Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78960
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐立中zh_TW
dc.contributor.advisorLi-Chung Hsuen
dc.contributor.author郭湘怡zh_TW
dc.contributor.authorXiang-Yi Guoen
dc.date.accessioned2021-07-11T15:32:25Z-
dc.date.available2024-08-13-
dc.date.copyright2018-08-30-
dc.date.issued2018-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Eyerich, S., et al., Cutaneous Barriers and Skin Immunity: Differentiating A Connected Network. Trends in Immunology, 2018. 39(4): p. 315-327.
2. Quintin, J., et al., Innate immune memory: towards a better understanding of host defense mechanisms. Current Opinion in Immunology, 2014. 29: p. 1-7.
3. Netea, M.G. and J.W.M. van der Meer, Immunodeficiency and Genetic Defects of Pattern-Recognition Receptors. New England Journal of Medicine, 2011. 364(1): p. 60-70.
4. Ma, Z. and B. Damania, The cGAS-STING Defense Pathway and Its Counteraction by Viruses. Cell host & microbe, 2016. 19(2): p. 150-158.
5. Rubartelli, A. and R. Sitia, Stress as an Intercellular Signal: The Emergence of Stress-Associated Molecular Patterns (SAMP). Antioxidants & Redox Signaling, 2009. 11(10): p. 2621-2629.
6. Takeuchi, O. and S. Akira, Pattern Recognition Receptors and Inflammation. Cell, 2010. 140(6): p. 805-820.
7. Lin, Z., et al., Structural Insights into TIR Domain Specificity of the Bridging Adaptor Mal in TLR4 Signaling. PLOS ONE, 2012. 7(4): p. e34202.
8. Kawagoe, T., et al., Sequential control of Toll-like receptor–dependent responses by IRAK1 and IRAK2. Nature Immunology, 2008. 9: p. 684.
9. Xia, Z.-P., et al., Direct activation of protein kinases by unanchored polyubiquitin chains. Nature, 2009. 461: p. 114.
10. Deng, L., et al., Activation of the IκB Kinase Complex by TRAF6 Requires a Dimeric Ubiquitin-Conjugating Enzyme Complex and a Unique Polyubiquitin Chain. Cell, 2000. 103(2): p. 351-361.
11. Wang, C., et al., TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature, 2001. 412: p. 346.
12. Häcker, H., et al., Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature, 2005. 439: p. 204.
13. Medzhitov, R. and T. Horng, Transcriptional control of the inflammatory response. Nature Reviews Immunology, 2009. 9: p. 692.
14. Murphy, K.M., Chapter Nine - Transcriptional Control of Dendritic Cell Development, in Advances in Immunology, K.M. Murphy and M. Merad, Editors. 2013, Academic Press. p. 239-267.
15. Man, K. and A. Kallies, Synchronizing transcriptional control of T cell metabolism and function. Nature Reviews Immunology, 2015. 15: p. 574.
16. Carpenter, S., et al., Post-transcriptional regulation of gene expression in innate immunity. Nature Reviews Immunology, 2014. 14: p. 361.
17. Kafasla, P., A. Skliris, and D.L. Kontoyiannis, Post-transcriptional coordination of immunological responses by RNA-binding proteins. Nature Immunology, 2014. 15: p. 492.
18. Fu, M. and P.J. Blackshear, RNA-binding proteins in immune regulation: a focus on CCCH zinc finger proteins. Nature reviews. Immunology, 2017. 17(2): p. 130-143.
19. Lai, W.S., et al., Interactions of CCCH Zinc Finger Proteins with mRNA: BINDING OF TRISTETRAPROLIN-RELATED ZINC FINGER PROTEINS TO AU-RICH ELEMENTS AND DESTABILIZATION OF mRNA. Journal of Biological Chemistry, 2000. 275(23): p. 17827-17837.
20. Leppek, K., et al., Roquin Promotes Constitutive mRNA Decay via a Conserved Class of Stem-Loop Recognition Motifs. Cell, 2013. 153(4): p. 869-881.
21. Matsushita, K., et al., Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature, 2009. 458: p. 1185.
22. Aalaei-andabili, S.H. and N. Rezaei, Toll like receptor (TLR)-induced differential expression of microRNAs (MiRs) and immune response against infection: A systematic review. Journal of Infection, 2013. 67(4): p. 251-264.
23. Jing, Q., et al., Involvement of MicroRNA in AU-Rich Element-Mediated mRNA Instability. Cell, 2005. 120(5): p. 623-634.
24. Wendlandt, E.B., et al., The role of MicroRNAs miR-200b and miR-200c in TLR4 signaling and NF-κB activation. Innate immunity, 2012. 18(6): p. 846-855.
25. Jones, M.R., et al., Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nature cell biology, 2009. 11(9): p. 1157-1163.
26. Kozlowski, E., et al., The RNA uridyltransferase Zcchc6 is expressed in macrophages and impacts innate immune responses. PLoS ONE, 2017. 12(6): p. e0179797.
27. Heo, I., et al., Mono-Uridylation of Pre-MicroRNA as a Key Step in the Biogenesis of Group II let-7 MicroRNAs. Cell, 2012. 151(3): p. 521-532.
28. Thornton, J.E., et al., Selective microRNA uridylation by Zcchc6 (TUT7) and Zcchc11 (TUT4). Nucleic Acids Research, 2014. 42(18): p. 11777-11791.
29. Lim, J., et al., Uridylation by TUT4 and TUT7 Marks mRNA for Degradation. Cell, 2014. 159(6): p. 1365-1376.
30. Kim, B., et al., TUT7 controls the fate of precursor microRNAs by using three different uridylation mechanisms. The EMBO Journal, 2015. 34(13): p. 1801-1815.
31. Holm, L. and C. Sander, DNA polymerase β belongs to an ancient nucleotidyltransferase superfamily. Trends in Biochemical Sciences, 1995. 20(9): p. 345-347.
32. Martin, G. and W. Keller, Mutational analysis of mammalian poly(A) polymerase identifies a region for primer binding and catalytic domain, homologous to the family X polymerases, and to other nucleotidyltransferases. The EMBO Journal, 1996. 15(10): p. 2593-2603.
33. Stuart, K.D., et al., Complex management: RNA editing in trypanosomes. Trends in Biochemical Sciences, 2005. 30(2): p. 97-105.
34. Martin, G. and W. Keller, RNA-specific ribonucleotidyl transferases. RNA, 2007. 13(11): p. 1834-1849.
35. Lee, M., B. Kim, and V.N. Kim, Emerging Roles of RNA Modification: m<sup>6</sup>A and U-Tail. Cell, 2014. 158(5): p. 980-987.
36. Heo, I., et al., Lin28 Mediates the Terminal Uridylation of let-7 Precursor MicroRNA. Molecular Cell, 2008. 32(2): p. 276-284.
37. Mullen, T.E. and W.F. Marzluff, Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5′ to 3′ and 3′ to 5′. Genes & Development, 2008. 22(1): p. 50-65.
38. Chang, J.H. and L. Tong, Mitochondrial poly(A) polymerase and polyadenylation. Biochimica et biophysica acta, 2012. 1819(9-10): p. 992-997.
39. Yamashita, S., et al., Crystal structures of U6 snRNA-specific terminal uridylyltransferase. Nature Communications, 2017. 8: p. 15788.
40. Rouhana, L., et al., Vertebrate GLD2 poly(A) polymerases in the germline and the brain. RNA, 2005. 11(7): p. 1117-1130.
41. Wang, S.-W., et al., Cid1, a Fission Yeast Protein Required for S-M Checkpoint Control when DNA Polymerase δ or ɛ Is Inactivated. Molecular and Cellular Biology, 2000. 20(9): p. 3234-3244.
42. L., R.R. and N.C. J., Roles for cytoplasmic polyadenylation in cell cycle regulation. Journal of Cellular Biochemistry, 2002. 87(3): p. 258-265.
43. Rissland, O.S., A. Mikulasova, and C.J. Norbury, Efficient RNA Polyuridylation by Noncanonical Poly(A) Polymerases. Molecular and Cellular Biology, 2007. 27(10): p. 3612-3624.
44. Chang, H., et al., TAIL-seq: Genome-wide Determination of Poly(A) Tail Length and 3′ End Modifications. Molecular Cell, 2014. 53(6): p. 1044-1052.
45. Lackey, P.E., J.D. Welch, and W.F. Marzluff, TUT7 catalyzes the uridylation of the 3′ end for rapid degradation of histone mRNA. RNA, 2016. 22(11): p. 1673-1688.
46. Morgan, M., et al., mRNA 3′ uridylation and poly(A) tail length sculpt the mammalian maternal transcriptome. Nature, 2017. 548: p. 347.
47. Chang, H., et al., Terminal Uridylyltransferases Execute Programmed Clearance of Maternal Transcriptome in Vertebrate Embryos. Molecular Cell, 2018. 70(1): p. 72-82.e7.
48. Fiorentino, D.F., et al., IL-10 inhibits cytokine production by activated macrophages. The Journal of Immunology, 1991. 147(11): p. 3815-3822.
49. Uhlig, H.H. and F. Powrie, The role of mucosal T lymphocytes in regulating intestinal inflammation. Springer Seminars in Immunopathology, 2005. 27(2): p. 167-180.
50. Kühn, R., et al., Interleukin-10-deficient mice develop chronic enterocolitis. Cell, 1993. 75(2): p. 263-274.
51. Shen, Y.-R., The functional reol of ZCCHC6 in TLR4-mediated immune responses. 2012, National Taiwan University: In Institute of Molecular Medicine.
52. Chang, C.-C., The role of Zcchc6 in the innate immune response. 2012, National Taiwan University: In Institute of Molecular Medicine.
53. Young, Y.-Y., The Mechanism of a Terminal Uridyly Transferase in the Regulation of TLR4-triggered Interleukin-10. 2016, National Taiwan University: In Institute of Molecular Medicine.
54. Liu, Y.-W., et al., Functional Cooperation of Simian Virus 40 Promoter Factor 1 and CCAAT/Enhancer-Binding Protein β and δ in Lipopolysaccharide-Induced Gene Activation of IL-10 in Mouse Macrophages. The Journal of Immunology, 2003. 171(2): p. 821-828.
55. Chang, E.Y., et al., Cutting Edge: Involvement of the Type I IFN Production and Signaling Pathway in Lipopolysaccharide-Induced IL-10 Production. The Journal of Immunology, 2007. 178(11): p. 6705-6709.
56. Thornton, J.E., et al., Lin28-mediated control of let-7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7). RNA, 2012. 18(10): p. 1875-1885.
57. Iyer, S.S., A.A. Ghaffari, and G. Cheng, Lipopolysaccharide-Mediated IL-10 Transcriptional Regulation Requires Sequential Induction of Type I IFNs and IL-27 in Macrophages. Journal of immunology (Baltimore, Md. : 1950), 2010. 185(11): p. 6599-6607.
58. Schaefer, A., et al., Mechanism of Interferon-gamma mediated down-regulation of Interleukin-10 gene expression. Molecular Immunology, 2009. 46(7): p. 1351-1359.
59. Benkhart, E.M., et al., Role of Stat3 in Lipopolysaccharide-Induced IL-10 Gene Expression. The Journal of Immunology, 2000. 165(3): p. 1612-1617.
60. Look, D.C., et al., Stat1 Depends on Transcriptional Synergy with Sp1. Journal of Biological Chemistry, 1995. 270(51): p. 30264-30267.
61. Shen, B. and H.M. Goodman, Uridine Addition After MicroRNA-Directed Cleavage. Science, 2004. 306(5698): p. 997-997.
62. Uehata, T. and S. Akira, mRNA degradation by the endoribonuclease Regnase-1/ZC3H12a/MCPIP-1. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2013. 1829(6): p. 708-713.
63. Kole, A., et al., Type I interferons regulate effector and regulatory T cell accumulation and anti-inflammatory cytokine production during T cell-mediated colitis. Journal of immunology (Baltimore, Md. : 1950), 2013. 191(5): p. 2771-2779.
64. Schneider, W.M., M.D. Chevillotte, and C.M. Rice, Interferon-Stimulated Genes: A Complex Web of Host Defenses. Annual review of immunology, 2014. 32: p. 513-545.
65. Schoggins, J.W. and C.M. Rice, Interferon-stimulated genes and their antiviral effector functions. Current opinion in virology, 2011. 1(6): p. 519-525.
66. Metz, P., et al., Interferon-stimulated genes and their role in controlling hepatitis C virus. Journal of Hepatology, 2013. 59(6): p. 1331-1341.
67. Henig, N., et al., Interferon-Beta Induces Distinct Gene Expression Response Patterns in Human Monocytes versus T cells. PLOS ONE, 2013. 8(4): p. e62366.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78960-
dc.description.abstract先天性免疫系統是生物體防禦病原體入侵的第一道防線。先天免疫反應失調與許多病原體感染和發炎的疾病息息相關。因此,先天免疫反應必須受到嚴謹的調控。Toll like receptors (TLRs)是先天免疫系統中的其中一個重要的成員。一些由TLRs所介導的免疫反應的修飾作用已被報導過,除了已經被廣泛研究其參與在免疫訊息傳遞的磷酸化作用及泛素化作用之外,後轉錄調控是一種能快速且有彈性地調節免疫和發炎反應的方式。但是在TLR所誘導的免疫反應中的後轉錄調控,其參與的機制仍需要進一步被探討。我們先前發現一個terminal uridyltransferase (TUTase)的成員,ZCCHC6,其表現量在TLR配體刺激下有上升的趨勢。ZCCHC6已知具有在miRNA或是mRNA末端接上尿苷酸的功能,進而促使RNA的穩定或是降解。在Zcchc6缺失的巨噬細胞中,抗發炎細胞激素Il10的mRNA表現量於一個TLR4配體,LPS,的誘導下顯著地提升。在我們的研究中,我們欲闡明ZCCHC6調控IL-10表現量的詳細機制。我們首先證實在LPS的刺激下,Il10 mRNA及蛋白質表現量在Zcchc6缺失的RAW 264.7巨噬細胞及小鼠骨髓分化的巨噬細胞(BMDMs)中皆被誘升。此外,在LPS刺激下,一個在Il10啟動子裡的假定的STAT結合基序(putative STAT binding motif)會藉由被STAT1結合而參與在ZCCHC6所調控的Il10轉錄作用中。同時,我們也發現在Zcchc6缺失的巨噬細胞中,LPS增強了STAT1的表現量。ZCCHC6可能藉由辨識在Stat1 3’端非轉譯區上的莖環結構來調節Stat1 mRNA的穩定性。另一方面,我們的研究顯示,STAT2的表現量在Zcchc6缺失及LPS活化下有增加的現象。在LPS誘導下,STAT1和STAT2可能形成二聚體,並結合至在Il10啟動子裡的假定的STAT結合基序,但是其中ZCCHC6是如何調控STAT2的機制仍需再被更深入地研究。综上所述,我們的研究證實ZCCHC6會藉由調節Stat1 mRNA的穩定性,而使得STAT1結合到Il10啟動子上的假定的STAT結合基序減少,來達到調控LPS所誘導的IL-10的表現量。作為一個抗發炎反應的細胞激素,IL-10在為了因應病原體的侵襲而平衡發炎反應上扮演很重要的角色。因此,了解ZCCHC6如何調節IL-10的表現量能進一步幫助我們擬定對應發炎疾病的治療策略。zh_TW
dc.description.abstractThe innate immune response is the first line of defense against pathogen infection. Dysregulation of the innate immune response has been closely associated with the pathogenesis of numerous infectious and inflammatory disorders. Therefore, the innate immune response must be tightly controlled. Toll like receptors (TLRs) are one of the key players in the innate immune system. Several modifications in TLR-mediated immune responses have been reported. In addition to phosphorylation and ubiquitination, which have been widely investigated for their roles in immunological signaling, post-transcriptional regulation is a quick and flexibly way to modulate the immune and inflammatory responses. However, the underlying mechanisms of the post-transcriptional modifications involved in TLR-triggered immune responses remain to be fully elucidated. We previously identified a terminal uridyltransferase (TUTase), ZCCHC6, which has been shown to uridylate miRNAs and mRNAs and further promote the stabilization or degradation of RNAs, was upregulated upon TLR ligands treatment. Anti-inflammatory cytokine, IL-10, mRNA expression was significantly increased in response to LPS, a TLR4 ligand, in Zcchc6-depeleted macrophages. In this study, we aimed to elucidate the detailed mechanism how ZCCHC6 regulates IL-10 expression. We first confirmed that the levels of Il10 mRNA and protein were induced in both Zcchc6-depleted RAW 264.7 macrophages and bone marrow-derived macrophages (BMDMs) after LPS challenge. In addition, we identified a novel putative STAT binding motif in the Il10 promoter, which was responsible for ZCCHC6-mediated Il10 transcription after LPS stimulation via binding by STAT1. Furthermore, STAT1 expression was increased in Zcchc6-depleted macrophages, and its mRNA stability was regulated by ZCCHC6 possibly through recognizing the stem-loop structures in Stat1 3’UTR. We also revealed that STAT2 expression was increased in Zcchc6-deficient macrophages. STAT1 and STAT2 possibly formed a dimer and bound to the putative STAT binding motif in the Il10 promoter after LPS treatment, but, the underlying mechanism by which ZCCHC6 regulates STAT2 expression remains to be further elucidated. Taken together, our findings suggest that ZCCHC6 regulates TLR4-activated Il10 transcription through modulating the mRNA stability of the transcription factor Stat1, leading to the reduction of the binding of STAT1 to the putative STAT binding element in the Il10 promoter. Given the importance of IL-10 in counteracting inflammatory responses, understanding how ZCCHC6 modulates IL-10 expression may pave a way to provide a therapeutic strategy for many inflammatory diseases.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:32:25Z (GMT). No. of bitstreams: 1
ntu-107-R05448015-1.pdf: 3401596 bytes, checksum: 2c5758156f76675ca825185efa01060e (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書............................................................................................................i
致謝...................................................................................................................................ii
摘要..................................................................................................................................iii
Abstract..............................................................................................................................v
Contents...........................................................................................................................vii
Introduction.......................................................................................................................1
1.1 Toll-like receptor 4 (TLR4) signaling.....................................................................2
1.2 Post-transcriptional regulation in TLR-mediated immune responses.....................4
1.3 Zinc finger CCHC domain containing 6 (ZCCHC6)/
Terminal uridylyltransferase7 (TUT7)....................................................................6
1.4 The role of ZCCHC6 in TLR4-mediated IL-10 expression......................................9
Specific aim.....................................................................................................................12
Materials and Methods....................................................................................................13
2.1 Reagents.................................................................................................................13
2.2 Plasmids.................................................................................................................14
2.3 Mice.......................................................................................................................15
2.4 Cell culture............................................................................................................16
2.5 Bone marrow-derived macrophages (BMDMs) culture........................................17
2.6 Lentivirus production and shRNA-mediated gene silencing.................................17
2.7 Luciferase assay.....................................................................................................18
2.8 Immunoblotting.....................................................................................................19
2.9 Enzyme-Linked ImmunoSorbent Assay (ELISA).................................................21
2.10 Total RNA extraction and Reverse Transcription quantitative PCR (RT-QPCR)22
2.11 Cytosolic and nuclear extract fractionation.........................................................24
2.12 Electrophoretic mobility shift assay (EMSA).....................................................25
2.13 Pull down assay...................................................................................................27
2.14 RNA sequencing..................................................................................................28
2.15 Statistical analysis................................................................................................29
Results.............................................................................................................................30
3.1 ZCCHC6 is induced with stimulation of TLR4 agonists and critically contributes to the regulation of TLR4-mediated cytokines productions................................30
3.2 STAT1 expression is increased in Zcchc6-depleted macrophages.........................31
3.3 STAT1 is involved in Il10 transcription via binding to the putative STAT motif in the Il10 promoter after LPS stimulation...............................................................32
3.4 STAT2, along with STAT1, bind to the putative STAT motif in the Il10 promoter with LPS stimulation...........................................................................................34
3.5 ZCCHC6 negatively regulates LPS-induced Il10 transcription by controlling STAT1 expressing and binding to the putative STAT motif in the murine Il10 promoter...............................................................................................................35
3.6 ZCCHC6 regulates Stat1 mRNA stability through its3’UTR................................36
3.7 STAT1, STAT2, and IL-10 expression are regulated by type I IFN signaling..........38
Discussion........................................................................................................................39
Figure 1............................................................................................................................46
Figure 2............................................................................................................................47
Figure 3............................................................................................................................49
Figure 4............................................................................................................................51
Figure 5............................................................................................................................53
Figure 6............................................................................................................................55
Figure 7............................................................................................................................56
Figure 8............................................................................................................................58
Figure 9............................................................................................................................60
Figure 10..........................................................................................................................61
Figure 11..........................................................................................................................63
Figure 12..........................................................................................................................65
Figure 13..........................................................................................................................66
Supplementary Figure 1...................................................................................................67
Table 1.............................................................................................................................68
Reference.........................................................................................................................70
-
dc.language.isoen-
dc.titleZCCHC6在調節TLR4引發Interleukin-10生成的作用機制zh_TW
dc.titleThe Mechanism of the Regulation of TLR4-triggered Interleukin-10 Production by ZCCHC6en
dc.typeThesis-
dc.date.schoolyear106-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蔡欣祐;繆希椿zh_TW
dc.contributor.oralexamcommitteeHsin-Yue Tsai;Shi-Chuen Miawen
dc.subject.keyword先天性免疫,末端尿?酸轉移?,第四型類鐸受體,信號轉導及轉錄激活蛋白1,介白素10,zh_TW
dc.subject.keywordInnate immmunity,ZCCHC6,Toll-like receptor 4,STAT1,IL-10,en
dc.relation.page78-
dc.identifier.doi10.6342/NTU201803539-
dc.rights.note未授權-
dc.date.accepted2018-08-16-
dc.contributor.author-college醫學院-
dc.contributor.author-dept分子醫學研究所-
dc.date.embargo-lift2028-08-15-
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-2.pdf
  目前未授權公開取用
3.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved