Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78959
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳世銘
dc.contributor.authorRou-Yan Pengen
dc.contributor.author彭柔晏zh_TW
dc.date.accessioned2021-07-11T15:32:21Z-
dc.date.available2023-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-16
dc.identifier.citation中國畜牧學會。1970。畜牧要覽-養豬篇。台北:中國畜牧學會。131-133, 200-203。
王政皓。2016。建立肉雞飼養管理之決策支援資訊系統。碩士論文。台北:台灣大學生物產業機電工程學研究所。
王錦盟、李舜榮、吳國欽、賈玉祥。2008。不同濕度控制法對種鵝蛋孵化率之影響。畜產研究。41(2):145-151。
行政院農業委員會。2016a。農業統計年報(105年)。農業統計資料庫。
行政院農業委員會。2016b。農業指標。農業統計資料庫。網址:http://agrstat.coa.gov.tw/sdweb/public/indicator/Indicator.aspx。上網日期:2018-03-29。
行政院農業委員會動植物防疫檢驗局。2015。104年報(104年)。行政院農業委員會動植物防疫檢驗局。
行政院環境保護署。2006。空氣污染防治法規。行政院環境保護署環境保護人員訓練所。
巫芳璟、曾煜棋。2010。無線感知技術的應用。科學發展。447:28-37。
姚銘輝、陳智霖、邱郁凱、洪福良。2016。芋頭收穫機之研究。農業試驗所技術服務季刊 27(108): 23-29。
柯彥丞。2014。導入 RFID 技術於商用土雞管理系統應用之研究。碩士論文。台北:台灣大學生物產業機電工程學研究所。
許振忠、白火城、陳盈豪。1990。光照對母鵝產蛋之影響Ⅰ.人工補充光照強度對母鵝產蛋性能之影響。農林學報 39(2):15-25。
許振忠、白火城、陳盈豪。1990。光照對母鵝產蛋之影響Ⅱ.人工補充光照強度對母鵝產蛋性能之影響。農林學報 39(2):27-36。
陳世銘、薛文珍。1988。非均勻穀床之風場分佈。農業工程學報34(2):37-48。
陳世銘、謝廣文、黃裕益、楊宜璋、陳加增、呂宏志、張晉倫、林慧美、陳毓良。1989。以有限元素法分析非均勻穀床之壓力場。研究報告。台北:行政院國家科學委員會。
陳俊吉。2007。溫室遠端監控及精準栽培自動化之研究。2007農業資訊科技應用研討會論文集。台北:財團法人台灣農業資訊科技發展協會。
傅政敏。1992。養豬場堆肥製造與除臭方法的探討。養豬業與環保研討會論文集。台北:台灣省畜產試驗所。
黃振芳、賈玉祥、陳盈豪、沈瑞鴻、林美峰。2010。水禽提升生產效能及生物安全作業手冊。中央畜產會出版品。30-34。
黃暉煌。1985。雞的飼養與管理。畜牧要覽家禽篇。台北:中國畜牧學會。
潘貞君、林致廷、吳文中、郭茂坤。2010。無線感測器網路平台及應用。科學發展。447:16-21。
Akyildiz, I. F., Su, W. Su,, Sankarasubramaniam, Y. Sankarasubramaniam, and Cayirci, E. Cayirci. 2002. Wireless sensor networks: a survey. Computer networks. 38(4): 393-422.
Antonio, P., Grimaccia, F. Grimaccia, and Mussetta, M. Mussetta. 2012. Architecture and methods for innovative heterogeneous wireless sensor network applications. Remote Sensing, 4(5): 1146-1161.
Baggio, A. 2005. Wireless sensor networks in precision agriculture. ACM Workshop on Real-World Wireless Sensor Networks (REALWSN 2005), Stockholm, Sweden, Citeseer.
Bjerg, B., Svidt, K. Svidt, Zhang, G. Zhang,, Morsing, S. Morsing, and Johnsen, J. O. Johnsen. 2002. Modeling of air inlets in CFD prediction of airflow in ventilated animal houses. Computers and Electronics in Agriculture, 34(1-3): 223-235.
Blahová, J., R. Dobšíková, E. Straková, and P. Suchý. 2007. Effect of low environmental temperature on performance and blood system in broiler chickens (Gallus domesticus). Acta Veterinaria Brno 76(8):17-23.
Bruzual, J., Peak, S. Peak, Brake, J. Brake,, and Peebles, E. Peebles. 2000. Effects of relative humidity during incubation on hatchability and body weight of broiler chicks from young breeder flocks. Poultry Science, 79(6): 827-830.
Cutler, B., and Abbott, U. Abbott. 1986. Effects of temperature on the hatchability of artificially incubated cockatiel eggs (Nymphicus hollandicus), Paper presented at the 35th Western Poultry Disease Conference.
Donham, K. J., P. Haglind, Y. Peterson, R. Rylander and L. Belin. 1989. Environmental and health studies of workers in Swedish swine confinement buildings. British Journal of Industrial Medicine 40: 31-37.
Dosman, J. A., B. L. Graham, D. Hall, P. Pahwa, H. H. McDuffie, M. Lucewicz and T. To. 1988. Respiratorysymptoms and alterations in pulmonary function tests in swine producers in Saskatchewan: Results of asurvey of farmers. Journal of Occupational Medicine 30: 71-720.
French, N. 1994. Do incubation temperature requirements vary between eggs. Proceedings of 9th European Poultry Conference.
French, N. 1997. Modeling incubation temperature: the effects of incubator design, embryonic development, and egg size. Poultry science, 76(1): 124-133.
Hill, D. 2001. Chick length uniformity profiles as a field measurement of chick quality. Avian Poult. Biol. Rev, 12, 188.
Hulet, R., Gladys, G. Gladys, Hill, D. Hill, Meijerhof, R. Meijerhof, and El-Shiekh, T. El-Shiekh. 2007. Influence of egg shell embryonic incubation temperature and broiler breeder flock age on posthatch growth performance and carcass characteristics. Poultry science, 86(2): 408-412.
Igono, M. O., and H. D. Johnson. 1990. Physiological stress index of lactating dairy cows based on diurnal pattern of rectal temperature. J. Interdiscipl. Cell Res. 21:303-320.
Ingraham, R. H., R. W Stanley, and W. C. Wagner. 1975. Relationship of temperature and humidity to conception rate of Holstein cows in Hawaii. J. Dairy Sci. 59:2086-2090.
Fuquay, J. W. 1983. Introduction. Journal of Dairy Science 66(8):1795.
Janke, O., Tzschentke, B. Tzschentke., Höchel, J. Höchel, and Nichelmann, M. Nichelmann. 2002. Metabolic responses of chicken and muscovy duck embryos to high incubation temperatures. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 131(4): 741-750.
Landauer, W. 1967. The Hatchability of Chicken Eggs as Influenced by Environment and Heredity, Revised edition. Monograph I University of Connecticut, Agricultural Experiment Station, Storrs, Connecticut.
Launder, B.E., D.B. Spalding, 1974. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering. 3 (2): 269–289.
Lee, I.-b., Sase, S. Sase, Han, H.-t. Han, Hong, H.-k. Hong, Sung, S.-h. Sung, Hwang,
H.-s. Hwang, S.-w. H. . . Kwon, Songs., I.-h. Seo, S.-HH. Kwon. 2009. Ventilation design for a chick incubator using computational fluid dynamics. Japan Agricultural Research Quarterly: JARQ, 43(3): 227-237.
Lourens, A., Van den Brand, H. Van den Brand, Meijerhof, R. Meijerhof, and Kemp, B. Kemp. 2005. Effect of eggshell temperature during incubation on embryo development, hatchability, and posthatch development. Poultry science, 84(6): 914-920.
Maia, A. S. C., R. G. daSilva, and C. M. B. Loureiro. 2005. Sensible and latent heat loss from the body surface of Holstein cows in a tropical environment. Int. J. Biometeorol. 50: 17-22.
Meijerhof, R. 2002. Design and operation of commercial incubators. Paper presented at the Practical aspects of commercial incubation. Ratite Conference Books, Lincolnshire UK.
