Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78945
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor盧虎生(Huu-Sheng Lur)
dc.contributor.authorTien-Cheng Wangen
dc.contributor.author王天成zh_TW
dc.date.accessioned2021-07-11T15:31:12Z-
dc.date.available2023-08-23
dc.date.copyright2018-08-23
dc.date.issued2018
dc.date.submitted2018-08-16
dc.identifier.citation王薏雯. (2007). 整合福衛二號高時間解析度和高空間解析度衛星影像與田間光譜資料監測水稻生長和預測產量.國立成功大學地球科學系博士論文.
台灣農業試驗所. (2015). Development of map data for precision agriculture Innovative technique.
周昶成. (1997). 利用多時SPOT衛星影像以研究水稻反射率動態光譜及其應用.國立中央大學太空科學研究所碩士論文.
林福源, 張素貞, 逢玉瀅, 陳昱為. (2015). 遙測技術在農作物災害監測之研究與應用評估. 104年度農業工程自動化計畫成果研討會論文集.台中市.
黃淑娟, 蘇宗振. (2010). 建立遙測稻作面積調查體系之探討. 農政與農情.
楊智凱, 施瑩艷, 楊舒涵. (2016). 以智慧科技邁向臺灣農業4.0時代. 農政與農情.
農業統計. (2017). 農耕土地面積.行政院農業委員會 http://statview.coa.gov.tw/aqsys_on/importantArgiGoal_lv3_1_2_1_1.html
劉天成. (2000). 我國精準農業的發展方向與策略. 農政與農情.
賴姵蓁. (2008). 利用福衛二號影像於花生田及水稻田判釋之研究. 逢甲大學土地管理所碩士論文.
Albornoz, E. M., Kemerer, A. C., Galarza, R., Mastaglia, N., Melchiori, R., & Martínez, C. E. (2018). Development and evaluation of an automatic software for management zone delineation. Precision Agriculture, 19(3), 463-476
Banger, K., Yuan, M., Wang, J., Nafziger, E. D., & Pittelkow, C. M. (2017). A Vision for Incorporating environmental effects into nitrogen management decision support tools for US maize production. Frontiers in plant science, 8, 1270
Bannari, A., Asalhi, H., & Teillet, P. (2002). Transformed difference vegetation index (TDVI) for vegetation cover mapping Geoscience and Remote Sensing Symposium, 2002. IGARSS'02. 2002 IEEE International (Vol. 5, pp. 3053-3055): IEEE.
Bausch, W., & Khosla, R. (2010). QuickBird satellite versus ground-based multi-spectral data for estimating nitrogen status of irrigated maize. Precision Agriculture, 11(3), 274-290
Berni, J. A., Zarco-Tejada, P. J., Suárez Barranco, M. D., & Fereres Castiel, E. (2009). Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle. IEEE Transactions on Geoscience and Remote Sensing, 47(3), 722-738
Bhatti, A., Mulla, D., & Frazier, B. (1991). Estimation of soil properties and wheat yields on complex eroded hills using geostatistics and thematic mapper images. Remote Sensing of Environment, 37(3), 181-191
Broge, N. H., & Leblanc, E. (2001). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote sensing of environment, 76(2), 156-172
Bull, C. (1991). Wavelength selection for near-infrared reflectance moisture meters. Journal of Agricultural Engineering Research, 49, 113-125
Campbell, J. B., & Wynne, R. H. (2011). Introduction to remote sensing: Guilford Press.
Chen, J. M. (1996). Evaluation of vegetation indices and a modified simple ratio for boreal applications. Canadian Journal of Remote Sensing, 22(3), 229-242
Chu, T., Starek, M. J., Brewer, M. J., Murray, S. C., & Pruter, L. S. (2017). Assessing lodging severity over an experimental maize (Zea mays L.) field using UAS images. Remote Sensing, 9(9), 923
Cilia, C., Panigada, C., Rossini, M., Meroni, M., Busetto, L., Amaducci, S., Colombo, R. (2014). Nitrogen status assessment for variable rate fertilization in maize through hyperspectral imagery. Remote Sensing, 6(7), 6549-6565
Cohen, C. J. (2000). Early history of remote sensing aipr (pp. 3): IEEE.
Crippen, R. E. (1990). Calculating the vegetation index faster. Remote Sensing of Environment, 34(1), 71-73
Danner, M., Berger, K., Wocher, M., Mauser, W., & Hank, T. (2017). Retrieval of biophysical crop variables from multi-angular canopy spectroscopy. Remote Sensing, 9(7), 726
Daughtry, C., Walthall, C., Kim, M., De Colstoun, E. B., & McMurtrey Iii, J. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote sensing of Environment, 74(2), 229-239
David, L. C. G., & Ballado, A. H. (2016). Vegetation indices and textures in object-based weed detection from UAV imagery Control System, Computing and Engineering (ICCSCE), 2016 6th IEEE International Conference on (pp. 273-278): IEEE.
Dube, T., Gara, T. W., Mutanga, O., Sibanda, M., Shoko, C., Murwira, A., Hatendi, C. M. (2018). Estimating forest standing biomass in savanna woodlands as an indicator of forest productivity using the new generation WorldView-2 sensor. Geocarto International, 33(2), 178-188
Eitel, J., Long, D., Gessler, P., & Smith, A. (2007). Using in‐situ measurements to evaluate the new RapidEye™ satellite series for prediction of wheat nitrogen status. International Journal of Remote Sensing, 28(18), 4183-4190
Firrao, G., Torelli, E., Gobbi, E., Raranciuc, S., Bianchi, G., & Locci, R. (2010). Prediction of milled maize fumonisin contamination by multispectral image analysis. Journal of cereal science, 52(2), 327-330
Foley, W. J., McIlwee, A., Lawler, I., Aragones, L., Woolnough, A. P., & Berding, N. (1998). Ecological applications of near infrared reflectance spectroscopy–a tool for rapid, cost-effective prediction of the composition of plant and animal tissues and aspects of animal performance. Oecologia, 116(3), 293-305
Franco, C., Pedersen, S. M., Papaharalampos, H., & Ørum, J. E. (2017). The value of precision for image-based decision support in weed management. Precision Agriculture, 18(3), 366-382
Fuentes, S., De Bei, R., Pech, J., & Tyerman, S. (2012). Computational water stress indices obtained from thermal image analysis of grapevine canopies. Irrigation Science, 30(6), 523-536
Gamon, J. A., Field, C. B., Goulden, M. L., Griffin, K. L., Hartley, A. E., Joel, G., Valentini, R. (1995). Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. Ecological Applications, 5(1), 28-41
Gamon, J. A., Huemmrich, K. F., Wong, C. Y., Ensminger, I., Garrity, S., Hollinger, D. Y., Peñuelas, J. (2016). A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers. Proceedings of the National Academy of Sciences, 113(46), 13087-13092
Geipel, J., Link, J., & Claupein, W. (2014). Combined spectral and spatial modeling of corn yield based on aerial images and crop surface models acquired with an unmanned aircraft system. Remote Sensing, 6(11), 10335-10355
Gitelson, A. A. (2004). Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. Journal of plant physiology, 161(2), 165-173
Gitelson, A. A., Merzlyak, M. N., & Chivkunova, O. B. (2001). Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochemistry and photobiology, 74(1), 38-45
Gitelson, A. A., Merzlyak, M. N., & Lichtenthaler, H. K. (1996). Detection of red edge position and chlorophyll content by reflectance measurements near 700 nm. Journal of plant physiology, 148(3-4), 501-508
Glenn, E. P., Huete, A. R., Nagler, P. L., & Nelson, S. G. (2008). Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: What vegetation indices can and cannot tell us about the landscape. Sensors, 8(4), 2136-2160
Goel, N. S., & Qin, W. (1994). Influences of canopy architecture on relationships between various vegetation indices and LAI and FPAR: A computer simulation. Remote Sensing Reviews, 10(4), 309-347
Goel, P. K., Prasher, S. O., Landry, J.-A., Patel, R. M., Bonnell, R., Viau, A. A., & Miller, J. (2003). Potential of airborne hyperspectral remote sensing to detect nitrogen deficiency and weed infestation in corn. Computers and electronics in agriculture, 38(2), 99-124
Goldstein, A., Fink, L., Meitin, A., Bohadana, S., Lutenberg, O., & Ravid, G. (2018). Applying machine learning on sensor data for irrigation recommendations: revealing the agronomist’s tacit knowledge. Precision Agriculture, 19(3), 421-444
Gong, P., Pu, R., Biging, G. S., & Larrieu, M. R. (2003). Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data. IEEE transactions on geoscience and remote sensing, 41(6), 1355-1362
Gonzalez-Dugo, V., Zarco-Tejada, P., Nicolás, E., Nortes, P. A., Alarcón, J., Intrigliolo, D. S., & Fereres, E. (2013). Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard. Precision Agriculture, 14(6), 660-678
Gowen, A., O'Donnell, C., Cullen, P., Downey, G., & Frias, J. (2007). Hyperspectral imaging–an emerging process analytical tool for food quality and safety control. Trends in Food Science & Technology, 18(12), 590-598
Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Strachan, I. B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote sensing of environment, 90(3), 337-352
Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., & Dextraze, L. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote sensing of environment, 81(2-3), 416-426
Haboudane, D., Tremblay, N., Miller, J. R., & Vigneault, P. (2008). Remote estimation of crop chlorophyll content using spectral indices derived from hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 46(2), 423-437
Hatfield, J. L., & Prueger, J. H. (2010). Value of using different vegetative indices to quantify agricultural crop characteristics at different growth stages under varying management practices. Remote Sensing, 2(2), 562-578
Hu, R., Cao, J., Huang, J., Peng, S., Huang, J., Zhong, X., Buresh, R. J. (2007). Farmer participatory testing of standard and modified site-specific nitrogen management for irrigated rice in China. Agricultural Systems, 94(2), 331-340
Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote sensing of environment, 25(3), 295-309
Hunt Jr, E. R., Doraiswamy, P. C., McMurtrey, J. E., Daughtry, C. S., Perry, E. M., & Akhmedov, B. (2013). A visible band index for remote sensing leaf chlorophyll content at the canopy scale. International Journal of Applied Earth Observation and Geoinformation, 21, 103-112
Johnson, C., Schafer, R., & Young, S. (1984). Controlling agricultural machinery intelligently Agricultural Electronics- 1983 and Beyond. Proceedings of the National Conference on Agricultural Electronics Applications. St Joseph: American Society of Agricultural Engineers.
Justes, E., Mary, B., Meynard, J. M., Machet, J. M., & Thelier-Huche, L. (1994). Determination of a Critical Nitrogen Dilution Curve for Winter Wheat Crops. Annals of Botany, 74(4), 397-407
Kefauver, S. C., Vicente, R., Vergara-Díaz, O., Fernandez-Gallego, J. A., Kerfal, S., Lopez, A., Araus, J. L. (2017). Comparative UAV and field phenotyping to assess yield and nitrogen use efficiency in hybrid and conventional barley. Frontiers in plant science, 8, 1733
Kjeldahl, C. (1883). A new method for the determination of nitrogen in organic matter. Z Anal Chem, 22, 366
Langner, H.-R., Böttger, H., & Schmidt, H. (2006). A special vegetation index for the weed detection in sensor based precision agriculture. Environmental monitoring and assessment, 117(1-3), 505-518
Lee, Y.-J., Yang, C.-M., Chang, K.-W., & Shen, Y. (2008). A simple spectral index using reflectance of 735 nm to assess nitrogen status of rice canopy. Agronomy Journal, 100(1), 205-212
Lemaire, G., Jeuffroy, M.-H., & Gastal, F. (2008). Diagnosis tool for plant and crop N status in vegetative stage: Theory and practices for crop N management. European Journal of agronomy, 28(4), 614-624
Lindblom, J., Lundström, C., Ljung, M., & Jonsson, A. (2017). Promoting sustainable intensification in precision agriculture: review of decision support systems development and strategies. Precision Agriculture, 18(3), 309-331
Link, J., Graeff, S., Batchelor, W. D., & Claupein, W. (2006). Evaluating the economic and environmental impact of environmental compensation payment policy under uniform and variable-rate nitrogen management. Agricultural Systems, 91(1-2), 135-153
Liu, T., Li, R., Zhong, X., Jiang, M., Jin, X., Zhou, P., Guo, W. (2018). Estimates of rice lodging using indices derived from UAV visible and thermal infrared images. Agricultural and Forest Meteorology, 252, 144-154
Mahlein, A.-K., Oerke, E.-C., Steiner, U., & Dehne, H.-W. (2012). Recent advances in sensing plant diseases for precision crop protection. European Journal of Plant Pathology, 133(1), 197-209
Moran, M. S., Inoue, Y., & Barnes, E. (1997). Opportunities and limitations for image-based remote sensing in precision crop management. Remote sensing of Environment, 61(3), 319-346
Mulla, D., & Bhatti, A. (1997). An evaluation of indicator properties affecting spatial patterns in N and P requirements for winter wheat yield. Precision agriculture'97: Spatial variability in soil and crop: BIOS Sci.
Novoa, R., & Loomis, R. (1981). Nitrogen and plant production. Plant and soil, 58(1-3), 177-204
Panigrahy, S., & Sharma, S. (1997). Mapping of crop rotation using multidate Indian Remote Sensing Satellite digital data. ISPRS Journal of Photogrammetry and Remote Sensing, 52(2), 85-91
Peñuelas, J., & Filella, I. (1998). Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends in plant science, 3(4), 151-156
Peñuelas, J., Filella, I., & Gamon, J. A. (1995). Assessment of photosynthetic radiation‐use efficiency with spectral reflectance. New Phytologist, 131(3), 291-296
Peñuelas, J., Filella, I., Lloret, P., Mun Oz, F., & Vilajeliu, M. (1995). Reflectance assessment of mite effects on apple trees. International Journal of Remote Sensing, 16(14), 2727-2733
Pearson, R. L., & Miller, L. D. (1972). Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie Remote Sensing of Environment, VIII (pp. 1355).
Peng, S., Buresh, R. J., Huang, J., Zhong, X., Zou, Y., Yang, J., Tang, Q. (2010). Improving nitrogen fertilization in rice by sitespecific N management. A review. Agronomy for Sustainable Development, 30(3), 649-656
Pfeifer, J., Khanna, R., Dragos, C., Popovic, M., Galceran, E., Kirchgessner, N., Liebisch, F. (2016). Towards automatic UAV data interpretation for precision farming CIGR-AgEng conference. Aarhus, Denmark.
Phan, A. T. T., Takahashi, K., Rikimaru, A., & Higuchi, Y. (2016). Method for estimating rice plant height without ground surface detection using laser scanner measurement (Vol. 10, pp. 11): SPIE.
Raun, W. R., Solie, J. B., Johnson, G. V., Stone, M. L., Lukina, E. V., Thomason, W. E., & Schepers, J. S. (2001). In-season prediction of potential grain yield in winter wheat using canopy reflectance. Agronomy Journal, 93(1), 131-138
Ribera, J., He, F., Chen, Y., Habib, A. F., & Delp, E. J. (2016). Estimating phenotypic traits from UAV based RGB imagery Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Workshop on Data Science for Food, Energy, and Water.
Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote sensing of environment, 55(2), 95-107
Roujean, J.-L., & Breon, F.-M. (1995). Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote sensing of Environment, 51(3), 375-384
Rouse Jr, J. W., Haas, R., Schell, J., & Deering, D. (1974). Monitoring vegetation systems in the Great Plains with ERTS. Third ERTS symposium, NASA SP-351.
Salamí, E., Barrado, C., & Pastor, E. (2014). UAV flight experiments applied to the remote sensing of vegetated areas. Remote Sensing, 6(11), 11051-11081
Scharf, P. C., & Lory, J. A. (2002). Calibrating corn color from aerial photographs to predict sidedress nitrogen need. Agronomy journal, 94(3), 397-404
Shi, Y., Thomasson, J. A., Murray, S. C., Pugh, N. A., Rooney, W. L., Shafian, S., Neely, H. L. (2016). Unmanned aerial vehicles for high-throughput phenotyping and agronomic research. PLoS ONE, 11(7), e0159781
Sigrimis, N., Hashimoto, Y., Munack, A., & De Baerdemaker, J. (1999). Prospects in agricultural engineering in the information age-technological development for the producer and the consumer
Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote sensing of environment, 81(2-3), 337-354
Sripada, R. P., Heiniger, R. W., White, J. G., & Meijer, A. D. (2006). Aerial color infrared photography for determining early in-season nitrogen requirements in corn. Agronomy Journal, 98(4), 968-977
Sripada, R. P., Schmidt, J. P., Dellinger, A. E., & Beegle, D. B. (2008). Evaluating multiple indices from a canopy reflectance sensor to estimate corn N requirements. Agronomy Journal, 100(6), 1553-1561
Stafford, J. V. (2000). Implementing precision agriculture in the 21st century. Journal of Agricultural Engineering Research, 76(3), 267-275
Tanger, P., Klassen, S., Mojica, J. P., Lovell, J. T., Moyers, B. T., Baraoidan, M., Bush, D. R. (2017). Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice. Scientific reports, 7, 42839
Tattaris, M., Reynolds, M. P., & Chapman, S. C. (2016). A direct comparison of remote sensing approaches for high-throughput phenotyping in plant breeding. Frontiers in plant science, 7, 1131
Team, R. C. (2013). R: A language and environment for statistical computing.,
Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment, 8(2), 127-150
Vincini, M., Frazzi, E., & D’Alessio, P. (2008). A broad-band leaf chlorophyll vegetation index at the canopy scale. Precision Agriculture, 9(5), 303-319
Virlet, N., Sabermanesh, K., Sadeghi-Tehran, P., & Hawkesford, M. J. (2017). Field Scanalyzer: An automated robotic field phenotyping platform for detailed crop monitoring. Functional Plant Biology, 44(1), 143-153
Wijitdechakul, J., Sasaki, S., Kiyoki, Y., & Koopipat, C. (2016). UAV-based multispectral image analysis system with semantic computing for agricultural health conditions monitoring and real-time management Electronics Symposium (IES), 2016 International (pp. 459-464): IEEE.
Xiao, X., Boles, S., Liu, J., Zhuang, D., Frolking, S., Li, C., Moore, B. (2005). Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sensing of Environment, 95(4), 480-492
Xue, J., & Su, B. (2017). Significant remote sensing vegetation indices: A review of developments and applications. Journal of Sensors, 2017
Yang, G., Liu, J., Zhao, C., Li, Z., Huang, Y., Yu, H., Zhang, X. (2017). Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives. Frontiers in plant science, 8, 1111
Yang, M.-D., Huang, K.-S., Kuo, Y.-H., Tsai, H. P., & Lin, L.-M. (2017). Spatial and spectral hybrid image classification for rice lodging assessment through UAV imagery. Remote Sensing, 9(6), 583
Yang, Z., Willis, P., & Mueller, R. (2008). Impact of band-ratio enhanced AWIFS image to crop classification accuracy Proceeding of the 17th William T. Pecora Memorial Remote Sensing Symposium. Denver, Colorado, USA.
Yao, H., Tang, L., Tian, L., Brown, R., Bhatnagar, D., & Cleveland, T. (2011). Using hyperspectral data in precision farming applications. Hyperspectral remote sensing of vegetation, 591-607
Zarco-Tejada, P. J., González-Dugo, V., & Berni, J. A. (2012). Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sensing of Environment, 117, 322-337
Zhang, C., Walters, D., & Kovacs, J. M. (2014). Applications of low altitude remote sensing in agriculture upon farmers' requests–a case study in northeastern Ontario, Canada. PLoS ONE, 9(11), e112894
Zhong, L., Hu, L., Yu, L., Gong, P., & Biging, G. S. (2016). Automated mapping of soybean and corn using phenology. ISPRS Journal of Photogrammetry and Remote Sensing, 119, 151-164
Zhou, X., Zheng, H., Xu, X., He, J., Ge, X., Yao, X., Tian, Y. (2017). Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 246-255
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78945-
dc.description.abstract本試驗旨於建立一套標準程序可用於無人機多光譜影像作物性狀時序調查及田間栽培管理決策支援系統。本試驗場域位在桃園區農改場水稻 (Oryza sativa L.) 氮肥試驗田,試驗期作包含2017共兩期作及2018一期作。透過地面調查,觀察不同栽培品種其氮素、產量及穀粒品質性狀對於不同氮肥處理之反應; 同時由無人機攜載多光譜與數位相機時序蒐集空拍影像,測試四個波段、四十三種植生指標、積分指標與性狀之相關性。結果顯示,氮素、產量和穀粒品質等性狀,其最佳配適植生指數會隨不同的品種、期作或植生指數取自的部位而改變。單一品種性狀與植生指數迴歸會比混合品種有更好的表現。與桃園三號在2017年產量最相關植生指標為取自葉部的MCARI/MTVI2 (一期與二期作: R2adjusted為0.462及0.735;移植後第一百二十三天及九十八天)。與桃園三號在2017年之穀粒品質最相關之植生指數,為來自穗部和穗葉混合之red edge 頻段(中心735 nm) 反射光譜 (一期與二期作: R2adjusted為0.887及0.883;移植後第一百二十三天及九十八天)。穀粒品質性狀圖譜(由混合十個品種之穀粒品質分數與移植後第一百二十三天綠光波段(中心550 nm)建立之回歸關係(R2adjusted為0.439)所得),可作為篩選單一品系,甚至是單一植株表現的新工具。另外,首次於本研究提出雜草及穗部專一性指標,可用於分辨作物、雜草以及稻穗。在抽穗期將葉與穗分離可以改善植生指標與調查性狀迴歸分析的決定係數,突顯在成熟期利用穗部專一指標分離穗部對於改善性狀調查精準度的重要性。雜草專一指標可以在栽培早期量化水稻田間雜草覆蓋面積與提供光譜特徵。綜合本研究各項結果顯示,本系統除可從多時序多光譜影像中提供植物專一植生指數之外,亦可提供作物、雜草、穗部覆蓋面積等資訊做為作物栽培管理決策之重要參考。zh_TW
dc.description.abstractThe aim of this study is to develop a standard protocol for field UAV time series multispectral images phenotyping and a management decision support system. Rice (Oryza sativa L.) nitrogen fertilizer treatment field located in Taoyuan District Agricultural Research and Extension Station (TYDARES). Plant nitrogen status, yield, and grain quality phenotype of different varieties as well as UAV derived multispectral images were collected from in 2017 and 2018. Forty-three vegetative indices (VIs) derived from four original wavebands reflectance and integration of VIs were tested in this study for regression analysis. Result shows that the best VIs for different phenotypes regression varies over time and varieties. Correlation between single variety’s VI and phenotype was higher than pooled phenotypes and VIs. Grain yield of rice variety TY3 were highly correlated with MCARI/MTVI2 at 123 days after transplanting (DAT) (R2adjusted = 0.462) and 98 DAT (R2adjusted = 0.735) from leaf part in the first and second crop season in 2017. Grain quality score of TY3 were highly correlated with the reflectance of red edge (center 735 nm) at 123 DAT (R2adjusted = 0.887) and 98 DAT (R2adjusted = 0.883) from panicle and mixture of panicle and leaf part in the first and second crop season in 2017. Grain quality map, derived from regression of grain quality score of pooled ten varieties with reflectance of green band (center 550) at 123 DAT (R2adjusted = 0.439), offers a new way for single variety or even individual plant performance screening. In this study, we proposed two novel VIs, panicle specific VI (PSVI) and weed specific VI (WSVI). PSVI strongly improves the correlation of VIs with grain quality and leaf nitrogen phenotype at heading stage. Furthermore, WSVI successfully detected and localized weeds in rice field at early vegetative stage of the second crop season in 2017, providing valuable information as a supporting reference for field management decision. In summary, this system can provide not only time-series plant specific vegetative indices profiles, but also cover area and spectral feature profiles specific to crop, weed, and panicle, which is an essential reference information for crop management decision.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:31:12Z (GMT). No. of bitstreams: 1
ntu-107-R05621114-1.pdf: 8378059 bytes, checksum: eeeeb591e946c9285b1b433fb2df2b10 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents謝辭 i
摘要 ii
Abstract iii
Contents v
List of Figures vii
List of Tables xi
Abbreviation table xiv
Introduction 1
Introduction to precision agriculture 1
Remote sensing 2
Remote sensing application in agriculture: phenotyping 4
Remote sensing platform 4
Precision agriculture applications 5
Precision Agriculture in Taiwan 6
Decision support system 7
Aim of this study 8
Materials and methods 9
Experimental design 9
Field data collection 9
UAV and camera sensors 10
Image preprocessing 11
Novel vegetative indices development 13
Panicle specific vegetative indices development 14
Weed specific vegetative indices development 14
UAV-derived crop cover ratio specification 14
Statistical and regression analysis 15
Result 17
Field data collection 17
Quality of UAV multispectral images 18
Image processing 19
Novel VIs discovery 19
Application of panicle specific VI (PSVI) 20
Application of weed specific VI (WSVI) 20
Time-series TY3 multispectral bands features 22
Time-series crop cover rate among varieties 23
Time-series panicle cover rate among varieties 23
Regression analysis 24
Quality map 28
Project scheme 28
Discussion 29
Crucial factors in UAV project 29
Challenges in field time series phenotype monitoring 31
Significance of panicle specific vegetative indices (PSVI) 32
Significance of weed specific vegetative indices (WSVI) 34
Feasibility of site specific nitrogen management 35
Field management decision supporting system 36
Future directions in PA 37
Conclusion 38
Reference 111
dc.language.isoen
dc.subject田間性狀調查zh_TW
dc.subject雜草zh_TW
dc.subject決策支援系統zh_TW
dc.subject植生指數zh_TW
dc.subject多光譜影像zh_TW
dc.subject無人機zh_TW
dc.subjectmultispectral imagesen
dc.subjectvegetative indicesen
dc.subjectdecision support systemen
dc.subjectweeden
dc.subjectfield phenotypingen
dc.subjectUAVen
dc.title以無人機獲取之多光譜影像建立田間作物性狀調查暨栽培管理決策支援系統zh_TW
dc.titleDeveloping a Field Crop Phenotyping and Management Decision Support System with Unmanned Aerial Vehicle-derived Multispectral Imagesen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.coadvisor蔡育彰(Yu-Chang Tsai)
dc.contributor.oralexamcommittee羅正方(Cheng-Fang Lo),黃文達(Wen-Dar Huang)
dc.subject.keyword植生指數,多光譜影像,無人機,田間性狀調查,決策支援系統,雜草,zh_TW
dc.subject.keywordvegetative indices,multispectral images,UAV,field phenotyping,decision support system,weed,en
dc.relation.page119
dc.identifier.doi10.6342/NTU201803558
dc.rights.note有償授權
dc.date.accepted2018-08-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
dc.date.embargo-lift2023-08-23-
Appears in Collections:農藝學系

Files in This Item:
File SizeFormat 
ntu-107-R05621114-1.pdf
  Restricted Access
8.18 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved