請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78955完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何佳安 | |
| dc.contributor.author | Ling-Chun Hung | en |
| dc.contributor.author | 洪翎鈞 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:32:03Z | - |
| dc.date.available | 2023-08-23 | |
| dc.date.copyright | 2018-08-23 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-16 | |
| dc.identifier.citation | 1 Marsh, D. Concepts of fracture union, delayed union, and nonunion. Clinical orthopaedics and related research, S22-30 (1998).
2 Teitelbaum, S. L. Osteoclasts: what do they do and how do they do it? The American journal of pathology 170, 427-435, doi:10.2353/ajpath.2007.060834 (2007). 3 Zaidi, M. Skeletal remodeling in health and disease. Nature medicine 13, 791-801, doi:10.1038/nm1593 (2007). 4 Harada, S. & Rodan, G. A. Control of osteoblast function and regulation of bone mass. Nature 423, 349-355, doi:10.1038/nature01660 (2003). 5 Blair, H. C. & Athanasou, N. A. Recent advances in osteoclast biology and pathological bone resorption. Histology and histopathology 19, 189-199, doi:10.14670/hh-19.189 (2004). 6 Eriksen, E. F. Cellular mechanisms of bone remodeling. Reviews in endocrine & metabolic disorders 11, 219-227, doi:10.1007/s11154-010-9153-1 (2010). 7 Kearns, A. E., Khosla, S. & Kostenuik, P. J. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocrine reviews 29, 155-192, doi:10.1210/er.2007-0014 (2008). 8 Garcia-Martinez, O., De Luna-Bertos, E., Ramos-Torrecillas, J., Manzano-Moreno, F. J. & Ruiz, C. Repercussions of NSAIDS drugs on bone tissue: the osteoblast. Life sciences 123, 72-77, doi:10.1016/j.lfs.2015.01.009 (2015). 9 Zhou, J. et al. The repair of large segmental bone defects in the rabbit with vascularized tissue engineered bone. Biomaterials 31, 1171-1179, doi:10.1016/j.biomaterials.2009.10.043 (2010). 10 Ozaki, A., Tsunoda, M., Kinoshita, S. & Saura, R. Role of fracture hematoma and periosteum during fracture healing in rats: interaction of fracture hematoma and the periosteum in the initial step of the healing process. Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association 5, 64-70 (2000). 11 Einhorn, T. A. & Gerstenfeld, L. C. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol 11, 45-54, doi:10.1038/nrrheum.2014.164 (2015). 12 Etcheverry, S. B., Barrio, D. A., Cortizo, A. M. & Williams, P. A. Three new vanadyl(IV) complexes with non-steroidal anti-inflammatory drugs (Ibuprofen, Naproxen and Tolmetin). Bioactivity on osteoblast-like cells in culture. Journal of inorganic biochemistry 88, 94-100 (2002). 13 Ho, M. L., Chang, J. K. & Wang, G. J. Antiinflammatory drug effects on bone repair and remodeling in rabbits. Clinical orthopaedics and related research, 270-278 (1995). 14 Pape, H. C. et al. Trauma-Induced Inflammation and Fracture Healing. J Orthop Trauma 24, 522-525, doi:DOI 10.1097/BOT.0b013e3181ed1361 (2010). 15 Fuster, V. & Sweeny, J. M. Aspirin: a historical and contemporary therapeutic overview. Circulation 123, 768-778, doi:10.1161/circulationaha.110.963843 (2011). 16 Paez Espinosa, E. V., Murad, J. P. & Khasawneh, F. T. Aspirin: pharmacology and clinical applications. Thrombosis 2012, 173124, doi:10.1155/2012/173124 (2012). 17 Fracon, R. N., Teofilo, J. M., Satin, R. B. & Lamano, T. Prostaglandins and bone: potential risks and benefits related to the use of nonsteroidal anti-inflammatory drugs in clinical dentistry. Journal of oral science 50, 247-252 (2008). 18 Hilario, M. O., Terreri, M. T. & Len, C. A. Nonsteroidal anti-inflammatory drugs: cyclooxygenase 2 inhibitors. Jornal de pediatria 82, S206-212, doi:10.2223/jped.1560 (2006). 19 Capodanno, D. & Angiolillo, D. J. Aspirin for Primary Cardiovascular Risk Prevention and Beyond in Diabetes Mellitus. Circulation 134, 1579-1594, doi:10.1161/circulationaha.116.023164 (2016). 20 Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nature nanotechnology 2, 751-760, doi:10.1038/nnano.2007.387 (2007). 21 Otsuka, H., Nagasaki, Y. & Kataoka, K. PEGylated nanoparticles for biological and pharmaceutical applications. Advanced drug delivery reviews 55, 403-419 (2003). 22 Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nature reviews. Drug discovery 4, 145-160, doi:10.1038/nrd1632 (2005). 23 Owens, D. E., 3rd & Peppas, N. A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. International journal of pharmaceutics 307, 93-102, doi:10.1016/j.ijpharm.2005.10.010 (2006). 24 Zhang, L. et al. Self-assembled lipid--polymer hybrid nanoparticles: a robust drug delivery platform. ACS nano 2, 1696-1702, doi:10.1021/nn800275r (2008). 25 Li, J. et al. A novel polymer-lipid hybrid nanoparticle for efficient nonviral gene delivery. Acta pharmacologica Sinica 31, 509-514, doi:10.1038/aps.2010.15 (2010). 26 Mieszawska, A. J. et al. Engineering of lipid-coated PLGA nanoparticles with a tunable payload of diagnostically active nanocrystals for medical imaging. Chemical communications (Cambridge, England) 48, 5835-5837, doi:10.1039/c2cc32149a (2012). 27 Hadinoto, K., Sundaresan, A. & Cheow, W. S. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V 85, 427-443, doi:10.1016/j.ejpb.2013.07.002 (2013). 28 Liu, Y., Pan, J. & Feng, S. S. Nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of paclitaxel: effects of surfactants on particles size, characteristics and in vitro performance. International journal of pharmaceutics 395, 243-250, doi:10.1016/j.ijpharm.2010.05.008 (2010). 29 Thevenot, J., Troutier, A. L., David, L., Delair, T. & Ladaviere, C. Steric stabilization of lipid/polymer particle assemblies by poly(ethylene glycol)-lipids. Biomacromolecules 8, 3651-3660, doi:10.1021/bm700753q (2007). 30 Fenart, L. et al. Evaluation of effect of charge and lipid coating on ability of 60-nm nanoparticles to cross an in vitro model of the blood-brain barrier. The Journal of pharmacology and experimental therapeutics 291, 1017-1022 (1999). 31 Troutier, A. L., Delair, T., Pichot, C. & Ladaviere, C. Physicochemical and interfacial investigation of lipid/polymer particle assemblies. Langmuir : the ACS journal of surfaces and colloids 21, 1305-1313, doi:10.1021/la047659t (2005). 32 Yang, X. Z. et al. Single-step assembly of cationic lipid-polymer hybrid nanoparticles for systemic delivery of siRNA. ACS nano 6, 4955-4965, doi:10.1021/nn300500u (2012). 33 Yu, F. et al. PEG-lipid-PLGA hybrid nanoparticles loaded with berberine-phospholipid complex to facilitate the oral delivery efficiency. Drug delivery 24, 825-833, doi:10.1080/10717544.2017.1321062 (2017). 34 Yingchoncharoen, P., Kalinowski, D. S. & Richardson, D. R. Lipid-Based Drug Delivery Systems in Cancer Therapy: What Is Available and What Is Yet to Come. Pharmacological reviews 68, 701-787, doi:10.1124/pr.115.012070 (2016). 35 Bose, R. J., Lee, S. H. & Park, H. Lipid-based surface engineering of PLGA nanoparticles for drug and gene delivery applications. Biomaterials research 20, 34, doi:10.1186/s40824-016-0081-3 (2016). 36 Makadia, H. K. & Siegel, S. J. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers 3, 1377-1397, doi:10.3390/polym3031377 (2011). 37 Shive, M. S. & Anderson, J. M. Biodegradation and biocompatibility of PLA and PLGA microspheres. Advanced drug delivery reviews 28, 5-24 (1997). 38 Liu, X. M., Harmon, P. S., Maziarz, E. P., Rah, M. J. & Merchea, M. M. Comparative studies of hyaluronan in marketed ophthalmic products. Optometry and vision science : official publication of the American Academy of Optometry 91, 32-38, doi:10.1097/opx.0000000000000100 (2014). 39 Toole, B. P. Hyaluronan: from extracellular glue to pericellular cue. Nature reviews. Cancer 4, 528-539, doi:10.1038/nrc1391 (2004). 40 de Brito Bezerra, B. et al. Association of hyaluronic acid with a collagen scaffold may improve bone healing in critical-size bone defects. Clinical oral implants research 23, 938-942, doi:10.1111/j.1600-0501.2011.02234.x (2012). 41 Kawano, M. et al. Mechanism involved in enhancement of osteoblast differentiation by hyaluronic acid. Biochemical and biophysical research communications 405, 575-580, doi:10.1016/j.bbrc.2011.01.071 (2011). 42 Termeer, C. et al. Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. The Journal of experimental medicine 195, 99-111 (2002). 43 Schante, C. E., Zuber, G., Herlin, C. & Vandamme, T. F. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohyd Polym 85, 469-489, doi:10.1016/j.carbpol.2011.03.019 (2011). 44 Ariyoshi, W., Okinaga, T., Knudson, C. B., Knudson, W. & Nishihara, T. High molecular weight hyaluronic acid regulates osteoclast formation by inhibiting receptor activator of NF-kappa B ligand through Rho kinase. Osteoarthr Cartilage 22, 111-120, doi:10.1016/j.joca.2013.10.013 (2014). 45 Rayahin, J. E., Buhrman, J. S., Zhang, Y., Koh, T. J. & Gemeinhart, R. A. High and low molecular weight hyaluronic acid differentially influence macrophage activation. ACS Biomater Sci Eng 1, 481-493, doi:10.1021/acsbiomaterials.5b00181 (2015). 46 Liu, D. et al. Hyaluronic-acid-modified lipid-polymer hybrid nanoparticles as an efficient ocular delivery platform for moxifloxacin hydrochloride. International journal of biological macromolecules 116, 1026-1036, doi:10.1016/j.ijbiomac.2018.05.113 (2018). 47 Bryan, N. S. & Grisham, M. B. Methods to detect nitric oxide and its metabolites in biological samples. Free radical biology & medicine 43, 645-657, doi:10.1016/j.freeradbiomed.2007.04.026 (2007). 48 Dave, V. et al. Lipid-polymer hybrid nanoparticles: Development & statistical optimization of norfloxacin for topical drug delivery system. Bioactive materials 2, 269-280, doi:https://doi.org/10.1016/j.bioactmat.2017.07.002 (2017). 49 Danaei, M. et al. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 10, doi:10.3390/pharmaceutics10020057 (2018). 50 Tang, Y. & Singh, J. Controlled delivery of aspirin: effect of aspirin on polymer degradation and in vitro release from PLGA based phase sensitive systems. International journal of pharmaceutics 357, 119-125, doi:10.1016/j.ijpharm.2008.01.053 (2008). 51 Siegel, S. J. et al. Effect of drug type on the degradation rate of PLGA matrices. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V 64, 287-293, doi:10.1016/j.ejpb.2006.06.009 (2006). 52 Miyazaki, M., Yuba, E., Hayashi, H., Harada, A. & Kono, K. Hyaluronic Acid-Based pH-Sensitive Polymer-Modified Liposomes for Cell-Specific Intracellular Drug Delivery Systems. Bioconjugate Chemistry 29, 44-55, doi:10.1021/acs.bioconjchem.7b00551 (2018). 53 Shibata, A., Yada, S. & Terakawa, M. Biodegradability of poly(lactic-co-glycolic acid) after femtosecond laser irradiation. Scientific reports 6, 27884, doi:10.1038/srep27884 (2016). 54 Singh, R. et al. Development and characterization of folate anchored Saquinavir entrapped PLGA nanoparticles for anti-tumor activity. Drug development and industrial pharmacy 41, 1888-1901, doi:10.3109/03639045.2015.1019355 (2015). 55 Derenne, A., Van Hemelryck, V., Lamoral-Theys, D., Kiss, R. & Goormaghtigh, E. FTIR spectroscopy: a new valuable tool to classify the effects of polyphenolic compounds on cancer cells. Biochimica et biophysica acta 1832, 46-56, doi:10.1016/j.bbadis.2012.10.010 (2013). 56 Vasi, A. M., Popa, M. I., Butnaru, M., Dodi, G. & Verestiuc, L. Chemical functionalization of hyaluronic acid for drug delivery applications. Materials science & engineering. C, Materials for biological applications 38, 177-185, doi:10.1016/j.msec.2014.01.052 (2014). 57 Bhattacharya, P. et al. PAMAM dendrimer for mitigating humic foulant. Vol. 2 (2012). 58 Kosinski, A. M., Brugnano, J. L., Seal, B. L., Knight, F. C. & Panitch, A. Synthesis and characterization of a poly(lactic-co-glycolic acid) core + poly(N-isopropylacrylamide) shell nanoparticle system. Biomatter 2, 195-201, doi:10.4161/biom.22494 (2012). 59 Fargnoli, A. S. et al. Anti-inflammatory loaded poly-lactic glycolic acid nanoparticle formulations to enhance myocardial gene transfer: an in-vitro assessment of a drug/gene combination therapeutic approach for direct injection. Journal of translational medicine 12, 171, doi:10.1186/1479-5876-12-171 (2014). 60 Huang, L. et al. The effect of hyaluronan on osteoblast proliferation and differentiation in rat calvarial-derived cell cultures. Journal of biomedical materials research. Part A 66, 880-884, doi:10.1002/jbm.a.10535 (2003). 61 Ariyoshi, W., Okinaga, T., Knudson, C. B., Knudson, W. & Nishihara, T. High molecular weight hyaluronic acid regulates osteoclast formation by inhibiting receptor activator of NF-κB ligand through Rho kinase. Osteoarthr Cartilage 22, 111-120, doi:https://doi.org/10.1016/j.joca.2013.10.013 (2014). 62 Cui, N., Qian, J., Liu, T., Zhao, N. & Wang, H. Hyaluronic acid hydrogel scaffolds with a triple degradation behavior for bone tissue engineering. Carbohydr Polym 126, 192-198, doi:10.1016/j.carbpol.2015.03.013 (2015). 63 Boeckel, D. G., Shinkai, R. S. A., Grossi, M. L. & Teixeira, E. R. In vitro evaluation of cytotoxicity of hyaluronic acid as an extracellular matrix on OFCOL II cells by the MTT assay. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology 117, e423-e428, doi:https://doi.org/10.1016/j.oooo.2012.07.486 (2014). 64 Tran, T. H., Rastogi, R., Shelke, J. & Amiji, M. M. Modulation of Macrophage Functional Polarity towards Anti-Inflammatory Phenotype with Plasmid DNA Delivery in CD44 Targeting Hyaluronic Acid Nanoparticles. Scientific reports 5, 16632, doi:10.1038/srep16632 (2015). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78955 | - |
| dc.description.abstract | 骨折癒合包含三個生物階段:炎症、修復和重塑期。許多研究顯示炎症的程度會影響後續骨癒合的過程,導致延遲癒合或骨不癒合的情形發生。近年研究顯示,發現高分子量的透明質酸(Hyaluronic acid,HA)能透過下調 ( down regulate ) 來自成骨細胞和基質細胞的核因子κ-B配體(RANKL)的受體激活來抑制蝕骨細胞分化。此外,也發現HMW-HA可將巨噬細胞由M1型轉變為M2型,緩解炎症反應和促進成骨細胞分化。玻尿酸為細胞外基質中主要成分,並存在於結締組織,已被用作組織工程中的生物材料或用於治療骨關節炎。脂質-PLGA混合型納米顆粒,為脂質層包裹著以聚合物為核心的載體,提供了更好的載藥效率和生物相容性,是新興的藥物遞送平台。在我們的研究,我們將高分子量的透明質酸修飾在脂質-PLG混合型納米顆粒上,並負載抑制發炎藥物來用於幫助骨折的癒合狀況。首先,我們會先合成修飾有HA的LPNs,並進行HA-LPN的表徵鑑定,包括粒徑、ζ電位、官能基、生物毒性和體外釋放曲線。接著,進行RT-PCR和染色以確認負載抗發炎藥物的HA-LPN處理對於炎症緩解和蝕骨細胞分化抑制的作用。根據奈米粒徑及電位分析儀及掃描式電子顯微鏡結果,發現修飾HA的奈米載體相較未修飾載體具有更大粒徑,表面電性更負,證實HA成功修飾在載體上。從細胞實驗結果證實,高分子量的HA確實具有促進成骨細胞增殖分化的能力以及將巨噬細胞由M1型轉變為M2型的功能,並在抗發炎實驗也證實其具有緩解炎症能力。期望負載抗發炎藥物的HA-LPN能對於增強骨折癒合提供可行的治療策略。 | zh_TW |
| dc.description.abstract | Fracture healing occurs in three biological phases: (1) inflammation, (2) repair, and (3) remodeling. The degree of inflammation plays an important role in bone healing process. It was previously reported that high-molecular weight hyaluronic acid (HMW-HA) was able to suppress osteoclasts (OC) differentiation via down-regulating the receptor activator of nuclear factor kappa-Β ligand (RANKL) from osteoblasts (OB) and stromal cells. Additionally, HMW-HA could switch the macrophages from M1 type to M2 type, relieving the inflammation and enhancing OB differentiation. hyaluronic acid (HA) is abundant in extracellular matrix, and presents in connective tissues, that has been used as a biomaterial in tissue engineering or for treating osteoarthritis clinically. The lipid–PLGA hybrid nanoparticles (LPNs), a lipid layer enveloping the polymer core, provided better drug loading efficiency and biocompatibility and was confirmed as a promising delivery platform. We herein modified LPNs with HMW-HA (HA-LPNs), encapsulating immunomodulation drugs for promoting healing of bone fracture. The characterization of HA-LPNs, including particle size, ζ-potential, biological toxicity, and in vitro releasing profile was carried out. Furthermore, RT-PCR and Western Blotting were performed to confirm the effect of HA-LPN treatment on relief of inflammation and inhibition of OC differentiation. Based on the results acquired by Zetasizer Nano ZS and Scanning Electron Microscope (SEM), we found that HA-LPNs had a larger particle size than LPNs, and the lower negative zeta potential, confirming that HA was successfully modified on the surface of LPNs. We also confirmed that high molecular weight HA could promote proliferation and differentiation of osteoblasts in vitro. Moreover, the ability to relieve inflammation by switching macrophages M1 to M2 was observed. Our HA-LPN treatment offers a feasible therapeutic strategy to enhance bone fracture healing. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:32:03Z (GMT). No. of bitstreams: 1 ntu-107-R05b22037-1.pdf: 2655981 bytes, checksum: 7ffbca876004a76ab4145ea722a93efc (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 摘要 I
Abstract I 目錄 2 第一章 緒論 1 1.1前言 1 1.2骨骼 1 1.2.1骨折 3 1.2.2骨折修復 4 1.2.3骨折與發炎 5 1.2.4 NSAIDs和骨組織 6 1.3 Acetylsalicylic acid ( Aspirin ) 6 1.4脂質-聚合物混合型納米顆粒(Lipid-polymer hybrid nanoparticles, LPN) 7 1.4.1脂質-聚合物混合型納米顆粒的製備 8 1.4.2聚乳酸聚甘醇酸 (Poly(lactide-co-glycolide), PLGA) 11 1.5透明質酸(Hyaluronic acid,HA) 12 1.6研究動機 13 第二章 實驗材料與儀器 14 2.1 藥品試劑 14 2.1.2 引子序列 15 2.2 實驗儀器 15 2.3 細胞株 16 第三章 實驗方法 17 3.1製備載體 17 3.1.1載體表面修飾透明質酸 18 3.2奈米載體之鑑定 19 3.2.1動態光散射儀 (Dynamic Light Scattering,DLS) 19 3.2.2衰減全反射傅立葉紅外光譜 (ATR - FTIR) 20 3.2.3掃描式電子顯微鏡圖(SEM)及能量散射光譜儀 (Energy Dispersive Spectrometer,EDS) 20 3.3載體之裝載效率(Encapsulation efficiency, EE%) 20 3.4細胞培養 21 3.4.1細胞培養環境 21 3.4.2細胞繼代 21 3.4.3細胞冷凍及解凍 22 3.5細胞毒性測試(MTT assay) 23 3.6細胞抗發炎能力測試 23 3.6.1 Nitrite 測定 23 3.6.2 活性氧物質偵測(Reaction Oxygen Species, ROS detection) 25 3.7 基因表現量測試 25 3.7.1從細胞中萃取RNA 26 3.7.2將mRNA轉換成cDNA 27 3.7.3將cDNA放大並以real-time PCR定量mRNA表現情形 27 3.7.3 Real-time PCR數據整理 28 第四章 實驗結果與討論 29 4.1奈米載體粒徑大小及介面電性 29 4.2 鑑定脂質-聚合物混合型納米載體的透明質酸修飾 32 4.3 鑑定透明質酸修飾之脂質-聚合物混合型納米載體型態 34 4.3.1掃描式電子顯微鏡圖(SEM) 34 4.3.1能量散射光譜儀 (Energy Dispersive Spectrometer,EDS) 38 4.4透明質酸修飾的混合型納米載體定量及釋放行為 43 4.5高分子量透明質酸的對細胞成骨分化的影響 45 4.6高分子量透明質酸的對細胞存活率分析及增殖能力 46 4.7高分子量透明質酸抑制發炎的能力 47 結論與未來展望 48 參考文獻 49 | |
| dc.language.iso | zh-TW | |
| dc.subject | 脂質-PLGA混合型納米顆粒 | zh_TW |
| dc.subject | 藥物控制釋放 | zh_TW |
| dc.subject | 骨折癒合 | zh_TW |
| dc.subject | 抗炎 | zh_TW |
| dc.subject | 透明質酸 | zh_TW |
| dc.subject | inflammation | en |
| dc.subject | controlled drug release | en |
| dc.subject | hyaluronic acid | en |
| dc.subject | fracture healing | en |
| dc.subject | lipid–PLGA hybrid nanoparticles | en |
| dc.title | 以透明質酸修飾的脂質PLGA複合奈米粒子應用於促進骨折癒合 | zh_TW |
| dc.title | Development of lipid PLGA hybrid nanoparticles modified with hyaluronic acid for promoting bone fracture healing | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳立真,楊家銘,徐士蘭,鄭豐裕 | |
| dc.subject.keyword | 骨折癒合,抗炎,透明質酸,脂質-PLGA混合型納米顆粒,藥物控制釋放, | zh_TW |
| dc.subject.keyword | fracture healing,inflammation,hyaluronic acid,lipid–PLGA hybrid nanoparticles,controlled drug release, | en |
| dc.relation.page | 57 | |
| dc.identifier.doi | 10.6342/NTU201803714 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-16 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科技學系 | zh_TW |
| dc.date.embargo-lift | 2023-08-23 | - |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-R05b22037-1.pdf 未授權公開取用 | 2.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
