請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78965完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 藍崇文 | |
| dc.contributor.author | Pei-Yu Sun | en |
| dc.contributor.author | 孫珮瑜 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:32:48Z | - |
| dc.date.available | 2023-08-21 | |
| dc.date.copyright | 2018-08-21 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-16 | |
| dc.identifier.citation | 1. Global Market Outlook 2017-2021. Solarpower Europe (EPIA), 2017.
2. International Technology Roadmap for Photovoltaic (ITRPV) 2017 Results including maturity reports. 2018. 3. J. Yoo, G. Yu, J. Yi, Large-area multicrystalline silicon solar cell fabrication using reactive ion etching (RIE), Sol. Energ. Mat. Sol. Cells 95(1) (2011) 2-6. 4. D.I. Kim, C.B. Kim, Y.K. Kim, Modification of minority carrier lifetime in bdoped photovoltaic grade Si wafers due to surface defects produced by mechanical damage, J. Electrochem. Soc. 154 (2007) 210-213. 5. H. Takato, I. Sakata, K. Mase, S. Ishibashi, T. Harada, Y. Kondo, H. Asai, Method for fabricating substrate for solar cell and solar cell, U.S. Patent Application No. 13/982 (2012) 104. 6. M. Lippold, F. Buchholz, C. Gondek, F. Honeit, E. Wefringhaus, E. Kroke, Texturing of SiC-slurry and diamond wire sawn silicon wafers by HF–HNO3–H 2SO4 mixtures, Sol. Energ. Mat. Sol. Cells 127 (2014) 104-110. 7. M. Ju, N. Balaji, Y.J. Lee, C. Park, K. Song, J. Choi, J. Yi, Novel vapor texturing method for EFG silicon solar cell applications, Sol. Energ. Mat. Sol. Cells 107 (2012) 366-372. 8. M. Ju, M. Gunasekaran, K. Kim, K. Han, I. Moon, K. Lee, J. Yi, A new vapor texturing method for multicrystalline silicon solar cell applications, Mater. Sci. Eng. B 153 (2008) 66-69. 9. Z. Xiao, G. Geng, X. Wei, Z. Yue, L. Zhou, Morphology of etch-pits on HFHNO3-H2O vapor-etched diamond wire sawn multi-crystalline silicon wafers, Semicond. Sci. Technol 31(11) (2016) 115018. 10. Z. Xiao, G. Geng, X. Wei, Z. Yue, L. Zhou, On the mechanism of the vapor etching of diamond wire sawn multi-crystalline silicon wafers for texturing, Mater. Sci. Semicond. Process 53 (2016) 8-12. 11. W. Chen, X. Liu, M. Li, C. Yin, L. Zhou, On the nature and removal of saw marks on diamond wire sawn multicrystalline silicon wafers, Mater. Sci. Semicond. Process 27 (2014) 220-227. 12. S.K. Srivastava, P. Singh, M. Yameen, P. Prathap, C. M. S. Rauthan, P. K. Singh, Antireflective ultra-fast nanoscale texturing for efficient multi-crystalline silicon solar cells, Sol. Energy 115 (2015) 656-666. 13. A. Kumagai, Texturization using metal catalyst wet chemical etching for multicrystalline diamond wire sawn wafer, Sol. Energ. Mat. Sol. Cells 133 (2015) 216-222. 14. F. Cao, K. Chen, J. Zhang, X. Ye, J. Li, S. Zou, X. Su, Next-generation multicrystalline silicon solar cells: Diamond-wire sawing, nano-texture and high efficiency, Sol. Energ. Mat. Sol. Cells 141 (2015) 132-138. 15. K. Fukui, Y. Inomata, K. Shirasawa, Surface texturing using reactive ion etching for multicrystalline silicon solar cells, Proc. 26th IEEE PVSC, Anaheim (1997) 47-50. 16. D.S. Ruby, S.H. Zaidi, S. Narayanan, B.M. Damiani, A. Rohatgi, Rie-texturing of multicrystalline silicon solar cells, Sol. Energ. Mat. Sol. Cells 74 (2002) 133137. 17. B. Meinel, T. Koschwitz, J. Acker, Textural development of SiC and diamond wire sawed sc-silicon wafer, Energy Procedia 27 (2012) 330-336. 18. M. Lippold, S. Patzig-Klein, E. Kroke, HF-HNO3-H2SO4/H2O mixtures for etching multicrystalline silicon surfaces: formation of NO2+, reaction rates and surface morphologies, Z. Naturforsch. B Chem. Sci. 66 (2011) 155-163. 19. C. Chartier, S. Bastide, C. Lévy-Clément, Metal-assisted chemical etching of silicon in HF–H2O2, Electrochim. Acta 53 (2008) 5509-5516. 20. Y.F. Zhuang, S.H. Zhong, Z.G. Huang, W.Z. Shen, Versatile strategies for improving the performance of diamond wire sawn mc-Si solar cells, Sol. Energ. Mat. Sol. Cells 153 (2016) 18-24. 21. M. Saadoun, N. Mliki, H. Kaabi, K. Daoudi, B. Bessaıs, H. Ezzaouia, R. Bennaceur, Vapour-etching-based porous silicon: a new approach, Thin Solid Films 405 (2002) 29-34. 22. 蔡弼丞 (Tsai Bi Cheng),“鑽石線切割多晶矽晶片之蒸氣製絨研究”,國立 台灣大學化學工程研究所碩士論文,台北,台灣 (2017)。 23. W. Weinreich, J. Acker, I. Gräber, Determination of total fluoride in HF/HNO3/H2SiF6 etch solutions by new potentiometric titration methods, Talanta 71 (2007) 1901-1905 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78965 | - |
| dc.description.abstract | 本論文提出新的酸蝕刻製程-氣相製絨(vapor etching, VE),為取代現今如反應離子蝕刻法(reactive ion etching, RIE)、金屬催化蝕刻(metal catalytic chemical etching, MCCE)、噴砂等製絨方式,以改善高成本,操作複雜且有後續汙染物處理等問題,並有效提高電池效率。
氣相製絨透過不同的反應器設計,調整酸成份、溫度、壓力、氣流等因子,得知各變因對於氣相蝕刻均勻度及表面結構的關係。目前己確認最佳酸蒸氣(A酸)重量百分比例為 HNO3:HF:H2O = 37.3:16:46.7,B 酸流量控制在 1.52ml/min,最高腔溫 140C,空氣流量 30slpm,常壓,晶片間距 1cm 下,可製作出切割線痕較不明顯,均勻性佳之 DW 製絨晶片,且再現性佳(重複驗證五次以上)。 利用混酸滴定方法,除了能夠分析最佳酸液成份,亦能將使用過的酸調回 成最佳酸重覆使用,以達到零廢酸之目的。DW 多晶片經 VE 製絨及絨面調整處理後之反射率為 19%,以鈍化發射極觸點(passivated emitter and rear cell, PERC)處理後的電池效率可達 19.5%,達傳統酸製絨的電池效率。 | zh_TW |
| dc.description.abstract | This paper proposes a new acid etching process, vapor etching (VE), to replace the current reactive ion etching (RIE), metal catalytic chemical etching (MCCE), sand blasting, etc. The method is to improve the high cost, complicated operation and subsequent pollutant treatment, and effectively improve the solar cell efficiency.
Vapor etching is designed through different reactors to adjust the acid composition, temperature, pressure, gas flow and other factors to understand the relationship between the various factors and the surface etching uniformity and surface structure. At present, the weight percentage of the best acid vapor (A acid) has been confirmed as HNO3: HF: H2O = 37.3: 16:46.7, and the B acid is controlled 15-2ml/min, and the maximum reactor temperature is 140˚C. The operation of air flow rate is 30slpm, using atmospheric pressure, and the wafer spacing is 1cm. It is possible to produce DW textured wafers with less obvious line marks and good uniformity, and good reproducibility (It can be repeated for more than five times). The optimum acid composition is analyzed by the mixed acid titration method, and the used acid can be adjusted back to the optimum acid for repeated use to achieve zero waste acid. The reflectivity of the DW multi-wafer after VE texturing and texturing surface adjusted is 19%, and the efficiency of the battery after the passivated emitter and rear cell (PERC) treatment is 19.5%, and can reach the solar cell efficiency, which textured by acid etching. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:32:48Z (GMT). No. of bitstreams: 1 ntu-107-R05524090-1.pdf: 4757917 bytes, checksum: 6ac8b50ac8f7f821290e24426df111e2 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 目錄
中文摘要 .....................................................................................................................I Abstract .................................................................................................................... III 目錄 .......................................................................................................................... IV 圖目錄 ...................................................................................................................... VI 表目錄 ...................................................................................................................... IX 第 1 章 緒論........................................................................................................ 1 1-1 研究背景 .......................................................................................................... 1 1-1-1 太陽光電(Photovoltaics, PV)產業發展現況 ................................... 1 1-2 研究動機 .......................................................................................................... 2 第 2 章 文獻回顧................................................................................................ 4 2-1 傳統液相蝕刻 ................................................................................................. 5 2-2 MCCE 製絨 ...................................................................................................... 7 2-3 RIE 製絨 ........................................................................................................... 8 2-4 氣相製絨 ......................................................................................................... 9 2-4-1 揮發酸氣相製絨法........................................................................... 9 2-4-2 反應氣相製絨法............................................................................. 11 2-4-3 混合式氣相製絨法........................................................................ 14 第 3 章 實驗方法及實驗器材.......................................................................... 16 3-1 實驗藥品 ........................................................................................................ 16 3-1-1 製絨及絨面調整實驗使用藥品................................................. 16 3-1-3 矽晶清洗處理藥品........................................................................ 18 3-1-4 酸成份分析滴定藥品.................................................................... 18 3-2 實驗設備與器材 ............................................................................................ 19 3-2-1 氣相製絨相關設備........................................................................ 19 3-2-2 量測設備........................................................................................ 20 3-3 實驗設計與流程 ............................................................................................ 22 3-3-1 氣相製絨實驗................................................................................ 22 3-4 氫氟酸分析方法 ........................................................................................... 26 3-4-1 氫氟酸分析實驗流程.................................................................... 26 第 4 章 研究結果與討論.................................................................................. 29 4-1 氣相製絨 ....................................................................................................... 29 4-1-1 氣相製絨反應器設計.................................................................... 29 4-1-2 最佳氣相製絨酸氣成份................................................................ 30 4-1-3 反應器溫度影響............................................................................ 37 4-1-4 通入 A 酸之空氣溫度影響........................................................... 38 4-1-5 通入 A 酸空氣流量與蝕刻時間影響........................................... 40 4-1-6 系統壓力影響................................................................................ 41 4-2 絨面調整 ....................................................................................................... 42 4-2-1 鹼清洗液影響................................................................................ 43 4-2-2 三酸比例影響................................................................................ 44 4-2-3 氣相製絨時間影響........................................................................ 46 4-2-4 氣相製絨絨面對絨面調整影響.................................................... 47 4-3 氣相絨面製備電池狀況 ............................................................................... 48 4-3-1 反應器 B 氣相蝕刻絨面調整後之晶片 SEM 分析..................... 48 4-3-2 反應器 B 氣相蝕刻絨面調整晶片之製備電池結果 ................... 50 第 5 章 結論...................................................................................................... 52 第 6 章 問題討論及未來實驗方向.................................................................. 53 參考文獻 .................................................................................................................. 54 | |
| dc.language.iso | zh-TW | |
| dc.subject | 鑽石線切割 | zh_TW |
| dc.subject | 多晶矽太陽能電池 | zh_TW |
| dc.subject | 黑矽 | zh_TW |
| dc.subject | 氣相製絨 | zh_TW |
| dc.subject | 製絨 | zh_TW |
| dc.subject | 絨面調整 | zh_TW |
| dc.subject | vapor etching | en |
| dc.subject | multi-crystalline silicon solar cell | en |
| dc.subject | black silicon | en |
| dc.subject | texturing | en |
| dc.subject | diamond wire sawing | en |
| dc.title | 多晶矽晶片氣相製絨反應器設計與絨面調整之研究 | zh_TW |
| dc.title | Vapor Etching Reactor Design and Texturing Surface Adjusted on Multi-crystalline Silicon Wafers | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 廖英志,王丞浩,郭俞麟,陳亮欽 | |
| dc.subject.keyword | 多晶矽太陽能電池,鑽石線切割,黑矽,氣相製絨,製絨,絨面調整, | zh_TW |
| dc.subject.keyword | multi-crystalline silicon solar cell,diamond wire sawing,black silicon,vapor etching,texturing, | en |
| dc.relation.page | 55 | |
| dc.identifier.doi | 10.6342/NTU201803683 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-08-21 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-R05524090-1.pdf 未授權公開取用 | 4.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
