Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78945Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 盧虎生(Huu-Sheng Lur) | |
| dc.contributor.author | Tien-Cheng Wang | en |
| dc.contributor.author | 王天成 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:31:12Z | - |
| dc.date.available | 2023-08-23 | |
| dc.date.copyright | 2018-08-23 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-16 | |
| dc.identifier.citation | 王薏雯. (2007). 整合福衛二號高時間解析度和高空間解析度衛星影像與田間光譜資料監測水稻生長和預測產量.國立成功大學地球科學系博士論文.
台灣農業試驗所. (2015). Development of map data for precision agriculture Innovative technique. 周昶成. (1997). 利用多時SPOT衛星影像以研究水稻反射率動態光譜及其應用.國立中央大學太空科學研究所碩士論文. 林福源, 張素貞, 逢玉瀅, 陳昱為. (2015). 遙測技術在農作物災害監測之研究與應用評估. 104年度農業工程自動化計畫成果研討會論文集.台中市. 黃淑娟, 蘇宗振. (2010). 建立遙測稻作面積調查體系之探討. 農政與農情. 楊智凱, 施瑩艷, 楊舒涵. (2016). 以智慧科技邁向臺灣農業4.0時代. 農政與農情. 農業統計. (2017). 農耕土地面積.行政院農業委員會 http://statview.coa.gov.tw/aqsys_on/importantArgiGoal_lv3_1_2_1_1.html 劉天成. (2000). 我國精準農業的發展方向與策略. 農政與農情. 賴姵蓁. (2008). 利用福衛二號影像於花生田及水稻田判釋之研究. 逢甲大學土地管理所碩士論文. Albornoz, E. M., Kemerer, A. C., Galarza, R., Mastaglia, N., Melchiori, R., & Martínez, C. E. (2018). Development and evaluation of an automatic software for management zone delineation. Precision Agriculture, 19(3), 463-476 Banger, K., Yuan, M., Wang, J., Nafziger, E. D., & Pittelkow, C. M. (2017). A Vision for Incorporating environmental effects into nitrogen management decision support tools for US maize production. Frontiers in plant science, 8, 1270 Bannari, A., Asalhi, H., & Teillet, P. (2002). Transformed difference vegetation index (TDVI) for vegetation cover mapping Geoscience and Remote Sensing Symposium, 2002. IGARSS'02. 2002 IEEE International (Vol. 5, pp. 3053-3055): IEEE. Bausch, W., & Khosla, R. (2010). QuickBird satellite versus ground-based multi-spectral data for estimating nitrogen status of irrigated maize. Precision Agriculture, 11(3), 274-290 Berni, J. A., Zarco-Tejada, P. J., Suárez Barranco, M. D., & Fereres Castiel, E. (2009). Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle. IEEE Transactions on Geoscience and Remote Sensing, 47(3), 722-738 Bhatti, A., Mulla, D., & Frazier, B. (1991). Estimation of soil properties and wheat yields on complex eroded hills using geostatistics and thematic mapper images. Remote Sensing of Environment, 37(3), 181-191 Broge, N. H., & Leblanc, E. (2001). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote sensing of environment, 76(2), 156-172 Bull, C. (1991). Wavelength selection for near-infrared reflectance moisture meters. Journal of Agricultural Engineering Research, 49, 113-125 Campbell, J. B., & Wynne, R. H. (2011). Introduction to remote sensing: Guilford Press. Chen, J. M. (1996). Evaluation of vegetation indices and a modified simple ratio for boreal applications. Canadian Journal of Remote Sensing, 22(3), 229-242 Chu, T., Starek, M. J., Brewer, M. J., Murray, S. C., & Pruter, L. S. (2017). Assessing lodging severity over an experimental maize (Zea mays L.) field using UAS images. Remote Sensing, 9(9), 923 Cilia, C., Panigada, C., Rossini, M., Meroni, M., Busetto, L., Amaducci, S., Colombo, R. (2014). Nitrogen status assessment for variable rate fertilization in maize through hyperspectral imagery. Remote Sensing, 6(7), 6549-6565 Cohen, C. J. (2000). Early history of remote sensing aipr (pp. 3): IEEE. Crippen, R. E. (1990). Calculating the vegetation index faster. Remote Sensing of Environment, 34(1), 71-73 Danner, M., Berger, K., Wocher, M., Mauser, W., & Hank, T. (2017). Retrieval of biophysical crop variables from multi-angular canopy spectroscopy. Remote Sensing, 9(7), 726 Daughtry, C., Walthall, C., Kim, M., De Colstoun, E. B., & McMurtrey Iii, J. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote sensing of Environment, 74(2), 229-239 David, L. C. G., & Ballado, A. H. (2016). Vegetation indices and textures in object-based weed detection from UAV imagery Control System, Computing and Engineering (ICCSCE), 2016 6th IEEE International Conference on (pp. 273-278): IEEE. Dube, T., Gara, T. W., Mutanga, O., Sibanda, M., Shoko, C., Murwira, A., Hatendi, C. M. (2018). Estimating forest standing biomass in savanna woodlands as an indicator of forest productivity using the new generation WorldView-2 sensor. Geocarto International, 33(2), 178-188 Eitel, J., Long, D., Gessler, P., & Smith, A. (2007). Using in‐situ measurements to evaluate the new RapidEye™ satellite series for prediction of wheat nitrogen status. International Journal of Remote Sensing, 28(18), 4183-4190 Firrao, G., Torelli, E., Gobbi, E., Raranciuc, S., Bianchi, G., & Locci, R. (2010). Prediction of milled maize fumonisin contamination by multispectral image analysis. Journal of cereal science, 52(2), 327-330 Foley, W. J., McIlwee, A., Lawler, I., Aragones, L., Woolnough, A. P., & Berding, N. (1998). Ecological applications of near infrared reflectance spectroscopy–a tool for rapid, cost-effective prediction of the composition of plant and animal tissues and aspects of animal performance. Oecologia, 116(3), 293-305 Franco, C., Pedersen, S. M., Papaharalampos, H., & Ørum, J. E. (2017). The value of precision for image-based decision support in weed management. Precision Agriculture, 18(3), 366-382 Fuentes, S., De Bei, R., Pech, J., & Tyerman, S. (2012). Computational water stress indices obtained from thermal image analysis of grapevine canopies. Irrigation Science, 30(6), 523-536 Gamon, J. A., Field, C. B., Goulden, M. L., Griffin, K. L., Hartley, A. E., Joel, G., Valentini, R. (1995). Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. Ecological Applications, 5(1), 28-41 Gamon, J. A., Huemmrich, K. F., Wong, C. Y., Ensminger, I., Garrity, S., Hollinger, D. Y., Peñuelas, J. (2016). A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers. Proceedings of the National Academy of Sciences, 113(46), 13087-13092 Geipel, J., Link, J., & Claupein, W. (2014). Combined spectral and spatial modeling of corn yield based on aerial images and crop surface models acquired with an unmanned aircraft system. Remote Sensing, 6(11), 10335-10355 Gitelson, A. A. (2004). Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. Journal of plant physiology, 161(2), 165-173 Gitelson, A. A., Merzlyak, M. N., & Chivkunova, O. B. (2001). Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochemistry and photobiology, 74(1), 38-45 Gitelson, A. A., Merzlyak, M. N., & Lichtenthaler, H. K. (1996). Detection of red edge position and chlorophyll content by reflectance measurements near 700 nm. Journal of plant physiology, 148(3-4), 501-508 Glenn, E. P., Huete, A. R., Nagler, P. L., & Nelson, S. G. (2008). Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: What vegetation indices can and cannot tell us about the landscape. Sensors, 8(4), 2136-2160 Goel, N. S., & Qin, W. (1994). Influences of canopy architecture on relationships between various vegetation indices and LAI and FPAR: A computer simulation. Remote Sensing Reviews, 10(4), 309-347 Goel, P. K., Prasher, S. O., Landry, J.-A., Patel, R. M., Bonnell, R., Viau, A. A., & Miller, J. (2003). Potential of airborne hyperspectral remote sensing to detect nitrogen deficiency and weed infestation in corn. Computers and electronics in agriculture, 38(2), 99-124 Goldstein, A., Fink, L., Meitin, A., Bohadana, S., Lutenberg, O., & Ravid, G. (2018). Applying machine learning on sensor data for irrigation recommendations: revealing the agronomist’s tacit knowledge. Precision Agriculture, 19(3), 421-444 Gong, P., Pu, R., Biging, G. S., & Larrieu, M. R. (2003). Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data. IEEE transactions on geoscience and remote sensing, 41(6), 1355-1362 Gonzalez-Dugo, V., Zarco-Tejada, P., Nicolás, E., Nortes, P. A., Alarcón, J., Intrigliolo, D. S., & Fereres, E. (2013). Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard. Precision Agriculture, 14(6), 660-678 Gowen, A., O'Donnell, C., Cullen, P., Downey, G., & Frias, J. (2007). Hyperspectral imaging–an emerging process analytical tool for food quality and safety control. Trends in Food Science & Technology, 18(12), 590-598 Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Strachan, I. B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote sensing of environment, 90(3), 337-352 Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., & Dextraze, L. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote sensing of environment, 81(2-3), 416-426 Haboudane, D., Tremblay, N., Miller, J. R., & Vigneault, P. (2008). Remote estimation of crop chlorophyll content using spectral indices derived from hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 46(2), 423-437 Hatfield, J. L., & Prueger, J. H. (2010). Value of using different vegetative indices to quantify agricultural crop characteristics at different growth stages under varying management practices. Remote Sensing, 2(2), 562-578 Hu, R., Cao, J., Huang, J., Peng, S., Huang, J., Zhong, X., Buresh, R. J. (2007). Farmer participatory testing of standard and modified site-specific nitrogen management for irrigated rice in China. Agricultural Systems, 94(2), 331-340 Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote sensing of environment, 25(3), 295-309 Hunt Jr, E. R., Doraiswamy, P. C., McMurtrey, J. E., Daughtry, C. S., Perry, E. M., & Akhmedov, B. (2013). A visible band index for remote sensing leaf chlorophyll content at the canopy scale. International Journal of Applied Earth Observation and Geoinformation, 21, 103-112 Johnson, C., Schafer, R., & Young, S. (1984). Controlling agricultural machinery intelligently Agricultural Electronics- 1983 and Beyond. Proceedings of the National Conference on Agricultural Electronics Applications. St Joseph: American Society of Agricultural Engineers. Justes, E., Mary, B., Meynard, J. M., Machet, J. M., & Thelier-Huche, L. (1994). Determination of a Critical Nitrogen Dilution Curve for Winter Wheat Crops. Annals of Botany, 74(4), 397-407 Kefauver, S. C., Vicente, R., Vergara-Díaz, O., Fernandez-Gallego, J. A., Kerfal, S., Lopez, A., Araus, J. L. (2017). Comparative UAV and field phenotyping to assess yield and nitrogen use efficiency in hybrid and conventional barley. Frontiers in plant science, 8, 1733 Kjeldahl, C. (1883). A new method for the determination of nitrogen in organic matter. Z Anal Chem, 22, 366 Langner, H.-R., Böttger, H., & Schmidt, H. (2006). A special vegetation index for the weed detection in sensor based precision agriculture. Environmental monitoring and assessment, 117(1-3), 505-518 Lee, Y.-J., Yang, C.-M., Chang, K.-W., & Shen, Y. (2008). A simple spectral index using reflectance of 735 nm to assess nitrogen status of rice canopy. Agronomy Journal, 100(1), 205-212 Lemaire, G., Jeuffroy, M.-H., & Gastal, F. (2008). Diagnosis tool for plant and crop N status in vegetative stage: Theory and practices for crop N management. European Journal of agronomy, 28(4), 614-624 Lindblom, J., Lundström, C., Ljung, M., & Jonsson, A. (2017). Promoting sustainable intensification in precision agriculture: review of decision support systems development and strategies. Precision Agriculture, 18(3), 309-331 Link, J., Graeff, S., Batchelor, W. D., & Claupein, W. (2006). Evaluating the economic and environmental impact of environmental compensation payment policy under uniform and variable-rate nitrogen management. Agricultural Systems, 91(1-2), 135-153 Liu, T., Li, R., Zhong, X., Jiang, M., Jin, X., Zhou, P., Guo, W. (2018). Estimates of rice lodging using indices derived from UAV visible and thermal infrared images. Agricultural and Forest Meteorology, 252, 144-154 Mahlein, A.-K., Oerke, E.-C., Steiner, U., & Dehne, H.-W. (2012). Recent advances in sensing plant diseases for precision crop protection. European Journal of Plant Pathology, 133(1), 197-209 Moran, M. S., Inoue, Y., & Barnes, E. (1997). Opportunities and limitations for image-based remote sensing in precision crop management. Remote sensing of Environment, 61(3), 319-346 Mulla, D., & Bhatti, A. (1997). An evaluation of indicator properties affecting spatial patterns in N and P requirements for winter wheat yield. Precision agriculture'97: Spatial variability in soil and crop: BIOS Sci. Novoa, R., & Loomis, R. (1981). Nitrogen and plant production. Plant and soil, 58(1-3), 177-204 Panigrahy, S., & Sharma, S. (1997). Mapping of crop rotation using multidate Indian Remote Sensing Satellite digital data. ISPRS Journal of Photogrammetry and Remote Sensing, 52(2), 85-91 Peñuelas, J., & Filella, I. (1998). Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends in plant science, 3(4), 151-156 Peñuelas, J., Filella, I., & Gamon, J. A. (1995). Assessment of photosynthetic radiation‐use efficiency with spectral reflectance. New Phytologist, 131(3), 291-296 Peñuelas, J., Filella, I., Lloret, P., Mun Oz, F., & Vilajeliu, M. (1995). Reflectance assessment of mite effects on apple trees. International Journal of Remote Sensing, 16(14), 2727-2733 Pearson, R. L., & Miller, L. D. (1972). Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie Remote Sensing of Environment, VIII (pp. 1355). Peng, S., Buresh, R. J., Huang, J., Zhong, X., Zou, Y., Yang, J., Tang, Q. (2010). Improving nitrogen fertilization in rice by sitespecific N management. A review. Agronomy for Sustainable Development, 30(3), 649-656 Pfeifer, J., Khanna, R., Dragos, C., Popovic, M., Galceran, E., Kirchgessner, N., Liebisch, F. (2016). Towards automatic UAV data interpretation for precision farming CIGR-AgEng conference. Aarhus, Denmark. Phan, A. T. T., Takahashi, K., Rikimaru, A., & Higuchi, Y. (2016). Method for estimating rice plant height without ground surface detection using laser scanner measurement (Vol. 10, pp. 11): SPIE. Raun, W. R., Solie, J. B., Johnson, G. V., Stone, M. L., Lukina, E. V., Thomason, W. E., & Schepers, J. S. (2001). In-season prediction of potential grain yield in winter wheat using canopy reflectance. Agronomy Journal, 93(1), 131-138 Ribera, J., He, F., Chen, Y., Habib, A. F., & Delp, E. J. (2016). Estimating phenotypic traits from UAV based RGB imagery Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Workshop on Data Science for Food, Energy, and Water. Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote sensing of environment, 55(2), 95-107 Roujean, J.-L., & Breon, F.-M. (1995). Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote sensing of Environment, 51(3), 375-384 Rouse Jr, J. W., Haas, R., Schell, J., & Deering, D. (1974). Monitoring vegetation systems in the Great Plains with ERTS. Third ERTS symposium, NASA SP-351. Salamí, E., Barrado, C., & Pastor, E. (2014). UAV flight experiments applied to the remote sensing of vegetated areas. Remote Sensing, 6(11), 11051-11081 Scharf, P. C., & Lory, J. A. (2002). Calibrating corn color from aerial photographs to predict sidedress nitrogen need. Agronomy journal, 94(3), 397-404 Shi, Y., Thomasson, J. A., Murray, S. C., Pugh, N. A., Rooney, W. L., Shafian, S., Neely, H. L. (2016). Unmanned aerial vehicles for high-throughput phenotyping and agronomic research. PLoS ONE, 11(7), e0159781 Sigrimis, N., Hashimoto, Y., Munack, A., & De Baerdemaker, J. (1999). Prospects in agricultural engineering in the information age-technological development for the producer and the consumer Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote sensing of environment, 81(2-3), 337-354 Sripada, R. P., Heiniger, R. W., White, J. G., & Meijer, A. D. (2006). Aerial color infrared photography for determining early in-season nitrogen requirements in corn. Agronomy Journal, 98(4), 968-977 Sripada, R. P., Schmidt, J. P., Dellinger, A. E., & Beegle, D. B. (2008). Evaluating multiple indices from a canopy reflectance sensor to estimate corn N requirements. Agronomy Journal, 100(6), 1553-1561 Stafford, J. V. (2000). Implementing precision agriculture in the 21st century. Journal of Agricultural Engineering Research, 76(3), 267-275 Tanger, P., Klassen, S., Mojica, J. P., Lovell, J. T., Moyers, B. T., Baraoidan, M., Bush, D. R. (2017). Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice. Scientific reports, 7, 42839 Tattaris, M., Reynolds, M. P., & Chapman, S. C. (2016). A direct comparison of remote sensing approaches for high-throughput phenotyping in plant breeding. Frontiers in plant science, 7, 1131 Team, R. C. (2013). R: A language and environment for statistical computing., Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment, 8(2), 127-150 Vincini, M., Frazzi, E., & D’Alessio, P. (2008). A broad-band leaf chlorophyll vegetation index at the canopy scale. Precision Agriculture, 9(5), 303-319 Virlet, N., Sabermanesh, K., Sadeghi-Tehran, P., & Hawkesford, M. J. (2017). Field Scanalyzer: An automated robotic field phenotyping platform for detailed crop monitoring. Functional Plant Biology, 44(1), 143-153 Wijitdechakul, J., Sasaki, S., Kiyoki, Y., & Koopipat, C. (2016). UAV-based multispectral image analysis system with semantic computing for agricultural health conditions monitoring and real-time management Electronics Symposium (IES), 2016 International (pp. 459-464): IEEE. Xiao, X., Boles, S., Liu, J., Zhuang, D., Frolking, S., Li, C., Moore, B. (2005). Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sensing of Environment, 95(4), 480-492 Xue, J., & Su, B. (2017). Significant remote sensing vegetation indices: A review of developments and applications. Journal of Sensors, 2017 Yang, G., Liu, J., Zhao, C., Li, Z., Huang, Y., Yu, H., Zhang, X. (2017). Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives. Frontiers in plant science, 8, 1111 Yang, M.-D., Huang, K.-S., Kuo, Y.-H., Tsai, H. P., & Lin, L.-M. (2017). Spatial and spectral hybrid image classification for rice lodging assessment through UAV imagery. Remote Sensing, 9(6), 583 Yang, Z., Willis, P., & Mueller, R. (2008). Impact of band-ratio enhanced AWIFS image to crop classification accuracy Proceeding of the 17th William T. Pecora Memorial Remote Sensing Symposium. Denver, Colorado, USA. Yao, H., Tang, L., Tian, L., Brown, R., Bhatnagar, D., & Cleveland, T. (2011). Using hyperspectral data in precision farming applications. Hyperspectral remote sensing of vegetation, 591-607 Zarco-Tejada, P. J., González-Dugo, V., & Berni, J. A. (2012). Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sensing of Environment, 117, 322-337 Zhang, C., Walters, D., & Kovacs, J. M. (2014). Applications of low altitude remote sensing in agriculture upon farmers' requests–a case study in northeastern Ontario, Canada. PLoS ONE, 9(11), e112894 Zhong, L., Hu, L., Yu, L., Gong, P., & Biging, G. S. (2016). Automated mapping of soybean and corn using phenology. ISPRS Journal of Photogrammetry and Remote Sensing, 119, 151-164 Zhou, X., Zheng, H., Xu, X., He, J., Ge, X., Yao, X., Tian, Y. (2017). Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 246-255 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78945 | - |
| dc.description.abstract | 本試驗旨於建立一套標準程序可用於無人機多光譜影像作物性狀時序調查及田間栽培管理決策支援系統。本試驗場域位在桃園區農改場水稻 (Oryza sativa L.) 氮肥試驗田,試驗期作包含2017共兩期作及2018一期作。透過地面調查,觀察不同栽培品種其氮素、產量及穀粒品質性狀對於不同氮肥處理之反應; 同時由無人機攜載多光譜與數位相機時序蒐集空拍影像,測試四個波段、四十三種植生指標、積分指標與性狀之相關性。結果顯示,氮素、產量和穀粒品質等性狀,其最佳配適植生指數會隨不同的品種、期作或植生指數取自的部位而改變。單一品種性狀與植生指數迴歸會比混合品種有更好的表現。與桃園三號在2017年產量最相關植生指標為取自葉部的MCARI/MTVI2 (一期與二期作: R2adjusted為0.462及0.735;移植後第一百二十三天及九十八天)。與桃園三號在2017年之穀粒品質最相關之植生指數,為來自穗部和穗葉混合之red edge 頻段(中心735 nm) 反射光譜 (一期與二期作: R2adjusted為0.887及0.883;移植後第一百二十三天及九十八天)。穀粒品質性狀圖譜(由混合十個品種之穀粒品質分數與移植後第一百二十三天綠光波段(中心550 nm)建立之回歸關係(R2adjusted為0.439)所得),可作為篩選單一品系,甚至是單一植株表現的新工具。另外,首次於本研究提出雜草及穗部專一性指標,可用於分辨作物、雜草以及稻穗。在抽穗期將葉與穗分離可以改善植生指標與調查性狀迴歸分析的決定係數,突顯在成熟期利用穗部專一指標分離穗部對於改善性狀調查精準度的重要性。雜草專一指標可以在栽培早期量化水稻田間雜草覆蓋面積與提供光譜特徵。綜合本研究各項結果顯示,本系統除可從多時序多光譜影像中提供植物專一植生指數之外,亦可提供作物、雜草、穗部覆蓋面積等資訊做為作物栽培管理決策之重要參考。 | zh_TW |
| dc.description.abstract | The aim of this study is to develop a standard protocol for field UAV time series multispectral images phenotyping and a management decision support system. Rice (Oryza sativa L.) nitrogen fertilizer treatment field located in Taoyuan District Agricultural Research and Extension Station (TYDARES). Plant nitrogen status, yield, and grain quality phenotype of different varieties as well as UAV derived multispectral images were collected from in 2017 and 2018. Forty-three vegetative indices (VIs) derived from four original wavebands reflectance and integration of VIs were tested in this study for regression analysis. Result shows that the best VIs for different phenotypes regression varies over time and varieties. Correlation between single variety’s VI and phenotype was higher than pooled phenotypes and VIs. Grain yield of rice variety TY3 were highly correlated with MCARI/MTVI2 at 123 days after transplanting (DAT) (R2adjusted = 0.462) and 98 DAT (R2adjusted = 0.735) from leaf part in the first and second crop season in 2017. Grain quality score of TY3 were highly correlated with the reflectance of red edge (center 735 nm) at 123 DAT (R2adjusted = 0.887) and 98 DAT (R2adjusted = 0.883) from panicle and mixture of panicle and leaf part in the first and second crop season in 2017. Grain quality map, derived from regression of grain quality score of pooled ten varieties with reflectance of green band (center 550) at 123 DAT (R2adjusted = 0.439), offers a new way for single variety or even individual plant performance screening. In this study, we proposed two novel VIs, panicle specific VI (PSVI) and weed specific VI (WSVI). PSVI strongly improves the correlation of VIs with grain quality and leaf nitrogen phenotype at heading stage. Furthermore, WSVI successfully detected and localized weeds in rice field at early vegetative stage of the second crop season in 2017, providing valuable information as a supporting reference for field management decision. In summary, this system can provide not only time-series plant specific vegetative indices profiles, but also cover area and spectral feature profiles specific to crop, weed, and panicle, which is an essential reference information for crop management decision. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:31:12Z (GMT). No. of bitstreams: 1 ntu-107-R05621114-1.pdf: 8378059 bytes, checksum: eeeeb591e946c9285b1b433fb2df2b10 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 謝辭 i
摘要 ii Abstract iii Contents v List of Figures vii List of Tables xi Abbreviation table xiv Introduction 1 Introduction to precision agriculture 1 Remote sensing 2 Remote sensing application in agriculture: phenotyping 4 Remote sensing platform 4 Precision agriculture applications 5 Precision Agriculture in Taiwan 6 Decision support system 7 Aim of this study 8 Materials and methods 9 Experimental design 9 Field data collection 9 UAV and camera sensors 10 Image preprocessing 11 Novel vegetative indices development 13 Panicle specific vegetative indices development 14 Weed specific vegetative indices development 14 UAV-derived crop cover ratio specification 14 Statistical and regression analysis 15 Result 17 Field data collection 17 Quality of UAV multispectral images 18 Image processing 19 Novel VIs discovery 19 Application of panicle specific VI (PSVI) 20 Application of weed specific VI (WSVI) 20 Time-series TY3 multispectral bands features 22 Time-series crop cover rate among varieties 23 Time-series panicle cover rate among varieties 23 Regression analysis 24 Quality map 28 Project scheme 28 Discussion 29 Crucial factors in UAV project 29 Challenges in field time series phenotype monitoring 31 Significance of panicle specific vegetative indices (PSVI) 32 Significance of weed specific vegetative indices (WSVI) 34 Feasibility of site specific nitrogen management 35 Field management decision supporting system 36 Future directions in PA 37 Conclusion 38 Reference 111 | |
| dc.language.iso | en | |
| dc.subject | 田間性狀調查 | zh_TW |
| dc.subject | 雜草 | zh_TW |
| dc.subject | 決策支援系統 | zh_TW |
| dc.subject | 植生指數 | zh_TW |
| dc.subject | 多光譜影像 | zh_TW |
| dc.subject | 無人機 | zh_TW |
| dc.subject | multispectral images | en |
| dc.subject | vegetative indices | en |
| dc.subject | decision support system | en |
| dc.subject | weed | en |
| dc.subject | field phenotyping | en |
| dc.subject | UAV | en |
| dc.title | 以無人機獲取之多光譜影像建立田間作物性狀調查暨栽培管理決策支援系統 | zh_TW |
| dc.title | Developing a Field Crop Phenotyping and Management Decision Support System with Unmanned Aerial Vehicle-derived Multispectral Images | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 蔡育彰(Yu-Chang Tsai) | |
| dc.contributor.oralexamcommittee | 羅正方(Cheng-Fang Lo),黃文達(Wen-Dar Huang) | |
| dc.subject.keyword | 植生指數,多光譜影像,無人機,田間性狀調查,決策支援系統,雜草, | zh_TW |
| dc.subject.keyword | vegetative indices,multispectral images,UAV,field phenotyping,decision support system,weed, | en |
| dc.relation.page | 119 | |
| dc.identifier.doi | 10.6342/NTU201803558 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-16 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-08-23 | - |
| Appears in Collections: | 農藝學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-107-R05621114-1.pdf Restricted Access | 8.18 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