Meijerhof, R., and Van Beek, G. Van Beek. 1993. Mathematical modelling of temperature and moisture loss of hatching eggs. Journal of Theoretical Biology, 165(1): 27-41.
Meir, M., and Nir, A. Nir. 1984. Increasing hatchability of turkey eggs by matching incubator humidity to shell conductance of individual eggs. Poultry Science, 63(8): 1489-1496.
Nebbali, R., Makhlouf, S. Makhlouf, Boulard, T. Boulard, and Roy, J. Roy. 2006. A dynamic model for the determination of thermal boundary conditions in the ground of a greenhouse. Paper presented at the International Symposium on Greenhouse Cooling 719.
Nichelmann, M., Burmeister, A. Burmeister, Holland, S. Holland, Höchel, J. Höchel, Janke, O. Janke, and Tzschentke, B. Tzschentke. 1998. Development of endothermy in birds: influence of low and high temperatures on heat production and heat loss mechanisms in avian embryos. Paper presented at the 4th Workshop Perinatal adaptation.
Norton, T., Sun, D.-W. Sun, Grant, J. Grant, Fallon, R. Fallon, and Dodd, V. Dodd. 2007. Applications of computational fluid dynamics (CFD) in the modelling and design of ventilation systems in the agricultural industry: A review. Bioresource technology, 98(12): 2386-2414.
Olanrewaju, H. A., J. L. Purswell, S. D. Collier, and S. L. Branton. 2010. Effect of ambient temperature and light intensity on physiological reactions of heavy broiler chickens. Poultry Science 89(12):2668-2677.
Olanrewaju, H. A., J. P. Thaxton, W. A. Dozier III, J. Purswell, W. B. Roush, and S. L. Branton. 2006. A review of lighting programs for broiler production. International Journal of Poultry Science 5(4):301-308.
Peng, R. Y., S. Chen, K. W. Hsieh, C. Y. Tsai, C. H. Hsu, and J. M. Tsai. 2018. Study on a Wireless environmental monitoring system for duck incubator. In “Proceedings of the 9th International Symposium on Machinery and Mechatronics for Agricultural and Bio-systems Engineering (ISMAB 2018)”, IE1-6. Jeju, Korea: Jeju KAL Hotel.
Rozenboim, I., I. Biran, Y. Chaiseha, S. Yahav, A. Rosenstrauch, D. Sklan, and O. Halevy. 2004. The effect of a green and blue monochromatic light combination on broiler growth and development. Poultry Science 83(5):842-845.
Sainsbury, D. 1980. Poultry Health and Management: Chickens, Ducks, Turkeys, Geese, Quail. 4th edition. Granada Publishing, UK. 70-90.
Shearer, J. K., D. K. Beede, R. A. Bucklin, and D. R. Bray. 1991. Environmental Modifications to Reduce Heat Stress in Dairy Cattle. Agri-Practice, 12(4)
Smith, T. R., A. Chapa, S. Willard, C. Jr. Herndon., R. J. Williams, J. Crouch, T. Riley, and D. Pogue. 2006. Evaporative tunnel cooling of dairy cows in the southeast. I: Effect on body temperatures and respiration rates. J. Dairy Sci. 89:3904-3914.
Wang, K. 2014. Assessment of Hygrothermal Conditions in a Farrowing Room with a Wet-Pad Cooling System Based on CFD Simulation and Field Measurements. Transactions of the ASABE 57(5): 1493-1500.
Wathes, C. M. 1998. Aerial emissions from poultry production. World's Poultry Science. 54(3): 241-251.
West, J. W. 2003. Effects of heat-stress on production in dairy cattle. J. Dairy Sci. 86:2131-2144.
Yahav, S., A. Straschnow, D. Luger, D. Shinder, J. Tanny, and S. Cohen. 2004. Ventilation, sensible heat loss, broiler energy, and water balance under harsh environmental conditions. Poultry Science 83(2):253-258.
Yahav, S., S. Goldfeld, I. Plavnik, and S. Hurwitz. 1995. Physiological responses of chickens and turkeys to relative humidity during exposure to high ambient temperature. Journal of Thermal Biology 20(3):245-253.
Yang, I.-C., K.-W. Hsieh, C.-Y. Tsai, Y.-I. Huang, Y.-L. Chen, and S. Chen. 2014. Development of an automation system for greenhouse seedling production management using radio-frequency-identification and local remote sensing techniques. Engineering in Agriculture, Environment and Food 7(1):52-58.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78959-
dc.description.abstract台灣位居亞熱帶地區,具得天獨厚的地理環境,常年溫度適中多潮濕,但是地狹人稠,禽畜養殖多以小規模飼養為主,如此之飼養方式較難保有完整生產紀錄、疾病控制也不易,現更面臨缺工、從業人員老齡化、成本增加等問題,無論是疾病防治抑或是產能、良率的提升,實務上皆難以落實。且現行之禽畜舍,環境感測資訊的傳遞仍以人工謄寫或有線傳輸設備為主,佈線更改不易、維修所需要之專業需求也較高。
目前針對禽畜環境所做的研究,多是使用市售之感測套組針對其環境進行環境感測資訊蒐集,其價格偏高且耐用性也不佳。而家禽飼養之源頭-孵化業,許多飼養業者仍是依循經驗法則操作設備,缺乏較精確的飼養管理方法。因此,本研究嘗試開發一禽畜環境適用之無線感測模組,其可依業者使用需求搭配感測器方案,以方便業者能夠進行多感測節點佈建之預算管理,另以鵝禽孵化機為設計對象,建立一套無線環控預警系統,其中以無線傳輸之方式降低場內之佈線需求,增加了相對濕度控制功能,以利提升孵化環境之穩定,並於場內蒐集環境與生長資料,提供業者監控之功能,以提升管理之效益。
本研究之模組與孵化機系統分別於台灣大學人工氣候室及合作鵝場之孵化室進行實驗,以本研究自行開發之模組及系統進行資料蒐集。模組可進行防水溫度、一般溫度、相對濕度、照度、風速、氨氣、二氧化碳,共7因子量測,其性能測試之結果顯示,在高、中、低溫搭配高相對濕度情況下,每日平均資料回傳比率除去最後一日之網路不穩情形,均達到0.9左右,蒐集資料之能力平均,表示模組量測能力之穩定度在可接受之範圍。孵化機監控系統測試結果顯示,26日累積之資料總筆數為35499筆,缺漏筆數為4筆,系統之穩定度為0.99。CFD模擬結果指出孵化機後側靠近加熱器之位置易造成溫度之累積,與環控感測點之溫度存在差異,模擬結果與驗證實驗趨勢一致,建議未來可加入如種蛋蛋溫等條件以強健模型。
最後,本研究因應模組與系統之管理需求,建置資訊檢視平台以便資訊之整合,使用者透過網路便能使用此系統並取得分析後之環境資訊,以便更有系統的地進行生產管理。
zh_TW
dc.description.abstractTaiwan is located in the subtropical region and has a unique geographical environment. The temperature is moderate and humid throughout the year. The livestock farming is mostly based on small-scale breeding due to the high population. It is difficult to maintain a complete production record and disease control. Furthermore, it faces more problems such as lack of labor, aging of employees, increased costs, disease prevention, and improvement in productivity and yield, all of these are difficult to implement in practice. In the current poultry house, the transmission of environmental sensing information is still mainly based on manual transcription or wired transmission equipment. The wiring changes are not easy, and the professional requirements for maintenance are also high.
At present, most of the research on the livestock environment used the commercially available sensing kits to collect environmental information. The price is high and the durability is not good enough; even for the poultry breeding, hatching industry. Many producers still follow the rules of thumb to operate the equipment without precise feeding management methods. Therefore, this study attempts to develop a wireless sensing module suitable for a livestock environment, which can provide different combination of sensors to match the demands of the operator to facilitate the operator to carry out budget management for multi-node deployment. In addition, a wireless environment control early warning system was established for the goose poultry incubator, which reduced the wiring requirements in the field by means of wireless transmission, and increased the relative humidity control to improve the stability of the incubation environment and collected environmental data and growth data. This monitoring system enhanced the management effectiveness.
The modules and incubator system of this study were tested respectively in the Phytotron of National Taiwan University and the cooperative incubation room, and the data were collected by the modules and systems developed by the research. The module can be used for 7 factors in total: waterproof temperature, general temperature, relative humidity, illuminance, wind speed, ammonia gas, carbon dioxide. The performance testing results show that in the environment with high, medium or low temperature combined with high relative humidity, the average of daily data return ratio is around 0.9 except for the network instability on the last day. The ability to collect data indicates that the stability of the module measurement capability is within an acceptable range. The test results of the incubator monitoring system showed that the total number of data accumulated on the 26th was 35,499, the number of missing data was 4, and the stability of the system was 0.99. The results of CFD simulation indicate that the position of the rear side of the incubator near the heater was likely to cause temperature accumulation, which was different from the temperature of the sensing position. The trend of the simulation results were consistent with the verification experiment. It is recommended that the conditions such as egg temperature should be added to build a robust model in the future.
Finally, in response to the management needs of modules and systems, this study has built an information review platform for information integration. Users can operate the system and obtain analytical environmental information through the network for more systematic production management.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:32:21Z (GMT). No. of bitstreams: 1
ntu-107-R05631001-1.pdf: 5890876 bytes, checksum: 46f1655b863e871373ae40b881b3132d (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents摘 要 i
目 錄 iii
圖目錄 vi
表目錄 x
第一章 前 言 1
1.1 前言 1
1.2 研究目的 2
第二章 文獻探討 3
2.1 環境對於禽畜養殖之影響 3
2.1.1 溫度 3
2.1.2 相對濕度 3
2.1.3 光照 4
2.1.4 風速 5
2.1.5 氨氣及二氧化碳 5
2.2 鵝禽產業發展現況 6
2.3 鵝禽種蛋孵化流程 7
2.3.1 作業流程 7
2.3.2 孵化機使用現況 9
2.4 環境與種蛋品質對孵化率之影響 10
2.4.1 溫度 10
2.4.2 相對濕度 11
2.4.3 種蛋大小及重量 11
2.5 計算流體動力學(CFD)模擬分析於農業之應用 12
2.6 無線環境監測系統 14
2.6.1 無線感測器網路 14
2.6.2 無線環境監測系統架構 15
2.6.3 無線環境監測系統於農業之應用 16
第三章 材料與方法 19
3.1 小型禽畜環境無線感測模組 19
3.1.1 性能測試場域 19
3.1.2 模組設計 21
3.1.3 感測資訊處理演算法 27
3.1.4 模組性能測試之設計 30
3.2 鵝禽孵化機無線環控預警系統 43
3.2.1 實驗場域 43
3.2.2 固定感測器與無線傳輸設備之架設 44
3.2.3 預警機制之建立 49
3.3 孵化機內部流場模擬 51
3.3.1 孵化機內部流場分析流程 51
3.3.2 CFD模擬演算 53
第四章 結果與討論 58
4.1 小型禽畜環境無線感測模組 58
4.1.1 硬體建立與測試情形 58
4.1.2 模組性能試驗 62
4.1.3 感測資訊處理演算法驗證 76
4.2 鵝禽孵化機無線環控預警系統 80
4.2.1 系統硬體建立 80
4.2.2 系統性能測試 86
4.2.3 警報機制驗證 91
4.3 孵化機內部流場模擬 93
4.3.1 風場分析 96
4.3.2 溫場分析 109
第五章 結論與未來建議 112
5.1 結論 112
5.2 未來建議 113
參考文獻 114
dc.language.isozh-TW
dc.title畜禽舍與孵化機無線環境監控預警系統之開發zh_TW
dc.titleDevelopment of Wireless Monitoring and Warning System for Livestock House and Egg Incubatoren
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee雷鵬魁,林連雄,楊江益,陳加增
dc.subject.keyword無線感測模組,孵化機,環控系統,計算流體力學,zh_TW
dc.subject.keywordWireless Sensing Module,Incubator,Environmental Control System,Computational Fluid Dynamics,en
dc.relation.page119
dc.identifier.doi10.6342/NTU201803650
dc.rights.note有償授權
dc.date.accepted2018-08-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
dc.date.embargo-lift2023-08-21-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-R05631001-1.pdf
  目前未授權公開取用
5.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved