Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78964
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張明富zh_TW
dc.contributor.advisorMing-Fu Changen
dc.contributor.author李有容zh_TW
dc.contributor.authorYu-Jung Leeen
dc.date.accessioned2021-07-11T15:32:43Z-
dc.date.available2024-02-28-
dc.date.copyright2018-10-09-
dc.date.issued2018-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Marston DJ, Goldstein B. 2006. Actin-based forces driving embryonic morphogenesis in Caenorhabditis elegans. Curr Opin Genet Dev 16:392-8.
2. Silhankova M, Korswagen HC. 2007. Migration of neuronal cells along the anterior-posterior body axis of C. elegans: Wnts are in control. Curr Opin Genet Dev 17:320-5.
3. Marston DJ, Roh M, Mikels AJ, Nusse R, Goldstein B. 2008. Wnt signaling during Caenorhabditis elegans embryonic development. Methods Mol Biol 469:103-11.
4. Chuai M, Weijer CJ. 2009. Regulation of cell migration during chick gastrulation. Curr Opin Genet Dev 19:343-9.
5. Aman A, Piotrowski T. 2010. Cell migration during morphogenesis. Dev Biol 341:20-33.
6. Reig G, Pulgar E, Concha ML. 2014. Cell migration: from tissue culture to embryos. Development 141:1999-2013.
7. Galbraith CG, Yamada KM, Galbraith JA. 2007. Polymerizing actin fibers position integrins primed to probe for adhesion sites. Science 315:992-5.
8. Mattila PK, Lappalainen P. 2008. Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 9:446-54.
9. Burridge K, Fath K, Kelly T, Nuckolls G, Turner C. 1988. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol 4:487-525.
10. Partridge MA, Marcantonio EE. 2006. Initiation of attachment and generation of mature focal adhesions by integrin-containing filopodia in cell spreading. Mol Biol Cell 17:4237-48.
11. Small JV. 1988. The actin cytoskeleton. Electron Microsc Rev 1:155-74.
12. Geiger B, Bershadsky A, Pankov R, Yamada KM. 2001. Transmembrane crosstalk between the extracellular matrix--cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2:793-805.
13. Hanks SK, Polte TR. 1997. Signaling through focal adhesion kinase. Bioessays 19:137-45.
14. Tam PP, Behringer RR. 1997. Mouse gastrulation: the formation of a mammalian body plan. Mech Dev 68:3-25.
15. George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO. 1993. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119:1079-91.
16. Ilic D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N, Nomura S, Fujimoto J, Okada M, Yamamoto T. 1995. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377:539-44.
17. Ramos JW, Whittaker CA, DeSimone DW. 1996. Integrin-dependent adhesive activity is spatially controlled by inductive signals at gastrulation. Development 122:2873-83.
18. Keller R. 2005. Cell migration during gastrulation. Curr Opin Cell Biol 17:533-41.
19. Legate KR, Fassler R. 2009. Mechanisms that regulate adaptor binding to beta-integrin cytoplasmic tails. J Cell Sci 122:187-98.
20. Lal H, Guleria RS, Foster DM, Lu G, Watson LE, Sanghi S, Smith M, Dostal DE. 2007. Integrins: novel therapeutic targets for cardiovascular diseases. Cardiovasc Hematol Agents Med Chem 5:109-32.
21. Bouvard D, Pouwels J, De Franceschi N, Ivaska J. 2013. Integrin inactivators: balancing cellular functions in vitro and in vivo. Nat Rev Mol Cell Biol 14:430-42.
22. Carmona-Fontaine C, Matthews H, Mayor R. 2008. Directional cell migration in vivo: Wnt at the crest. Cell Adh Migr 2:240-2.
23. Sieg DJ, Hauck CR, Schlaepfer DD. 1999. Required role of focal adhesion kinase (FAK) for integrin-stimulated cell migration. J Cell Sci 112 ( Pt 16):2677-91.
24. Veevers-Lowe J, Ball SG, Shuttleworth A, Kielty CM. 2011. Mesenchymal stem cell migration is regulated by fibronectin through alpha5beta1-integrin-mediated activation of PDGFR-beta and potentiation of growth factor signals. J Cell Sci 124:1288-300.
25. Wozniak MA, Modzelewska K, Kwong L, Keely PJ. 2004. Focal adhesion regulation of cell behavior. Biochim Biophys Acta 1692:103-19.
26. Schlaepfer DD, Hauck CR, Sieg DJ. 1999. Signaling through focal adhesion kinase. Prog Biophys Mol Biol 71:435-78.
27. Mitra SK, Hanson DA, Schlaepfer DD. 2005. Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6:56-68.
28. Kwong L, Wozniak MA, Collins AS, Wilson SD, Keely PJ. 2003. R-Ras promotes focal adhesion formation through focal adhesion kinase and p130(Cas) by a novel mechanism that differs from integrins. Mol Cell Biol 23:933-49.
29. Klemke RL, Cai S, Giannini AL, Gallagher PJ, de Lanerolle P, Cheresh DA. 1997. Regulation of cell motility by mitogen-activated protein kinase. J Cell Biol 137:481-92.
30. Huang C, Rajfur Z, Borchers C, Schaller MD, Jacobson K. 2003. JNK phosphorylates paxillin and regulates cell migration. Nature 424:219-23.
31. Ridley AJ. 2006. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 16:522-9.
32. Ridley AJ, Hall A. 1992. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389-99.
33. Jaffe AB, Hall A. 2005. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247-69.
34. Worthylake RA, Lemoine S, Watson JM, Burridge K. 2001. RhoA is required for monocyte tail retraction during transendothelial migration. J Cell Biol 154:147-60.
35. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A. 1992. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401-10.
36. Arthur WT, Burridge K. 2001. RhoA inactivation by p190RhoGAP regulates cell spreading and migration by promoting membrane protrusion and polarity. Mol Biol Cell 12:2711-20.
37. Nobes CD, Hall A. 1995. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53-62.
38. Schwenk F, Baron U, Rajewsky K. 1995. A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res 23:5080-1.
39. Tseng LT, Lin CL, Pan KH, Tzen KY, Su MJ, Tsai CT, Li YH, Li PC, Chiang FT, Chang SC, Chang MF. 2018. Single allele Lmbrd1 knockout results in cardiac hypertrophy. J Formos Med Assoc 117:471-479.
40. Buers I, Pennekamp P, Nitschke Y, Lowe C, Skryabin BV, Rutsch F. 2016. Lmbrd1 expression is essential for the initiation of gastrulation. J Cell Mol Med 20:1523-33.
41. Liu PF. 2016. The role of Lmbrd1 gene involved in myogenesis. NTU.
42. Wang YH, Chang SC, Huang C, Li YP, Lee CH, Chang MF. 2005. Novel nuclear export signal-interacting protein, NESI, critical for the assembly of hepatitis delta virus. J Virol 79:8113-20.
43. Huang C, Jiang JY, Chang SC, Tsay YG, Chen MR, Chang MF. 2013. Nuclear export signal-interacting protein forms complexes with lamin A/C-Nups to mediate the CRM1-independent nuclear export of large hepatitis delta antigen. J Virol 87:1596-604.
44. Lu CY. 2012. LMBRD1 regulated the subcellular localizationof nucleocytoplasmic transport proteins CAS and importin-a. NTU.
45. Li YP. 2005. Biochemical characterization of NESI protein involved in nuclear export pathway. NTU.
46. Chiu YL. 2007. Functional analysis of the putative actin-binding domain of NESI protein. NTU.
47. Rutsch F, Gailus S, Miousse IR, Suormala T, Sagne C, Toliat MR, Nurnberg G, Wittkampf T, Buers I, Sharifi A, Stucki M, Becker C, Baumgartner M, Robenek H, Marquardt T, Hohne W, Gasnier B, Rosenblatt DS, Fowler B, Nurnberg P. 2009. Identification of a putative lysosomal cobalamin exporter altered in the cblF defect of vitamin B12 metabolism. Nat Genet 41:234-9.
48. Ta YC. 2013. Mechanisms of LMBD1 and its associated proteins involved in the vitamin B12 transport. NTU.
49. Kawaguchi K, Okamoto T, Morita M, Imanaka T. 2016. Translocation of the ABC transporter ABCD4 from the endoplasmic reticulum to lysosomes requires the escort protein LMBD1. Sci Rep 6:30183.
50. Tseng LT, Lin CL, Tzen KY, Chang SC, Chang MF. 2013. LMBD1 protein serves as a specific adaptor for insulin receptor internalization. J Biol Chem 288:32424-32.
51. Lin C-Y. 2014. Roles of LMBD1 protein in retinoic acid-induced dendritic spine formation. NTU.
52. Lin CY. 2014. Roles of LMBD1 protein in retionic acid-induced dendritic spine formation. NTU.
53. Lin YH. 2016. The mechanism of LMBD1 protein involved in neuronal spine formation. NTU.
54. Hsu WT. 2010. Functional analysis of LMBRD1 in neuronal differentiation. NTU.
55. Durkin ME, Qian X, Popescu NC, Lowy DR. 2013. Isolation of mouse embryo fibroblasts. Bio Protoc 3.
56. Zeng Y, Liu XH, Shen Y, Lai Y, Liu XJ. 2011. Laminar shear stress promotes endothelial cell migration and inhibits cell apoptosis in the presence of hydroxyurea. Cell Mol Biol (Noisy-le-grand) 57 Suppl:Ol1550-7.
57. Lyon CA, Koutsouki E, Aguilera CM, Blaschuk OW, George SJ. 2010. Inhibition of N-cadherin retards smooth muscle cell migration and intimal thickening via induction of apoptosis. J Vasc Surg 52:1301-1309.
58. Reiske HR, Kao SC, Cary LA, Guan JL, Lai JF, Chen HC. 1999. Requirement of phosphatidylinositol 3-kinase in focal adhesion kinase-promoted cell migration. J Biol Chem 274:12361-6.
59. López-Colomé AM, Lee-Rivera I, Benavides-Hidalgo R, López E. 2017. Paxillin: a crossroad in pathological cell migration. J Hematol Oncol 10:50.
60. Brown MC, Perrotta JA, Turner CE. 1996. Identification of LIM3 as the principal determinant of paxillin focal adhesion localization and characterization of a novel motif on paxillin directing vinculin and focal adhesion kinase binding. J Cell Biol 135:1109-23.
61. Hartman ZR, Schaller MD, Agazie YM. 2013. The tyrosine phosphatase SHP2 regulates focal adhesion kinase to promote EGF-induced lamellipodia persistence and cell migration. Mol Cancer Res 11:651-64.
62. Yu DH, Qu CK, Henegariu O, Lu X, Feng GS. 1998. Protein-tyrosine phosphatase Shp-2 regulates cell spreading, migration, and focal adhesion. J Biol Chem 273:21125-31.
63. Zaidel-Bar R, Ballestrem C, Kam Z, Geiger B. 2003. Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. J Cell Sci 116:4605-13.
64. Saxton TM, Henkemeyer M, Gasca S, Shen R, Rossi DJ, Shalaby F, Feng GS, Pawson T. 1997. Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase Shp-2. EMBO J 16:2352-64.
65. Sheetz MP, Feng GS, von Wichert G, Haimovich B. 2003. Force-dependent integrin–cytoskeleton linkage formation requires downregulation of focal complex dynamics by Shp2. EMBO J 22:5023-35.
66. Lacoste J, Young K, Brown CM. 2013. Live-Cell Migration and Adhesion Turnover Assays, p 61-84. In Taatjes DJ, Roth J (ed), Cell Imaging Techniques: Methods and Protocols doi:10.1007/978-1-62703-056-4_3. Humana Press, Totowa, NJ.
67. Cary LA, Chang JF, Guan JL. 1996. Stimulation of cell migration by overexpression of focal adhesion kinase and its association with Src and Fyn. J Cell Sci 109 ( Pt 7):1787-94.
68. Chen HC, Appeddu PA, Isoda H, Guan JL. 1996. Phosphorylation of tyrosine 397 in focal adhesion kinase is required for binding phosphatidylinositol 3-kinase. J Biol Chem 271:26329-34.
69. Jimenez C, Portela RA, Mellado M, Rodriguez-Frade JM, Collard J, Serrano A, Martinez AC, Avila J, Carrera AC. 2000. Role of the PI3K regulatory subunit in the control of actin organization and cell migration. J Cell Biol 151:249-62.
70. Hunger-Glaser I, Fan RS, Perez-Salazar E, Rozengurt E. 2004. PDGF and FGF induce focal adhesion kinase (FAK) phosphorylation at Ser-910: dissociation from Tyr-397 phosphorylation and requirement for ERK activation. J Cell Physiol 200:213-22.
71. Liu ZX, Yu CF, Nickel C, Thomas S, Cantley LG. 2002. Hepatocyte growth factor induces ERK-dependent paxillin phosphorylation and regulates paxillin-focal adhesion kinase association. J Biol Chem 277:10452-8.
72. Ishibe S, Joly D, Zhu X, Cantley LG. 2003. Phosphorylation-dependent paxillin-ERK association mediates hepatocyte growth factor-stimulated epithelial morphogenesis. Mol Cell 12:1275-85.
73. Caswell PT, Norman JC. 2006. Integrin trafficking and the control of cell migration. Traffic 7:14-21.
74. Ezratty EJ, Bertaux C, Marcantonio EE, Gundersen GG. 2009. Clathrin mediates integrin endocytosis for focal adhesion disassembly in migrating cells. J Cell Biol 187:733-47.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78964-
dc.description.abstract細胞遷移對於形態發生、傷口癒合以及原腸胚形成 (gastrulation)非常重要。由Lmbrd1基因所表現之LMBD1蛋白質在小鼠胚胎發育過程中的原腸胚形成時期是必須的。本實驗室先前研究發現在小鼠神經母細胞瘤細胞株 (N2a)中,LMBD1蛋白質過度表現會造成細胞移動能力下降,並且在人類非小細胞肺癌細胞株 (H1299)中也發現LMBRD1基因被剔弱後可以促進細胞移動。細胞遷移過程中點狀黏著 (focal adhesion)的形成與瓦解是非常重要的步驟,而FAK以及SHP-2蛋白質的活性對於點狀黏著的成熟與瓦解非常重要。實驗室先前的研究結果發現將N2a與H1299細胞株中LMBRD1基因剔弱後,其FAK-Y397的磷酸化程度有提升的現象。除此之外,在N2a細胞株中Lmbrd1基因被剔弱會使LMBD1/FAK/SHP-2的蛋白質複合體瓦解。有研究指出LMBD1基因缺失的胚胎有中胚層形成異常的情形,與FAK及SHP-2基因缺失之胚胎有一樣的現象,並且FAK與SHP-2基因缺失的纖維母細胞其移動能力有下降的現象。這些現象指出LMBD1蛋白質可能在原腸胚形成的細胞遷移過程中扮演調控角色。本研究主要探討LMBD1蛋白質在小鼠胚胎纖維母細胞移動過程中所扮演的角色。結果顯示Lmbrd1+/-的細胞移動能力上升,並且也觀察到FAK與PI3K/Akt的訊息傳遞路徑受到活化。Lmbrd1+/-細胞初期貼附在poly-L-lysine與fibronectin細胞基質的能力優於野生型細胞,在fibronectin上的移動能力也較好。本研究為了進一步分析LMBD1與點狀黏著相關蛋白質之交互作用,利用GST-pull down assay進行分析。結果顯示LMBD1可藉由胺基酸位置220-300與FAK以及paxillin有交互作用。免疫螢光分析的結果也發現LMBD1與F-actin和paxillin有部份共位現象。而在免疫沉澱分析結果發現Lmbrd1+/-細胞中LMBD1/FAK蛋白質複合體的形成有下降的趨勢。綜合上述實驗結果推測LMBD1蛋白質可能作為支架蛋白調控點狀黏著的FAK與SHP-2之間的動態平衡,並且進一步調控細胞遷移。zh_TW
dc.description.abstractCell migration is important for morphogenesis, wound healing and gastrulation. The LMBD1 protein which is encoded by the limb region 1 (LMBR1) domain containing 1 gene (Lmbrd1) has been suggested to be essential for the gastrulation of mouse embryogenesis. Previous studies in our laboratory demonstrated that the cell migration of mouse neuroblastoma Neuro2a (N2a) cells was interfered with overexpression of LMBD1. In addition, the ability of cell migration was increased in human non-small cell lung carcinoma H1299 cells with LMBRD1 knockdown. Focal adhesion assembly/disassembly is critical for cell migration, and the activity of focal adhesion kinase (FAK) and SH2 domain-containig protein tyrosine phosphatase (SHP-2) is important for focal adhesion maturation and turnover. Our futher studies showed that phosphorylation level of FAK-Y397 was elevated in N2a and H1299 cells with LMBRD1 knockdown. Furthermore, the protein complex of LMBD1/FAK/SHP-2 was dissociated in N2a cells with Lmbrd1 knockdown. Others also showed aberrant mesoderm formation in LMBD1-deficient embryos similar to those FAK and SHP-2 knockout embryos. In addition, FAK-deficient and SHP-2-deficient fibroblasts showed retardation in cell motility. These suggest that LMBD1 protein plays a role in the regulation of cell migration during gastrulation. In this study, the role of LMBD1 protein involved in the cell migration of mouse embryonic fibroblasts (MEFs) was investigated. Results showed that the rate of cell migration was elevated in Lmbrd1+/- MEFs, and the activity of FAK and PI3K/Akt were also elevated. Lmbrd1+/- MEFs showed a better ability of initial adhesion on poly-L-lysine and fibronectin and increased the cell migration on fibronectin. To further analyze potential interactions between LMBD1 and focal adhesion associated proteins, GST-pull down assay was performed. Results demonstrated that LMBD1 interacted with FAK and paxillin and mainly through the domain from amino acid residues 220 to 300. Immunofluorscence staining showed that LMBD1 partially colocalized with F-actin and paxillin. In addition, immunoprecipitation data showed that the formation of LMBD1/FAK protein complex was decreased in Lmbrd1+/- MEFs. These results suggest that LMBD1 functions as a scaffold protein to regulate the dynamic of SHP-2 and FAK complex at focal adhesion site, and further, to regulate cell migration.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:32:43Z (GMT). No. of bitstreams: 1
ntu-107-R05442015-1.pdf: 1862522 bytes, checksum: 88c8b9a70f1e902c2a542cb32894a9d0 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 I
目次 II
圖表目錄 VI
摘要 VII
Abstract VIII
縮寫表 X
緒論 1
一、 細胞遷移 (Cell migration)之機制 1
(1) 細胞遷移概論 1
(2) Lamellipodium、filopodia與focal adhesion 1
(3) 原腸胚形成 (gastrulation)與細胞遷移之關係 2
二、 細胞遷移之訊息傳遞路徑 2
(1) Integrin 2
(2) Integrin與receptor tyrosine kinases (RTKs)共同調控細胞遷移 3
(3) Focal adhesion kinase (FAK) 4
(4) Rho-family small GTPase 4
三、 LMBRD1基因之相關研究 5
(1) LMBRD1基因特性 5
(2) Lmbrd1基因剔除小鼠之表型 6
(3) NESI蛋白質之功能 7
(4) LMBD1蛋白質之功能 7
研究目的 10
材料來源 11
一、 藥品 11
二、 酵素 13
三、 抗體 13
(1) 初級抗體 (Primary antibodies): 13
(2) 次級抗體 (Secondary antibodies): 14
四、 細胞培養液及試劑 14
五、 細胞株 14
六、 套組試劑 15
七、 質體 15
八、 引子 15
實驗方法 17
一、 小鼠胚胎纖維母細胞 (Mouse embryonic fibroblasts)之製備 17
二、 細胞繼代培養 17
(1) 小鼠胚胎纖維母細胞 17
(2) HEK293T 18
三、 小鼠胚胎纖維母細胞基因型鑑定分析 18
(1) 小鼠胚胎組織基因體DNA (genomic DNA)之製備 18
(2) 聚合酶鏈鎖反應 (polymerase chain reaction, PCR) 19
(3) DNA瓊脂膠電泳 (DNA agarose gel electrophoresis) 20
四、 小鼠胚胎纖維母細胞mRNA表現量之分析 21
(1) 細胞內RNA之分離 21
(2) 反轉錄聚合酶反應 (Reverse transcription) 21
(3) 即時聚合酶鏈鎖反應 (Real-time PCR) 21
五、 西方墨點法 (Western blot analysis) 23
(1) 細胞內蛋白質之分離 23
(2) 蛋白質定量 23
(3) 正十二烷硫酸鈉-聚丙烯醯胺凝膠電泳 (SDS-PAGE) 23
(4) 蛋白質轉漬 (Protein transfer) 24
(5) 免疫墨點分析 (Immunoblot analysis) 25
六、 小鼠胚胎纖維母細胞之細胞遷移測試 25
(1) 細胞傷口癒合分析 (Wound healing assay) 25
(2) Transwell assay 26
七、 細胞黏著度測試 (Adhesion assay) 26
八、 GST融合蛋白質之表現與純化 27
(1) 大量誘導融合蛋白質表現 27
(2) GST融合蛋白質純化 28
(3) Coomassie brilliant blue (CBR)染色法 28
(4) GST pull-down assay 29
九、 勝任細胞 (Competent cells)的製備 30
十、 細菌轉型 (Transformation) 30
十一、 質體製備 31
(1) 質體之小量製備 (Mini-preparation of plasmid DNA) 31
(2) 質體之中量製備 (Midi-preparation of plasmid DNA) 32
十二、 DNA轉染 (Transfection) 32
十三、 免疫螢光染色 (Immunoflurescence staining assay) 33
十四、 免疫沉澱 (Immunoprecipitation) 34
十五、 統計分析 (Statistical analysis) 34
實驗結果 35
一、 建立小鼠胚胎纖維母細胞之研究系統 35
二、 LMBD1蛋白質表現量下降促進細胞遷移 35
三、 LMBD1蛋白質表現量下降對細胞內FAK、Akt、ERK和JNK磷
酸化之影響 36
四、 LMBD1蛋白質表現量下降提升細胞於fibornectin基質上的移動
能力 37
五、 LMBD1蛋白質表現量下降促進初期細胞貼附 37
六、 LMBD1與focal adhesion蛋白質FAK及paxillin之交互作用 38
七、 LMBD1與F-actin之交互作用 38
討論 40
圖表 45
參考文獻 61
-
dc.language.isozh_TW-
dc.subject細胞遷移zh_TW
dc.subject小鼠胚胎纖維母細胞zh_TW
dc.subject點狀黏著zh_TW
dc.subjectLmbrd1基因zh_TW
dc.subject纖網蛋白zh_TW
dc.subjectcell migrationen
dc.subjectLmbrd1 geneen
dc.subjectfocal adhesionen
dc.subjectmouse embryonic fibroblasten
dc.subjectfibronectinen
dc.titleLMBD1蛋白質參與小鼠胚胎纖維母細胞遷移之探討zh_TW
dc.titleRoles of LMBD1 protein in cell migration of mouse embryonic fibroblastsen
dc.typeThesis-
dc.date.schoolyear106-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張智芬;李明學;林淑華zh_TW
dc.contributor.oralexamcommitteeZee-Fen Chang;Ming-Shyue Lee;Shu-Wha Linen
dc.subject.keywordLmbrd1基因,細胞遷移,點狀黏著,小鼠胚胎纖維母細胞,纖網蛋白,zh_TW
dc.subject.keywordLmbrd1 gene,cell migration,focal adhesion,mouse embryonic fibroblast,fibronectin,en
dc.relation.page69-
dc.identifier.doi10.6342/NTU201803448-
dc.rights.note未授權-
dc.date.accepted2018-08-16-
dc.contributor.author-college醫學院-
dc.contributor.author-dept生物化學暨分子生物學研究所-
dc.date.embargo-lift2023-10-09-
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-106-2.pdf
  未授權公開取用
1.82 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved