Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78956
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾嘉綾
dc.contributor.authorShiang-Shiuan Yuen
dc.contributor.author余祥萱zh_TW
dc.date.accessioned2021-07-11T15:32:07Z-
dc.date.available2028-08-15
dc.date.copyright2018-08-23
dc.date.issued2018
dc.date.submitted2018-08-16
dc.identifier.citationAhiladevi, P., and Prakasam, V. 2013. Determination of Colletotrichum capsici toxins by gas chromatography mass spectrometry analysis. Int. J. Plant Prot. 6:323-329.
Amusa, N. 1998. Evaluation of cassava clones for resistance to anthracnose disease using phytotoxic metabolites of Colletotrichum gloeosporioides f. sp. manihotis and its correlation with field disease reactions. Trop. Agric. Res 1:116-120.
Anahosur, K. 1977. Toxic effect of the culture filtrate of Trichothecium roseum on seed germination and growth of sorghum. Indian Phytopathol 29: 278-280.
Asakura, M., Ninomiya, S., Sugimoto, M., Oku, M., Yamashita, S. I., Okuno, T., Sakai, Y., and Takano, Y. 2009. Atg26-mediated pexophagy is required for host invasion by the plant pathogenic fungus Colletotrichum orbiculare. Plant Cell 21:1291-1304.
Athey-Pollard, A., Burns, C., Peter, R., Bailey, A., and Foster, G. D. 2002. PEG-mediated and Agrobacterium-mediated transformation in the mycopathogen Verticillium fungicola. Mycol. Res. 106:4-11.
Ballio, A., Bottalico, A., Buonocore, V., Carilli, A., Di Vittorio, V., and Graniti, A. 1969. Production and isolation of aspergillomarasmin B (lycomarasmic acid) from cultures of Colletotrichum gloeosporioides Penz.(Gloeosporium olivarum Aim.). Phytopathol. Mediterr.:187-196.
Bowen, J. K., Templeton, M. D., Sharrock, K. R., Crowhurst, R. N., and Rikkerink, E. H. 1995. Gene inactivation in the plant pathogen Glomerella cingulata: three strategies for the disruption of the pectin lyase gene pnIA. Mol. Gen. Genet. 246:196-205.
Boyer, A., and Lautens, M. 2011. Rhodium‐catalyzed domino enantioselective synthesis of bicyclo [2.2.2] lactones. Angew. Chem. 123:7484-7487.
Cannon, P., Damm, U., Johnston, P., and Weir, B. 2012. Colletotrichum–current status and future directions. Stud. Mycol. 73:181-213.
Chung P. C. 2016. Detection and application of important diseases of strawberry. News of Miaoli District Agricultural Research and Extension Station 73: 13-14.
Chung P. C., and Peng S. Z. 2013. Management of important diseases in strawberry seedling stage. News of Miaoli District Agricultural Research and Extension Station 61: 9-10.
Dufresne, M., Perfect, S., Pellier, A.-L., Bailey, J. A., and Langin, T. 2000. A GAL4-like protein is involved in the switch between biotrophic and necrotrophic phases of the infection process of Colletotrichum lindemuthianum on common bean. Plant Cell 12:1579-1589.
Duke, S. O., Gohbara, M., Paul, R. N., and Duke, M. V. 1992. Colletotrichin causes rapid membrane damage to plant cells. J. Phytopathol. 134:289-305.
Eckert, M., Maguire, K., Urban, M., Foster, S., Fitt, B., Lucas, J., and Hammond-Kosack, K. 2005. Agrobacterium tumefaciens-mediated transformation of Leptosphaeria spp. and Oculimacula spp. with the reef coral gene DsRed and the jellyfish gene gfp. FEMS Microbiol. Lett. 253:67-74.
Ettinger, W. F., Thukral, S. K., and Kolattukudy, P. E. 1987. Structure of cutinase gene, cDNA, and the derived amino acid sequence from phytopathogenic fungi. Biochemistry 26:7883-7892.
Gan, P., Ikeda, K., Irieda, H., Narusaka, M., O'Connell, R. J., Narusaka, Y., Takano, Y., Kubo, Y., and Shirasu, K. 2013. Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytol. 197:1236-1249.
Gohbara, M., Hyeon, S.-B., Suzuki, A., and Tamura, S. 1976. Isolation and structure elucidation of colletopyrone from Colletotrichum nicotianae. Agric. Biol. Chem. 40:1453-1455.
Gohbara, M., Kosuge, Y., Yamasaki, S., Kimura, Y., Suzuki, A., and Tamura, S. 1978. Isolation, structures and biological activities of colletotrichins, phytotoxic substances from Colletotrichum nicotianae. Agric. Biol. Chem. 42:1037-1043.
Goodman, R. N. 1960. Colletotin, a toxin produced by Colletotrichum fuscum. Phytopathology 50:325-327.
Grove J. F., Speake R. N., and Ward G. 1966. Metabolic products of Colletotrichum capsici: isolation and characterisation of acetylcolletotrichin and colletodiol. J. Chem. Soc. (C):230-234.
Hoi, J. W. S., Herbert, C., Bacha, N., O'connell, R., Lafitte, C., Borderies, G., Rossignol, M., Rougé, P., and Dumas, B. 2007. Regulation and role of a STE12‐like transcription factor from the plant pathogen Colletotrichum lindemuthianum. Mol. Microbiol. 64:68-82.
Hu, H. P. 2013. Using dihydroxynaphthalene melanin biosynthesis genes in developing biochip for identification and phylogenetic study of Colletotrichum. Master’s Thesis. of Department of Plant Pathology and Microbiology. Taipei: National Taiwan University, 101 pp.
Hwang, C. S., and Kolattukudy, P. E. 1995. Isolation and characterization of genes expressed uniquely during appressorium formation by Colletotrichum gloeosporioides conidia induced by the host surface wax. Mol. Gen. Genet. 247:282-294.
Hwang, C. S., Flaishman, M. A., and Kolattukudy, P. E. 1995. Cloning of a gene expressed during appressorium formation by Colletotrichum gloeosporioides and a marked decrease in virulence by disruption of this gene. Plant Cell 7:183-193.
Ishikawa, S. 2003. Method to diagnose latent infection by Glomerella cingulata in strawberry plants using ethanol. J. Gen. Plant Pathol. 69:372-377.
Jayasinghe, C., and Fernando, T. 2001. Toxic activity from liquid culture of Colletotrichum acutatum. Mycopathologia 152:97-101.
Jeffries, P., Dodd, J., Jeger, M., and Plumbley, R. A. 1990. The biology and control of Colletotrichum species on tropical fruit crops. Plant Pathol. 39:343-366.
Jiang, Y., Woortman, A. J., Alberda van Ekenstein, G. O., Petrovic, D. M., and Loos, K. 2014. Enzymatic synthesis of biobased polyesters using 2, 5-bis (hydroxymethyl) furan as the building block. Biomacromolecules 15:2482-2493.
Knogge, W. 1996. Fungal infection of plants. Plant Cell 8:1711.
Kubo, Y., and Takano, Y. 2013. Dynamics of infection-related morphogenesis and pathogenesis in Colletotrichum orbiculare. J. Gen. Plant Pathol. 79:233-242.
Kubo, Y., Takano, Y., Endo, N., Yasuda, N., Tajima, S., and Furusawa, I. 1996. Cloning and structural analysis of the melanin biosynthesis gene SCD1 encoding scytalone dehydratase in Colletotrichum lagenarium. Appl. Environ. Microbiol. 62:4340-4344.
Lacroix, B., Tzfira, T., Vainstein, A., and Citovsky, V. 2006. A case of promiscuity: Agrobacterium's endless hunt for new partners. Trends Genet. 22:29-37.
Leandro, L., Gleason, M., Nutter Jr, F., Wegulo, S., and Dixon, P. 2001. Germination and sporulation of Colletotrichum acutatum on symptomless strawberry leaves. Phytopathology 91:659-664.
Lee, M. H., and Bostock, R. M. 2006. Agrobacterium T-DNA-mediated integration and gene replacement in the brown rot pathogen Monilinia fructicola. Curr. Genet. 49:309-322.
Li, Y. M., Zhang, X. Y., Li, N., Xu, P., Lou, W. Y., and Zong, M. H. 2017. Biocatalytic Reduction of HMF to 2, 5‐Bis (hydroxymethyl) furan by HMF‐Tolerant Whole Cells. Chem. Pub. Soc. 10:372-378.
Lin, S. Y., Okuda, S., Ikeda, K., Okuno, T., and Takano, Y. 2012. LAC2 encoding a secreted laccase is involved in appressorial melanization and conidial pigmentation in Colletotrichum orbiculare. Mol. Plant Microbe Interact. 25:1552-1561.
Müller, T., Benjdia, M., Avolio, M., Voigt, B., Menzel, D., Pardo, A., Frommer, W. B., and Wipf, D. 2006. Functional expression of the green fluorescent protein in the ectomycorrhizal model fungus Hebeloma cylindrosporum. Mycorrhiza 16:437-442.
Münch, S., Lingner, U., Floss, D. S., Ludwig, N., Sauer, N., and Deising, H. B. 2008. The hemibiotrophic lifestyle of Colletotrichum species. J. Plant Physiol. 165:41-51.
Martinez‐Culebras, P., Querol, A., Suarez‐Fernandez, M., Garcia‐Lopez, M., and Barrio, E. 2003. Phylogenetic relationships among Colletotrichum pathogens of strawberry and design of PCR primers for their identification. J. Phytopathol. 151:135-143.
Michielse, C. B., Hooykaas, P. J., van den Hondel, C. A., and Ram, A. F. 2005. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr. Genet. 48:1-17.
Mitchell, R. E. 1984. The relevance of non-host-specific toxins in the expression of virulence by pathogens. Annu. Rev. Phytopathol. 22:215-245.
Mohanraj, D., Padmanaban, P., and Karunakaran, M. 2003. Pathogen toxin-induced electrolyte leakage and phytoalexin accumulation as indices of red-rot (Colletotrichum falcatum Went) resistance in sugarcane. Phytopathol. Mediterr. 42:129-134.
Nishimura, S. 1965. Interactions between Helminthosporium victoriae spores and oat tissues. Phytopathology 55:629-634.
Nishimura, S., and Kohmoto, K. 1983. Host-specific toxins and chemical structures from Alternaria species. Annu. Rev. Phytopathol. 21:87-116.
Norman, D. J., and Strandberg, J. O. 1997. Survival of Colletotrichum acutatum in soil and plant debris of leatherleaf fern. Plant Disease, 81.10: 1177-1180.
Ohra, J., Morita, K., Tsujino, Y., Tazaki, H., Fujimori, T., Goering, M., Evans, S., and Zorner, P. 1995. Production of the phytotoxic metabolite, ferricrocin, by the fungus Colletotrichum gloeosporioides. Biosci. Biotechnol. Biochem. 59:113-114.
Olufolaji, D., and Bamgboye, A. 1986. Production, partial characterization and bioassay of toxins from Physalospora tucumanensis Speg.- sugarcane red-rot fungus. Cryptogam. Mycol. 7:331–334.
Peng S. Z. 2006. The occurrence and control of strawberry anthracnose. News of Miaoli District Agricultural Research and Extension Station 33:10-11.
Peng, X. P., Wang, Y., Liu, P. P., Hong, K., Chen, H., Yin, X., and Zhu, W. M. 2011. Aromatic compounds from the halotolerant fungal strain of Wallemia sebi PXP-89 in a hypersaline medium. Arch. Pharm. Res. 34:907-912.
Perpetua, N. S., Kubo, Y., Yasuda, N., Takano, Y., and Furusawa, I. 1996. Cloning and characterization of a melanin biosynthetic THR1 reductase gene essential for appressorial penetration of Colletotrichum lagenarium. Mol. Plant Microbe Interact. 9:323-329.
Pringle, R. B., and Scheffer, R. P. 1964. Host-specific plant toxins. Annu. Rev. Phytopathol. 2:133-156.
Robeson, D., and Strobel, G. 1982. Monocerin, a phytotoxin from Exserohilum turcicum (≡ Drechslera turcica). Agric. Biol. Chem. 46:2681-2683.
Rogers, C. W., Challen, M. P., Green, J. R., and Whipps, J. M. 2004. Use of REMI and Agrobacterium-mediated transformation to identify pathogenicity mutants of the biocontrol fungus, Coniothyrium minitans. FEMS Microbiol. Lett. 241:207-214.
Rudolph, K. 1976. Non-specific toxins. Physiol. Plant Pathol.:270-315.
Shih, J., Hsieh, T., and Ho, C. 2008. Ecological production of strawberry in Taiwan. Pages 397-400 in: VI International Strawberry Symposium 842.
Simpson, D., and Hammond, K. 2008. A Breeding Strategy for Improving Resistance to Strawberry Black Spot (Colletotrichum acutatum) in the United Kingdom. Pages 521-524 in: VI International Strawberry Symposium 842.
Sugui, J. A., Chang, Y. C., and Kwon-Chung, K. 2005. Agrobacterium tumefaciens-mediated transformation of Aspergillus fumigatus: an efficient tool for insertional mutagenesis and targeted gene disruption. Appl. Environ. Microbiol. 71:1798-1802.
Takano, Y., Kubo, Y., Shimizu, K., Mise, K., Okuno, T., and Furusawa, I. 1995. Structural analysis of PKS1, a polyketide synthase gene involved in melanin biosynthesis in Colletotrichum lagenarium. Mol. Gene. Genet. 249:162-167.
Talhinhas, P., Muthumeenakshi, S., Neves-Martins, J., Oliveira, H., and Sreenivasaprasad, S. 2008. Agrobacterium-mediated transformation and insertional mutagenesis in Colletotrichum acutatum for investigating varied pathogenicity lifestyles. Mol. Biotechnol. 39:57-67.
Tsuji, G., Fujii, S., Tsuge, S., Shiraishi, T., and Kubo, Y. 2003a. The Colletotrichum lagenarium Ste12-like gene CST1 is essential for appressorium penetration. Mol. Plant Microbe Interact. 16:315-325.
Tsuji, G., Fujii, S., Fujihara, N., Hirose, C., Tsuge, S., Shiraishi, T., and Kubo, Y. 2003b. Agrobacterium tumefaciens-mediated transformation for random insertional mutagenesis in Colletotrichum lagenarium. J. Gen. Plant Pathol. 69:230-239.
Ventura, S. P., de Morais, P., Coelho, J. A., Sintra, T., Coutinho, J. A., and Afonso, C. A. 2016. Evaluating the toxicity of biomass derived platform chemicals. Green Chem. 18:4733-4742.
Villa-Rivera, M. G., Conejo-Saucedo, U., Lara-Marquez, A., Cano-Camacho, H., Lopez-Romero, E., and Zavala-Paramo, M. G. 2017. The role of virulence factors in the pathogenicity of Colletotrichum sp. Curr. Protein Pept. Sci. 18:1005-1018.
Walton, J. D., and Panaccione, D. G. 1993. Host-selective toxins and disease specificity: perspectives and progress. Annu. Rev. Phytopathol. 31:275-303.
Warwar, V., and Dickman, M. B. 1996. Effects of calcium and calmodulin on spore germination and appressorium development in Colletotrichum trifolii. Appl. Environ. Microbiol. 62:74-79.
Wattad, C., Freeman, S., Dinoor, A., and Prusky, D. 1995. A nonpathogenic mutant of Colletotrichum magna is deficient in extracellular secretion of pectate lyase. Mol. Plant Microbe Interact. 8:621-626.
Wheeler, H., and Luke, H. 1955. Mass screening for disease-resistant mutants in oats. Science 122:1229-1229.
Yoder, O. 1980. Toxins in pathogenesis. Annu. Rev. Phytopathol. 18:103-129.
Yoshida, S., Hiradate, S., Fujii, Y., and Shirata, A. 2000. Colletotrichum dematium produces phytotoxins in anthracnose lesions of mulberry leaves. Phytopathology 90:285-291.
You, B. J., Choquer, M., and Chung, K.-R. 2007. The Colletotrichum acutatum gene encoding a putative pH-responsive transcription regulator is a key virulence determinant during fungal pathogenesis on citrus. Mol. Plant Microbe Interact. 20:1149-1160.
Zeilinger, S. 2004. Gene disruption in Trichoderma atroviride via Agrobacterium-mediated transformation. Curr. Genet. 45:54-60.
Zhang, G. M., Fang, B. H., Chen, H., and Li, X. L. 2012. Characteristics of the toxin extracted from liquid culture of Colletotrichum capsici F. nicotianae. Appl. Biochem. Biotechnol. 167:52-61.
Ziemert, N., Podell, S., Penn, K., Badger, J. H., Allen, E., and Jensen, P. R. 2012. The natural product domain seeker NaPDoS: a phylogeny based bioinformatic tool to classify secondary metabolite gene diversity. PLoS One 7:e34064.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78956-
dc.description.abstract草莓為台灣重要的高經濟作物,炭疽病菌可潛伏感染於草莓種苗中,至本田期大規模發病,造成嚴重危害。前人研究發現,辣椒及菸草炭疽病菌分泌之毒性代謝物屬小分子化合物,接種於寄主會呈現類似病原菌感染之病徵,但目前對於炭疽病菌毒性代謝物之化學結構,及毒性代謝物在侵染寄主過程中扮演之角色均有待釐清。本研究欲探討草莓炭疽病菌之毒性代謝物種類與功能,首先建立草莓葉圓葉片生物測定法 (leaf disc bioassay),同時以加入草莓葉汁液等方法調整液態培養條件,增加毒素產量,發現培養過草莓炭疽病菌之濾液可在離葉與圓葉片產生和病原菌相似的壞疽病徵。為瞭解毒性代謝物之相關特性,將濾液接種於草莓、菸草、木瓜、青江菜、小麥、香蕉與水稻等不同單子葉與雙子葉植物之圓葉片,確認毒性代謝物不具寄主專一性。另將濾液以高溫高壓滅菌和蛋白質酶處理後,仍無法抑制其誘導產生壞疽病徵之活性,確認活性物質具耐熱性且並非蛋白質。透過Diaion HP20 open column chromatography純化毒性代謝物,再配合高效液相色譜法 (high performance liquid chromatography)、質譜法 (mass spectrometry) 與核磁共振 (nuclear magnetic resonance) 等分析技術,鑑定活性物質為2,5-bis(hydroxymethyl)furan (BHMF);購買商品化之BHMF接種草莓葉圓片與離葉,確實可產生類似炭疽病菌感染之病徵。本研究亦透過農桿菌轉殖法,篩選出一株毒性代謝物缺陷型突變株 (BHMF產量較野生型低~36%),將其接種於草莓離葉後,造成的病斑比野生型顯著較小,顯示BHMF可能是草莓炭疽病菌的毒力因子。至於BHMF在草莓葉片或冠部組織之作用濃度,以及是否有其他因子協力作用等,則有待進一步釐清。zh_TW
dc.description.abstractStrawberry is a high value fruit crop in Taiwan. Latent infected of Colletotrichum gloeosporioides in strawberry seedlings can cause severe damage to field-grown plants. In previous studies, the toxic metabolite(s) of Colletotrichum sp. were identified as low molecular weight substances; inoculation of the culture filtrates led to lesions similar to that caused by pathogen infections. However, for Colletotrichum spp., precise chemical structures of the toxic metabolite(s) and the roles of toxic metabolite(s) in pathogenesis remain to be clarified. To investigate the mechanism underlying pathogenesis of C. gloeosporioides, this research focused on the identification and functional characterization of toxic metabolite(s) produced by C. gloeosporioides. We optimized toxic metabolite(s) production by supplementing the medium with strawberry leaf extract and developed a leaf disc bioassay method for phytotoxic activity evaluation. The culture filtrate of C. gloeosporioides caused necrosis on leaf discs and induced anthracnose symptoms on detached leaves of strawberry. Assays on the leaf discs of several dicot and monocot crops, including strawberry, tobacco, papaya, bok choy, wheat, banana, and rice suggested host nonspecificity of the toxic metabolite(s). Autoclaving or pretreatment with proteinase K did not inhibit the necrosis-inducing activity of the culture filtrate, indicating that the active ingredient is a thermostable and non-protein substance. By employing Diaion HP20 open column chromatography, RP-amide high performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance, the toxic metabolite was isolated and identified as 2,5-bis(hydroxymethyl)furan (BHMF). Commercially available BHMF was able to induce anthracnose-like symptoms on detached leaves and leaf discs of strawberry. A toxin-deficient mutant which produced ~36% less BHMF than the wild type was generated by using Agrobacterium-mediated transformation. Inoculating the toxin-deficient mutant on detached strawberry leaves resulted in significantly smaller lesions than the wild type, suggesting that BHMF is a virulence factor of C. gloeosporioides in strawberry. Future work will focus on investigating the effective concentration of BHMF in strawberry leaf and crown tissues, as well as understanding whether there is synergistic factor(s) of BHMF.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:32:07Z (GMT). No. of bitstreams: 1
ntu-107-R05633002-1.pdf: 4485376 bytes, checksum: d998a12dd5b17358d32e9ef7f7fd0dda (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents論文口試委員審定書 I
致謝 II
中文摘要 III
ABSTRACT IV
CONTENTS VI
LIST OF FIGURES X
LIST OF TABLES XII
LIST OF SUPPLEMENTARY XIII
Chapter 1 Introduction 1
1.1 Research motivations 1
1.2 The strawberry cultivars in Taiwan 2
1.3 Anthracnose disease in strawberry 3
1.4 Virulence factors in the pathogenicity of Colletotrichum sp. 5
1.5 Toxic metabolite(s) of the plant pathogens 7
1.6 Phytotoxic metabolites used in screening crops for disease resistance 8
1.7 Previous studies on the toxic metabolite(s) of Colletotrichum sp. 9
Chapter 2 Materials and Methods 11
2.1 Plant materials and growth conditions 11
2.2 Fungal pathogen and culture conditions 11
2.3 Preparation of the culture filtrate containing the toxic metabolite(s) 12
2.4 Evaluation of phytotoxic activity 13
2.4.1 Leaf disc bioassay 13
2.4.2 Whole plant sprayed with culture filtrate and carborundum 13
2.4.3 Wound inoculation of the detached leaf 14
2.4.4 Detached leaf incubated in culture filtrate 14
2.5 Characterization and identification of the toxic metabolite(s) 15
2.5.1 Thermal stability test 15
2.5.2 Host-specificity test 15
2.5.3 Proteinase K Test 16
2.5.4 Isolation and purification of the toxic metabolite(s) 16
2.5.5 Identification of the toxic metabolite(s) 17
2.5.5.1 NMR analysis.........................................................................17
2.5.5.2 MS analysis............................................................................18
2.5.6 Phytotoxic activity of the candidate compound 18
2.6 Roles of the toxic metabolite(s) in the pathogenicity and virulence of C. gloeosporioides 19
2.6.1 Agrobacterium-mediated transformation (AMT) 19
2.6.2 Mycelial growth and sporulation of the wild type and toxin-deficient mutants 21
2.6.3 Quantification of the toxic metabolite(s) produced by the wild type and toxin-deficient mutants using UV-HPLC 21
2.6.4 Evaluation of the pathogenicity and virulence of the wild-type and toxin-deficient mutants 22
Chapter 3 Results 23
3.1 Preparation of the culture filtrate containing the toxic metabolite(s) 23
3.2 Inoculation and bioassay methods for the toxic metabolite(s) 23
3.3 Characterization and identification of the toxic metabolite(s) 24
3.3.1 Thermal-stability test 24
3.3.2 Host-specificity test 25
3.3.3 Proteinase K test 25
3.3.4 Identification of the toxic metabolite(s) 26
3.4 Roles of the toxic metabolite(s) in the pathogenicity and virulence of C. gloeosporioides 27
3.4.1 Agrobacterium-mediated transformation 27
3.4.2 Mycelial growth and sporulation of the wild type and toxin-deficient mutants 28
3.4.3 Quantification of the toxic metabolite(s) by UV-HPLC 28
3.4.4 Evaluation of the pathogenicity and virulence of the wild type and toxin-deficient mutants 29
Chapter 4 Discussion 31
4.1. Properties of the toxic metabolite(s) 31
4.2. Isolation and identification of the toxic metabolite(s) 34
4.3. Roles of the toxic metabolite(s) in ML133 pathogenesis 37
References 39
Tables 51
Figures 53
Supplementary Figures 69
dc.language.isoen
dc.subject毒性代謝物缺陷株zh_TW
dc.subject草莓炭疽病zh_TW
dc.subject毒性代謝物zh_TW
dc.subject高效液相色譜法zh_TW
dc.subject質譜法zh_TW
dc.subject5-bis(hydroxymethyl)furanzh_TW
dc.subjectstrawberry anthracnoseen
dc.subjecttoxin-deficient mutanten
dc.subject5-bis(hydroxymethyl)furanen
dc.subjectmass spectrometry (MS)en
dc.subjecthigh performance liquid chromatography (HPLC)en
dc.subjecttoxic metaboliteen
dc.title草莓炭疽病菌之毒性代謝物鑑定與功能性分析zh_TW
dc.titleIdentification and functional characterization of the toxic metabolite(s) produced by Colletotrichum gloeosporioides in strawberryen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.coadvisor李宗徽
dc.contributor.oralexamcommittee曾顯雄,陳昭瑩,林乃君
dc.subject.keyword草莓炭疽病,毒性代謝物,高效液相色譜法,質譜法,2,5-bis(hydroxymethyl)furan,毒性代謝物缺陷株,zh_TW
dc.subject.keywordstrawberry anthracnose,toxic metabolite,high performance liquid chromatography (HPLC),mass spectrometry (MS),2,5-bis(hydroxymethyl)furan,toxin-deficient mutant,en
dc.relation.page90
dc.identifier.doi10.6342/NTU201803660
dc.rights.note有償授權
dc.date.accepted2018-08-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
dc.date.embargo-lift2028-08-15-
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-107-R05633002-1.pdf
  未授權公開取用
4.38 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved