECG,' Sensors and Actuators A: Physical, vol. 143, no. 2, pp. 423-429, 2008, doi: 10.1016/j.sna.2007.11.019. [21] R. Ma, D.-H. Kim, M. McCormick, T. Coleman, and J. Rogers, 'A stretchable electrode array for non-invasive, skin-mounted measurement of electrocardiography (ECG), electromyography (EMG) and electroencephalography (EEG),' 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 6405-6408, 2010, doi: 10.1109/IEMBS.2010.5627315. [22] D.-H. Kim, N. L. Ma, Y.-S. Kim, R.-H. Kim, S. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, K. J. Yu, T.-i. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.-J. Chung, H. Keum, M. McCormick, P. Liu, Y.-W. Zhang, F. G. Omenetto, Y. Huang, T. Coleman, and J. A. Rogers, 'Epidermal Electronics,' Science, vol. 333, no. 6044, pp. 838-843, 2011, doi: 10.1126/science.1206157. [23] H. C. Jung, J. H. Moon, D. H. Baek, J. H. Lee, Y. Y. Choi, J. S. Hong, and S. H. Lee, 'CNT/PDMS composite flexible dry electrodes for long-term ECG monitoring,' IEEE Trans Biomed Eng, vol. 59, no. 5, pp. 1472-9, May 2012, doi: 10.1109/TBME.2012.2190288. [24] K. I. Jang, S. Y. Han, S. Xu, K. E. Mathewson, Y. Zhang, J. W. Jeong, G. T. Kim, R. C. Webb, J. W. Lee, T. J. Dawidczyk, R. H. Kim, Y. M. Song, W. H. Yeo, S. Kim, H. Cheng, S. I. Rhee, J. Chung, B. Kim, H. U. Chung, D. Lee, Y. Yang, M. Cho, J. G. Gaspar, R. Carbonari, M. Fabiani, G. Gratton, Y. Huang, and J. A. Rogers, 'Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring,' Nat Commun, vol. 5, p. 4779, Sep 3 2014, doi: 10.1038/ncomms5779. [25] J. M. Jung, D. Y. Cha, D. S. Kim, H. J. Yang, K. S. Choi, J. M. Choi, and S. P. Chang, 'Development of PDMS-based flexible dry type SEMG electrodes by micromachining technologies,' Applied Physics A, vol. 116, no. 3, pp. 1395-1401, 2014, doi: 10.1007/s00339-014-8244-3. [26] A. A. Chlaihawi, B. B. Narakathu, S. Emamian, A. Eshkeiti, S. G. A. Reddy, B. J. Bazuin, and M. Z. Atashbar, 'Development of flexible dry ECG electrodes based on MWCNTPDMS composite,' 2015 IEEE SENSORS, pp. 1-4, 2015, doi: 10.1109/ICSENS.2015.7370218. [27] A. C. Myers, H. Huang, and Y. Zhu, 'Wearable silver nanowire dry electrodes for electrophysiological sensing,' RSC Advances, vol. 5, no. 15, pp. 11627-11632, 2015, doi: 10.1039/c4ra15101a. [28] N. Kim, T. Lim, K. Song, S. Yang, and J. Lee, 'Stretchable Multichannel Electromyography Sensor Array Covering Large Area for Controlling Home Electronics with Distinguishable Signals from Multiple Muscles,' ACS Appl Mater Interfaces, vol. 8, no. 32, pp. 21070-6, Aug 17 2016, doi: 10.1021/acsami.6b05025. [29] B. Xu, A. Akhtar, Y. Liu, H. Chen, W. H. Yeo, S. I. Park, B. Boyce, H. Kim, J. Yu, H. Y. Lai, S. Jung, Y. Zhou, J. Kim, S. Cho, Y. Huang, T. Bretl, and J. A. Rogers, 'An Epidermal Stimulation and Sensing Platform for Sensorimotor Prosthetic Control, Management of Lower Back Exertion, and Electrical Muscle Activation,' Adv Mater, vol. 28, no. 22, pp. 4462-71, Jun 2016, doi: 10.1002/adma.201504155. [30] Y. Yamamoto, S. Harada, D. Yamamoto, W. Honda, T. Arie, S. Akita, and K. Takei, 'Printed multifunctional flexible device with an integrated motion sensor for health care monitoring,' SCIENCE ADVANCES, vol. 2, no. 11, e1601473, 2016, doi: 10.1126/sciadv.1601473. [31] S. Choi, S. I. Han, D. Jung, H. J. Hwang, C. Lim, S. Bae, O. K. Park, C. M. Tschabrunn, M. Lee, S. Y. Bae, J. W. Yu, J. H. Ryu, S. W. Lee, K. Park, P. M. Kang, W. B. Lee, R. Nezafat, T. Hyeon, and D. H. Kim, 'Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics,' Nat Nanotechnol, vol. 13, no. 11, pp. 1048-1056, Nov 2018, doi: 10.1038/s41565-018-0226-8. [32] W. Dong, C. Zhu, W. Hu, L. Xiao, and Y. a. Huang, 'Stretchable human-machine interface based on skin-conformal sEMG electrodes with self-similar geometry,' Journal of Semiconductors, vol. 39, no. 1, 2018, doi: 10.1088/1674-4926/39/1/014001. [33] Y. H. Tai, H. L. Chiu, L. S. Chou, and C. H. Chang, 'Boosted Gain of the Differential Amplifier Using the Second Gate of the Dual-Gate a-IGZO TFTs,' IEEE Electron Device Letters, vol. 33, no. 12, pp. 1729-1731, 2012, doi: 10.1109/led.2012.2220955. [34] C. Zysset, N. Munzenrieder, L. Petti, L. Buthe, G. A. Salvatore, and G. Troster, 'IGZO TFT-Based All-Enhancement Operational Amplifier Bent to a Radius of 5 mm,' IEEE Electron Device Letters, vol. 34, no. 11, pp. 1394-1396, 2013, doi: 10.1109/led.2013.2280024. [35] K. Ishida, R. Shabanpour, B. K. Boroujeni, T. Meister, C. Carta, N. S. M. Luisa Petti, G. A. Salvatore, 1, and 1, '22.5 dB open-loop gain, 31 kHz GBW pseudo-CMOS based operational amplifier with a-IGZO TFTs on a flexible film,' 2014 IEEE Asian Solid-State Circuits Conference (A-SSCC), pp. 313-316, 2014, doi: 10.1109/ASSCC.2014.7008923. [36] G. A. Salvatore, N. Munzenrieder, T. Kinkeldei, L. Petti, C. Zysset, I. Strebel, L. Buthe, and G. Troster, 'Wafer-scale design of lightweight and transparent electronics that wraps around hairs,' Nat Commun, vol. 5, p. 2982, 2014, doi: 10.1038/ncomms3982. [37] K. Kichan, C. Keun-Yeong, and L. Hojin, 'a-InGaZnO Thin-Film Transistor-Based Operational Amplifier for an Adaptive DC–DC Converter in Display Driving Systems,' IEEE Transactions on Electron Devices, vol. 62, no. 4, pp. 1189-1194, 2015, doi: 10.1109/ted.2015.2402684. [38] R. Shabanpour, K. Ishida, T. Meister1, N. Münzenrieder, L. Petti2, G. Salvatore, and C. C. B. Kheradmand-Boroujeni1, G. Tröster2 and F. Ellinger1, 'A 70° phase margin OPAMP with positive feedback in flexible a-IGZO TFT technology,' 2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1-4, 2015, doi: 10.1109/MWSCAS.2015.7282051. [39] D. Kim, K.-Y. Choi, and H. Lee, 'On-Glass Operational Amplifier using SolutionProcessed a-IGZO TFTs,' 2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), pp. 551-553, 2016, doi: 10.1109/APCCAS.2016.7804027. [40] C. Garripoli, J.-L. P. J. van der Steen, F. Torricelli, M. Ghittorelli, G. H. Gelinck, A. H. M. Van Roermund, and E. Cantatore, 'Analogue Frontend Amplifiers for Bio-Potential Measurements Manufactured With a-IGZO TFTs on Flexible Substrate,' IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 7, no. 1, pp. 60-70, 2017, doi: 10.1109/jetcas.2016.2616723. [41] C. Garripoli, S. Abdinia, J.-L. J. P. van der Steen, G. H. Gelinck, and E. Cantatore, 'A Fully Integrated 11.2-mm2 a-IGZO EMG Front-End Circuit on Flexible Substrate Achieving Up to 41-dB SNR and 29-M$\Omega$ Input Impedance,' IEEE Solid-State Circuits Letters, vol. 1, no. 6, pp. 142-145, 2018, doi: 10.1109/lssc.2018.2878184. [42] P. G. Bahubalindruni, J. Martins, A. Santa, V. Tavares, R. Martins, E. Fortunato, and P. Barquinha, 'High-Gain Transimpedance Amplifier for Flexible Radiation Dosimetry Using InGaZnO TFTs,' IEEE Journal of the Electron Devices Society, vol. 6, pp. 760-765, 2018, doi: 10.1109/jeds.2018.2850219. [43] A. Rahaman, Y. Chen, M. M. Hasan, and J. Jang, 'A High Performance Operational Amplifier Using Coplanar Dual Gate a-IGZO TFTs,' IEEE Journal of the Electron Devices Society, vol. 7, pp. 655-661, 2019, doi: 10.1109/jeds.2019.2923208. [44] J. H. Koo, S. Jeong, H. J. Shim, D. Son, J. Kim, D. C. Kim, S. Choi, J. I. Hong, and D. H. Kim, 'Wearable Electrocardiogram Monitor Using Carbon Nanotube Electronics and Color-Tunable Organic Light-Emitting Diodes,' ACS Nano, vol. 11, no. 10, pp. 10032-10041, Oct 24 2017, doi: 10.1021/acsnano.7b04292. [45] J. Kim, Y. Hwang, S. Jeong, S. Y. Lee, Y. Choi, and S. Jung, 'An elastomer for epidermal electronics with adjustable adhesion force and stretchability obtained via a reverse-micelle-induced process,' Journal of Materials Chemistry C, vol. 6, no. 9, pp. 2210-2215, 2018, doi: 10.1039/c7tc05550a. [46] ”Linear Polydimethylsiloxanes” Joint Assessment of Commodity Chemicals, September 1994 (Report No. 26) ISSN 0773-6339-26. [47] 張勁燕, 半導體製程設備. 五南圖書出版股份有限公司, p.295-310, 2005. [48] M. E. A. Hussein, 'Fabrication and characterization of GaN-based nanowires for photoelectrochemical water splitting applications,' 2015. [49] S. Swann, 'Magnetron sputtering,' Physics in Technology, vol. 19, pp. 67-75, 1988. [50] H. Xiao, Introduction to semiconductor manufacturing technology. Prentice Hall Upper Saddle River, NJ, 2001. [51] 田民波, 薄膜技術與薄膜材料. 五南圖書出版股份有限公司, 2007. [52] K. Tsuchiya, T. Kitagawa, and E. Nakamachi, 'Development of RF magnetron sputtering method to fabricate PZT thin film actuator,' Precision Engineering, vol. 27, no. 3, pp. 258-264, 2003, doi: 10.1016/S0141-6359(03)00006-0. [53] C. E. Morosanu, Thin Films by Chemical Vapour Deposition, Elsevier, pp. 314-323, 2016. [54] M. Meyyappan, L. Delzeit, A. Cassell, and D. Hash, 'Carbon nanotube growth by PECVD: a review,' Plasma Sources Science and Technology, vol. 12, no. 2, pp. 205-216, 2003, doi: 10.1088/0963-0252/12/2/312. [55] B. A. Vaartstra, 'Systems and methods for forming zirconium and/or hafnium-containing layers', US Patents No.7112485, 2015. [56] R. D. Clark, 'Method for depositing dielectric films,' US Patents No.6764958B1, 2015. [57] J. Sheng, K.-L. Han, T. Hong, W.-H. Choi, and J.-S. Park, 'Review of recent progresses on flexible oxide semiconductor thin film transistors based on atomic layer deposition processes', Journal of Semiconductors, vol. 39, no. 1, pp. 801-812, 2018, doi: 10.1088/1674-4926/39/1/011008. [58] C. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication. John Wiley Sons, Ltd., 2007. [59] S. Franssila, Introduction To Microfabrication. John Wiley Sons, pp.432-434, 2010. [60] R. J. Poulsen, 'Plasma etching in integrated circuit manufacture—A review', Journal of Vacuum Science and Technology, vol. 14, no. 1, pp. 266-274, 1977, doi: 10.1116/1.569137. [61] Nader Bagherzadeh et al., UCSD Bioengineering senior design project group 8, 2012. (http://beweb.ucsd.edu/courses/senior-design/projects/2012/project_8) [62] Ying-Wen Bai, Wen-Yang Chu, Chien-Yu Chen, Yi-Ting Lee, Yi-Ching Tsai and Cheng-Hung Tsai, 'Adjustable 60Hz noise reduction by a notch filter for ECG signals,' Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.04CH37510), pp. 1706-1711 Vol.3, 2004, doi: 10.1109/IMTC.2004.1351410. [63] 王淳真, '全透明可撓性氧化銦鎵鋅薄膜電晶體之研究,' 碩士論文, 光電工程研究所, 國立台灣大學, pp. 61-67, 2018. [64] 吳家駿, '可撓性非晶氧化銦鎵鋅薄膜電晶體差分放大器之研究,' 碩士論文, 光電工程研究所, 國立台灣大學, pp. 51-57, 2019. [65] C.-S. Fuh, S. M. Sze, P.-T. Liu, L.-F. Teng, and Y.-T. Chou, 'Role of environmental and annealing conditions on the passivation-free In-Ga-Zn-O TFT,' Thin Solid Films, vol. 520, no. 5, pp. 1489-1494, 2011, doi: 10.1016/j.tsf.2011.08.088. [66] D. Han Kang, J. Ung Han, M. Mativenga, S. Hwa Ha, and J. Jang, 'Threshold voltage dependence on channel length in amorphous-indium-gallium-zinc-oxide thin-film transistors', Applied Physics Letters, vol. 102, no. 8, p. 083508, 2013, doi: 10.1063/1.4793996. [67] M. Mativenga, D. Geng, J. H. Chang, T. J. Tredwell, and J. Jang, 'Performance of 5-nm a-IGZO TFTs with various channel lengths and an etch stopper manufactured by back UV exposure', IEEE Electron Device Letters, vol. 33, no. 6, pp. 824-826, 2012, doi: 10.1109/LED.2012.2191132. [68] S. Yoon et al., 'Study of nitrogen high-pressure annealing on InGaZnO thin-film transistors', ACS Appl. Mater. Interfaces, vol. 6, no. 16, pp. 13496-13501, 2014, doi: 10.1021/am502571w. [69] T. Mudgal, N. Walsh, R. G. Manley, and K. D. Hirschman, 'Impact of annealing on contact formation and stability of IGZO TFTs', ECS Transactions, vol. 61, no. 4, pp. 405-417, 2014, doi: 10.1149/06104.0405ecst. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78973 | - |
| dc.description.abstract | 本研究目標為開發應用於心電訊號量測之可撓性電子元件,共設計兩種不同的可拉伸式乾式電極,皆以聚二甲基矽氧烷做為基底材料,並分別使用銀及奈米銀線作為感測電極。導線的部分特別設計彎曲的結構,使得電極貼片與皮膚能夠服貼,進而提高訊號雜訊比。兩者之表現與使用市售銀/氯化銀(Ag/AgCl)電極之量測結果相近。 接著於聚醯亞胺基板上製作可撓性差分放大電路,其由八個非晶氧化銦鎵鋅薄膜電晶體組成(放大倍率約3.5 V/V)。其中四個薄膜電晶體組成主動式負載NMOS差分放大器,而另外四個薄膜電晶體組成雙輸入轉單輸出電路。電路之差模增益約為3.5 V/V,共模增益約為0.6 V/V,共模抑制比約為15.3 dB。 最後,將電極貼片與感測電路整合於心電圖訊號量測。先利用可拉伸式乾式電極接收皮膚上的訊號,再透過可撓性非晶氧化銦鎵鋅薄膜電晶體之前端差分放大電路進行初步放大(放大倍率約3.5 V/V),而後利用自組之後段濾波電路(放大倍率約101 V/V,頻寬為0.4 ~ 48 Hz、 60 Hz帶拒)進行雜訊濾除,從而於示波器上擷取ECG波形。所得心電訊號之QRS平均波峰約為85.73 mV,雜訊約為22.21 mV,得訊雜比值約為11.73 dB。 | zh_TW |
| dc.description.abstract | In this research, developing flexible electronic devices for Electrocardiogram (ECG) measurement is demonstrated. First of all, two types of stretchable dry electrodes are designed, both of which are based on Polydimethylsiloxane (PDMS), and the electrodes use silver (Ag) and silver nanowires (AgNW) respectively. It’s worth mentioning that the design of matrix networks makes the patches conformably adhere to the skin surface, so that the signal-to-noise ratio can be improved. Both of their performance are similar to the measurement results using commercial silver/silver chloride (Ag/AgCl) reference electrodes. Next, the flexible differential amplifier circuit which is composed of eight amorphous indium gallium zinc oxide thin film transistors (a-IGZO TFTs) is fabricated on polyimide substrate. Four of them act as a differential pair, and the other form a differential to single ended converter. The differential mode gain of the circuit is about 3.5 V/V, and the common mode gain is about 0.6 V/V, so the common mode rejection ratio (CMRR) is about 15.3 dB. Finally, the patches and circuit are integrated into ECG measurement. The ECG signal is received from the skin surface by three pairs of stretchable dry electrodes, and then the signal will be amplified by a-IGZO TFT based differential amplifier circuit (gain is about 3.5 V/V). After that, the breadboard filter circuit (gain is about 101 V/V, and bandwidth is 0.4 ~ 48 Hz 60 Hz notch) is used for noise filtering, so as to monitor the ECG waveform on the oscilloscope. The average peak of the QRS wave obtained is about 85.73 mV, the noise is about 22.21 mV, and the signal-to-noise ratio is about 11.73 dB. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:33:24Z (GMT). No. of bitstreams: 1 U0001-1808202013012200.pdf: 50965795 bytes, checksum: e2820eab9c1eb6d873173e22df80c279 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌謝 II 中文摘要 IV Abstract V 目錄 VII 圖目錄 XI 表目錄 XIX 第一章 緒論 1 1.1 心電圖發展背景 1 1.2 研究動機 2 1.3 論文架構 3 第二章 理論與文獻回顧 5 2.1 心電圖原理 5 2.1.1 心臟的電化傳導 5 2.1.2 心電訊號的組成 7 2.1.3 十二導程 8 2.2 感測電極簡介 11 2.2.1 濕式電極 11 2.2.2 乾式電極 12 2.3 濾波器簡介 13 2.4 薄膜電晶體簡介 14 2.4.1 薄膜電晶體之元件結構 14 2.4.2 薄膜電晶體之工作原理 15 2.4.3 薄膜電晶體之特徵參數 16 2.4.4 薄膜電晶體之介電層電性分析 21 2.5 NMOS差分放大電路簡介 22 2.5.1 電壓轉換特性曲線 22 2.5.2 雜訊邊界 23 2.5.3 電阻式負載NMOS反相器 25 2.5.4 增強型負載NMOS反相器 27 2.5.5 NMOS差分放大器 29 2.5.6 雙輸入轉單輸出電路簡介 30 2.5.7 頻率響應 32 2.6 可拉伸式乾式電極文獻回顧 36 2.7 a-IGZO薄膜電晶體差分放大電路之文獻回顧 44 2.8 可拉伸式電極整合電晶體於生理訊號感測之文獻回顧 49 第三章 實驗方法與步驟 53 3.1 聚二甲基矽氧烷(PDMS)製備 53 3.2 薄膜沉積方法 55 3.2.1 電子束蒸鍍系統 55 3.2.2 射頻磁控濺鍍系統 57 3.2.3 電漿輔助化學氣相沉積系統 59 3.2.4 原子層沉積系統 60 3.3 微影製程 62 3.4 蝕刻製程 65 3.4.1 濕式蝕刻製程 65 3.4.2 乾式蝕刻製程 65 3.5 銀/聚醯亞胺/聚二甲基矽氧烷(Ag/PI/PDMS)電極製備 67 3.6 奈米銀線/聚二甲基矽氧烷(AgNWs/PDMS)電極製備 69 3.7 心電感測電路之設計 71 3.7.1 電壓隨耦器(Voltage Follower) 73 3.7.2 儀表放大器(Instrumentation Amplifier) 73 3.7.3 單位增益緩衝器(Unity-Gain Buffer) 74 3.7.4 二階高通濾波器 74 3.7.5 帶拒濾波器(Twin-T notch filter) 75 3.7.6 後級放大電路 76 3.7.7 二階低通濾波器 76 3.8 金屬/絕緣層/金屬(MIM)電容製備流程 77 3.9 可撓性薄膜電晶體差分放大電路製備 78 3.9.1 NMOS差分放大電路光罩設計 78 3.9.2 可撓性氧化銦鎵鋅薄膜電晶體差分放大電路製作流程 80 3.10 量測分析 86 3.10.1 心電訊號量測方法(市售感測模組) 86 3.10.2 心電訊號量測方法(自組麵包板電路) 87 3.10.3 心電訊雜比(SNR)取樣方法 88 3.10.4 二氧化鉿介電層電容-電壓量測方法 89 3.10.5 薄膜電晶體特性量測方法 89 3.10.6 NMOS反相器轉換特性量測方法 90 3.10.7 NMOS反相器與差分放大電路動態訊號量測方法 91 第四章 結果與討論 93 4.1 心電訊號量測(不同電極貼片搭配AD8232市售感測模組) 93 4.1.1 市售Ag/AgCl貼片搭配市售感測模組 93 4.1.2 自製Ag/PI/PDMS電極貼片搭配市售感測模組 94 4.1.3 自製AgNWs/PDMS電極貼片搭配市售感測模組 94 4.2 心電訊號量測(不同電極貼片搭配自組麵包板電路) 100 4.2.1 心電感測電路之實作與優化(自組麵包板電路) 100 4.2.2 自製Ag/PI/PDMS電極貼片搭配自組麵包板電路 109 4.2.3 自製AgNWs/PDMS電極貼片搭配自組麵包板電路 109 4.3 玻璃基板上之a-IGZO薄膜電晶體差分放大電路 112 4.3.1 二氧化鉿介電層電容-電壓特性分析 112 4.3.2 a-IGZO薄膜電晶體特性分析 113 4.3.3 主動式負載NMOS反相器 118 4.3.4 主動式負載NMOS差分放大器 121 4.4 心電訊號量測(玻璃基板上之差放搭配麵包板後段電路) 125 4.5 聚醯亞胺基板上之a-IGZO薄膜電晶體差分放大電路 133 4.5.1 可撓性a-IGZO薄膜電晶體特性分析 133 4.5.2 可撓性主動式負載NMOS反相器 136 4.5.3 可撓性主動式負載NMOS差分放大器 139 4.6 心電訊號量測(PI基板上之差放搭配麵包板後段電路) 143 第五章 結論與未來展望 145 5.1 結論 145 5.2 未來展望 147 A. 附錄 149 Ⅰ 心電訊號頻譜分析 149 參考文獻 153 | |
| dc.language.iso | zh-TW | |
| dc.subject | 心電訊號量測 | zh_TW |
| dc.subject | 感測電極 | zh_TW |
| dc.subject | 差分放大器 | zh_TW |
| dc.subject | 薄膜電晶體 | zh_TW |
| dc.subject | ECG measurement | en |
| dc.subject | differential amplifier | en |
| dc.subject | stretchable sensing electrode | en |
| dc.subject | thin-film transistor | en |
| dc.title | 可拉伸式感測電極與非晶氧化銦鎵鋅薄膜電晶體差分放大電路之整合於心電訊號量測之應用 | zh_TW |
| dc.title | Integration of Stretchable Sensing Electrodes with a-IGZO Thin-Film Transistor Based Differential Amplifier Circuits for ECG Measurement | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳建彰(Jian-Zhang Chen),李尉彰(Wei-Chang Li),張子璿(Tzu-Hsuan Chang) | |
| dc.subject.keyword | 感測電極,薄膜電晶體,差分放大器,心電訊號量測, | zh_TW |
| dc.subject.keyword | stretchable sensing electrode,thin-film transistor,differential amplifier,ECG measurement, | en |
| dc.relation.page | 159 | |
| dc.identifier.doi | 10.6342/NTU202003955 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-01 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1808202013012200.pdf 未授權公開取用 | 49.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
